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Abstract

'We introduce a new class of analytic functions in the unit disk which
generalizes the concepts of close-to-convexity and of bounded boundary
rotation, and study its various properties including its connection with
other classes of analytic and univalent functions.

1. Introduction

Let Vi be the class of functions of bounded boundary rotation and K
be the class of close-to-convex functions. Let Ri be the class of analytic
functions with bounded radius rotation. A function feVj if, and only if,
zf'eRy. It is clear that R, = S*, the class of starlike functions and V; = C
is the class of convex functions.

DEFINITION 1.1. Let f.with f(z) = 2 + Yoo, @nz" be analytic in
E = {z: 2z |< 1} and f'(z) # 0. Then feTk, k > 2, if and only if there

exists a function glonVj such that, for zeE,

f'(z)
1.1 Re > 0.
(L1). 9'(2)
We note that T, = K

The class T} has been introduced and discussed in some details in [1]. We
now define the following.
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DEFINITION 1.2. Let f with f(z) = z + 1°°, a,2" be analytic in the
unit disk E with &{2{—3—)— # 0, zeE. Then feTi(a,y), Rea > 0, 0 < vy <
1 if, and only if, there exists a function geT} such that, for zeE,

(1.2) 2f'(z) + af(z) = (a + 1)z(g'(2))".
We note that Tx(0,1) = T; and T5(0,1) = K.

2. Preliminary Results
We shall give here the results needed to prove the main theorems in the
preceding section.

LEMMA 2.1 [2]. Let u andv denote complex variables, u = u; +iug, v =
v1 + tvy and let ¢(u,v) be a complex-valued function that satisfies the
following conditions:

(i) ¢(u,v) is continuous in a domain D C @2.

(ii) (1,0)eD and ¢(1,0) > 0.

(iii) Re(iug,v1) < 0 whenever (iug, v )eD and v, < —3(1+ud).

Ifp(z) =1+ b1z +byz? + -+ is a function that is analytic in E such that

(p(2), 2p'(2))eD and Re{¢(p(2),zp'(2))} >0
hold for all zeE, then Rep(z) > 0 in E.
LEMMA 2.2 [1]. Let geTy. Then, with z = re'® and 6 < 6,,

/:2 Re{-(—%%l):}dﬂ > ~§7r.

LEMMA 2.3 [3]. Let feR;. Then f is starlike for | z |< ro, where rg is
given by

(2.1) m=lh~vﬁ~ﬂ.

2

LEMMA 2.4 [4]. Let g1€Vi. Then there exist two starlike functions e
and sz such that, for zeE,

s = (242) ) (s} 1

z
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LEMMA 2.5 [5]. Let p(z) = 1+4by2+--- be analytic with | z |= re(0,1),
and if, for o,C,0,,0; with a > 1, Rec > 0,0 < 8, < 0; < 27, it is true

that .
? azp'(z) _
/;1 Re [p(z) + o p(z)] df > —m,

then
82

Rep(z)d8 > —m, z=re'.
6

3. Main Results

THEOREM 3.1. Let 0 <, < v < 1. Then Ti(a,v1) C Tx(a,r2).
Proof. Let feTi(a,v1). Then

2f'(2) + af(z) =(a + 1)2(¢'(2))", geTr
=(a + 1)z(h'(2))", where h'(z) = (g'(z)):%,

Now, since GeTy, there exlsts a function g;eVi such that, for zeE,
Re ;%1%%> 0. Let Gi(z) = (gl(z))"z It is easy to show that G1€Vi.

Thus "

h'(z) _ (9'(2)) "

Gi(2)  \a1(2)
and, since Jl < 1, we have Regv—%))- > 0, zeE and this implies that heT%.
Therefore f eTk(a v,) and the proof is complete.

THEOREM 3.2. Let feTy(a,vy), Rea 2 0, 0 < v < 1. Then, for 0 <
0, <0, <2m, z= ret.

