EXTRA-SPECIAL p-GROUPS WITH ITS AUTOMORPHISMS

JOONG SANG SHIN

1. Introduction. Let p be a prime. Let D be the dihedral group of order 8 and let Q be the quaternion group.

It is well known that a nonabelian p-group of order p^3 is isomorphic to one of the groups $M_3(p)$, M(p), D or Q, where

$$M_3(p) = \langle x, y \mid x^{p^2} = y^p = 1, \quad x^y = x^{1+p} \rangle$$

and

$$M(p) = \langle \, x,y,z \, \mid \, x^p = y^p = x^p = 1, \ [x,y] = z, \ [x,z] = [y,z] = 1 \, \rangle$$

Any automorphism of D (resp. Q) induces the identity automorphism on the center Z(D) of D (resp. Z(Q)) and the automorphism group $\operatorname{Aut}(D)$ (resp. $\operatorname{Aut}(Q)$) is isomorphic to D (resp. Σ_4 the symmetric group of degree 4).

An automorphism of a group G is p'-automorphism if its order is not divisible by p.

We are interested in relating the action of p'-automorphisms of a p-group G to their induced actions on certain subgroups and factor groups of G.

In this paper, we study actions of p'-automorphisms of $M_3(p)$ and M(p) to obtain some results (Theorems 2.6–2.9).

Notations and terminologies not described are conferred to [1], we denote by [x, y] the commutator of x and y.

2. Results. Let G be a group. The Frattini subgroup F(G) is the intersection of all the maximal subgroups of G. If the inverse image of Z(G/Z(G)) is G, then G is of class at most 2. A p-group G is special if either G is elementary abelian or G is of class 2 and G' = Z(G) = F(G) is elementary abelian. A special p-group G is extra-special if G has class 2 and the commutator subgroup G' is of order p. If G is a p-group, we denote by $\Omega_i(G)$ the subgroup of G generated by its elements of order dividing p^i .

REMARK 2.1. Let G be a group. Then subgroups F(G) and $\Omega_i(G)$ are characteristic subgroups of G.

We are necessary the following lemmas.

LEMMA 2.2. Let G be a group. Let $x, y \in G$ and suppose z = [x, y] commutes with both x and y. Then $[x^i, y^j] = z^{ij}$ for all i, j.

Proof. [1, Lemma 2.2.2].

LEMMA 2.3. Let G be a p-group of class at most 2 with p odd. Then

(i) $x^p = 1$ for all $x \in \Omega_1(G)$

(ii) If G/Z(G) is elementary abelian, $(xy)^p = x^p y^p$ for all x, y in G.

Proof. [1, Lemma 5.3.9].

LEMMA 2.4. A nonabelian p-group G of order p^3 is extra-special and is isomorphic to one of the groups $M_3(p)$, M(p), D or Q.

Proof. [1, Lemma 5.5.1]

LEMMA 2.5. Let

$$M_3(p) = \langle x, y \mid x^{p^2} = y^p = 1, \quad x^y = x^{1+p} \rangle$$

Then

$$Z(M_3(p)) = \langle x^p \rangle$$
 and $\Omega_1(M_3(p)) = \langle x^p \rangle \times \langle y \rangle$.

Proof. [1, Theorem 5.4.3]

Now we obtain our results.

THEOREM 2.6. Let p be an odd prime and let

$$G = M_3(p) = \langle x, y \mid x^{p^2} = y^p = 1, \quad x^y = x^{1+p} \rangle$$

Let σ be a p'-automorphism of the p-group G which induces the identity automorphism on Z(G). Then σ is the identity automorphism of G.

Proof. Set $z = x^p$. Then $G' = F(G) = Z(G) = \langle z \rangle$ by Lemma 2.4 and Lemma 2.5 and G/Z(G) is elementary abelian by Lemma 2.3.

By the assumption we have $\sigma(z) = z$ and $\sigma(x) = x^i y^j$ for some integer i and j. Now it follows from Lemma 2.3 that

$$z = \sigma(z) = \sigma(x^p) = \sigma(x)^p = (x^i y^j)^p = x^{pi} y^{pj} = x^{pi} = z^i$$

Hence we have $i \equiv 1 \pmod{p}$ and so $\sigma(x) = cxy^j$ for some c in Z(G).

