Abstract
The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.