2] 20
p'(2) } ky
R ———— 3 df > ——m,
[ol ) {p(z) T 2"
where p(z) = f%%%l

Proof. We have

2f'(z) + af(2) = (a+1)(¢'(2))", geTh.
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Differentiating logarithmically, we obtain

a+ 21 (2)) ' '
7z (29'(2))

= + (1 -7),
1+a% 7 g'(z) ( ”)

and, with p(z) = iﬁ%l, we have
Refots + i 2 [R5

- Now, on using Lemma 2.2, we obtain the required result:
Special Cases ’
(i) Let feTk(a,v) with v = 2,k > 2. Then, for z = re'?,0 < 6, < 6, < 2,

p(z) = %f—-(’—%l, /:2 Re {p(z) + %} dé > —m.
(ii) Let zF' = feTk(a,7),y = %, f—%? = p(z). Then, using Lemma 2.5
with ¢ = a,@ = 1 and theorem 3.2, we have, for 8; < 8,,
2F'(2))
A R
This implies that F is close-to-convex and hence univalent, see [6].
THEOREM 3.3. Let feTi(0,7). Then, with z =re'® and 0 < 6; < 6; <

27,
| o (@f@) kT
/;1 Re (z) ——tdf > 5

Proof. feTx(0,~) implies that

dé > —m, z=re’.

2f'(2) = 2(¢'(2))", 9T

THEENENS P 1Ge(e)
z'z ,—_729'2’ _
T - e TATY

Now the required result follows on using Lemma 2.2.
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REMARK 3.1. From a necessary and sufficient condition for f to be
univalent in E due to Kaplan [6], we note that feTx(0,v) is univalent E
for2<k < %

REMARK 3.2. Goodman [7] defines the class K(f) of close-to-convex
functions of higher order as follows.

Let f with f(z) = z + Y oo, aGn2" be analytic in E and f'(z) # 0.
Then, for 8 > 0, feK(B) if, for z = re’® and 8, < 6,

/:2 Re{gf-;—:—((;z—j)—)i}dﬂ > —pr.

We note that Tx(0,7) C K (3’;-) and thus many of the results proved in

[7] for the general class K(/) hold also for the class T}(0,v) with suitable
choices of k and 7. From the definition 1.2, we immediately have the
following,.

THEOREM 3.4. (Integral Representation) A function feTk(a,7) if and
only if there exists a function FeTy(oo,v) such that

(3.1) f(z) = (—‘L;f-ﬂ /0 "1 (2t

We now investigate the coefficient problem for the class Ti(a, 7).
THEOREM 3.5. Let feTx(a,v) and be given by f(z) = 2z} e, anz™.

Then, forn22,%<7§1,

| an < e(k,7) |

e s

where c(k,v) is a constant and depends only on k and v. The index
(%’1 + 2y — 2) is best possible.

Proof. Since feTi(a,~), we can write
zf'(2) + af(2) = (a + 1)z(¢'(2))”, g€T.

Let g(z) = 2z + 320 , byz™. Then, with z = re*?
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2n
s | 1 F@)+af(2)] a8

T 2mrnty-l f)

| (n+a)an |=
(3.2)
| 2¢'(2) |Y d6, geTy.

Using Lemma 2.4 and definition 1.1, we have
(s1(2))%+3
(s2(2))4 3

i9

where s, 32¢S™ and Reh(z) > 0,z¢E. Now we define, for v > %,z =re'’,

(3.3) 2g'(2) = h(2),

2r
L) = [ s ds
_[* () 10 usi
- /0 =T 1) 1" a8, wsing (3.9,

Using well-known distortion theorems for the starlike function s; and then
applying Schwarts inequality, we have

4 -3 2 3 2 3
Lo (D)7 ([T ra@rran) ([T as)
0 0
- 4 (5= 27 de % 27 |1+ ret? lz»yd& 3
=\r o |1- reid i(k-{-z)-, o | 1—rei® |27 ’

by subordination. ,
Hence, for v > %, k > 2, we have

(3.4) L(r) < e(k,7)/(1 = r)F¥271,

where ¢(k,7) is a constant depending upon &k and + only.
Taking r = (1~ 1), we obtain the required result from (3.2) and (3.4).
The function foeTi(a,v) defined by

z2fo(2) = afo(2) = (a + 1)2(g'(2))"

1 142 LA
9°(z)+(k+2){<1—z) *l}eT"’

shows that the index ( 5-21 + 2y — 2) is best possible.

with
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THEOREM 3.6. Let Rea > 0,0 < v < 1. Then Ty(a,v) C Tz2(oo, 7).
Proof. Let feT,(a,v). Then there exist G,¢C and p; with Rep,;(z) >
0, zeE such that
zf'(2) + af(z) =(a + 1)2p](z)(G3(2))"

(3.5) =(a + 1)zp1(2)G}(2),

where p;(2) = pj(z), Gi(z) = (G4(2))". It can be easily seen that
Repi(z) > 0, and G1¢C in E.
Define G(z) such that

2G'(2) + aG(z) = (a + 1)Gi(2), GieC,

or

a+1
za

(3.6) G(z) = fo ’ te1G, ()dt

Since G,¢€C, it follows that the function G defined by (3.6) also belongs
to C.

Now, from the definition, it follows directly the feT3(oc,7) if and only
if it may be represented as

f(2) = p(2)2G'(z), GeC, Rep(z)>0, inE.
Let

(3.7) f(2) = p(2)2G'(2),

where G is defined by (3.6)
We shall show that Rep(z) > 0, z¢E, and thus proving feT,(oo, 7).
After some computation, we have from (3.5), (3.6) and (3.7)

zp'(2)

2t pol?) = py(z), whereRepi(z) >0

p(z) +

and
G'(2))

Repo(z) = Re (ZG’(z) >0 inkE.
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We form the functional ¢(u,v) by taking p(z) = u, and zp'(2) = v such
that ¢(u,v) = u + -

We note that
(i) #(u,v) is continuous in a domain D C @2 since a + pp(z) # 0 in E.
Here D is a region contained in {(p(z)), zp'(z)); zeE}.
(ii)) At z =0,u = p(0) = 1 and v = 0, so the point (1,0)eD and #(1,0) =
1>0.

(iii)

. . v
Re¢(iuz,v1) =Re {zuz + - +1p0 }

1 _ ?)1((11 +t1)
a+po (@) +141)? + (az +2)?’
where a; = Rea > 0,t; = Repy > 0.

Hence, for v; < —3(1 + u),

=" Re

._.%(1 +ud)(a1 + 1) <0
ay +t1)2 +(ag +12)2 ~

Thus ¢(u, v) satisfies all the conditions of Lemma 2.1, and so Rep(z) > 0
in E. Hence feT,(o00,v) and the proof is complete.

THEOREM 3.7. Let feTi(a,1). The f is univalent for | z |< ry, where
ro is given by (2.1).

Proof. Since feTi(a,1), there exists a function FeTi(o0,1) such that

Reg(iug,v1) < (

a+1

za

f(z) = /0 ’ t*" 1 F(t)dt.

Now feTi(oo, 1) implies that
F(z) =z9'(2), geTk
=p(2)Gi(z), GreRx, Rep(z)>0 inkE.
Thus, with a = m + in,m > 0, we have

(m+1)+1in

(3.8) fz)y =0 /0 M p(£)Ga ()t dt.

We define N
G(z) =z (gl.;(-.z_l) m41
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Then it follows that GeRy, and using Lemma 2.3, we see that GeS* for
| z |< ro, where ry is given by (2.1). Further, let
' z _ Erye=r
fi(z) = {(m +1+1in) / G™H(t)p(t).t*"1dt
0

fi1 is a Bazelevic function for | z |< ry and hence univalent for | z |< 7y,
see [8]. Therefore, for | z |< ry, Il-gi)- ;é 0. We note that

f(z)*z[ (z)} , a=m-+in.

This means that, for (ﬁzﬂ) = , it is possible to select a uniform branch

which takes the value one for z = 0 and which is analytic for | z |< 1o
and thus we conclude that f is univalent in | z |< rq, where rq is given by
(2.1).

Special Case. From theorem 3.7, we see that feT3(a,1) is univalent in
E.

THEOREM 3.8. Let feTk(00,7),v # 3. Then the radius R of the circle
which f maps onto a starlike domain is given by

o]
where k1 = (k + 2)y,m1 = (27 - 1).
Proof. feTk(oo,) implies that
f(z) = (24'(2))", geTi
Differentiating logarithmically and using a result in [1] for geT}, we obtain

Re {zf’(Z)} Re{v(zg'(z'))’ (=)

f(2) g'(2)
2 r
> yir §k~+2)>+1]+(1__7)
(27 ~1r? —(k+2)yr + 1
1-1r2

and this gives us the required result.
The well-known coefficients results for ge K together with the definition
of the class Tj(a, 1) yield at once the following,.
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THEOREM 3.9. Let feT3(a,1) and be given by f(z) =z + 3, o0, Gn2z™.
Then

n?la+1|
< ——— > 2.
‘anl.__ |n+a|’ n....z

These bounds are sharp as can be seen from the function feel3(a,1) de-
fined as follows

zfa(2) + afe(z) = (a + 1)zgp(2),
where g¢(z) = ﬁ:—f;—;-;)—g

Using the fact that feTy(a,1) is univalent in £ and Theorem 3.9 for
' n=2, we immediately have the following covering result for the class T5(a, 1).

THEOREM 3.10. Let feTy(a,1). Then the disk E is mapped onto a
domain that contains the disk

4|a+1|

wi|< 2+ .
v |12+ a|
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