Note that $\Omega_1(G) = \langle z \rangle \times \langle y \rangle = Z(G) \times \langle y \rangle$ by Lemma 2.5 and that $\Omega_1(G)$ is invariant under σ (cf. Remark 2.1). Thus we have $\sigma(y) = dy^k$ for some $d \in Z(G)$ and for some integer k. Now from the relation $x^y = x^{1+p} = zx$, we have

$$(cxy^j)^{dy^k} = \sigma(zx) = zcxy^j$$

and so

$$cz^k x y^j = cz x y^j$$
.

Thus $k \equiv 1 \pmod{p}$ and so $\sigma(y) = dy$.

Let σ be of order n. Then (n,p)=1 by the assumption. Since $y = \sigma^n(y) = d^n y$, it follows that d = 1 and $\sigma(y) = y$. Hence we have

$$x=\sigma^n(x)=c^nxy^{nj}=x(cy^j)^n$$

and so $(cy^j)^n = 1$.

On the other hand, cy^{j} is an element of $\Omega_{1}(G)$. Thus its order is 1 or p. Now it follows that $cy^j = 1$ and $\sigma(x) = x$. Hence σ is the identity automorphism of G.

THEOREM 2.7. Let p be an odd prime and let

$$G = M(p) = \langle x, y, z \mid x^p = y^p = z^p = 1, [x, y] = z, [x, z] = [y, z] = 1 \rangle$$

Let q be a prime divisor of p-1 and r be a fixed integer such that 1 < r < p and $r^q \equiv 1 \pmod{p}$. Then the automorphism τ of G defined by

$$\tau(x) = x^r, \quad \tau(y) = y^{r^{q-1}}, \quad \tau(z) = z$$

 $au(x)=x^r, \quad au(y)=y^{r^{q-1}}, \quad au(z)=z$ is an automorphism of order q, which induces the identity automorphism on Z(G).

Proof. By definition of M(p), $\Omega_1(G) = G$. Since G is extra-special, we have $G' = F(G) = Z(G) = \langle z \rangle$. Now since [x, y] = z and $z \in Z(G)$, it follows from Lemma 2,2 that $[x^i, y^j] = z^{ij}$ for all i and j.

The multiplicative group $Z^* = \{1, 2, ..., p-1\}$ is a cyclic group of order p-1 and so for each prime divisor q of p-1 there exists a unique subgroup of order q. Hence there exists an integer r which satisfies the given condition.

Now it is easy to show that, for given r under the condition, the given τ is an automorphism of order q which induces the identity automorphism on Z(G).

THEOREM 2.8. Let τ be an automorphism of M(3) of order 2 which induces the identity automorphism on Z(M(3)). Then there exist elements $x, y, z \in M(3)$ such that

$$M(3) = \langle x, y, z \mid x^3 = y^3 = z^3 = 1, [x, y] = z, [x, z] = [y, z] = 1 \rangle$$
 and

$$\tau(x) = x^{-1}, \quad \tau(y) = y^{-1}, \quad \tau(z) = z.$$

proof. Let

$$M(3) = \langle x, y, z \mid x^3 = y^3 = z^3 = 1, [x, y] = z, [x, z] = [y, z] = 1 \rangle$$

Let

$$\tau(x) = x^a y^b z^c$$
 and $\tau(y) = x^r y^s z^t$

where a, b, c, r, s and t are integers. Since τ is an automorphism of M(3) of order 2 which induces the identity automorphism on Z(M(3)), we have

$$\tau^{2}(x) = x$$
 and $z = \tau(z) = [\tau(x), \tau(y)].$

From these facts, it is easy to show that

$$\tau(x) = x^{-1}z^t$$
 and $\tau(y) = y^{-1}z^t$, $t = -1, 0, 1$.

By changing generators if necessary, we may assume that

$$\tau(x) = x^{-1}$$
 and $\tau(y) = y^{-1}$.

In fact if $\tau(x) = x^{-1}z$ and $\tau(y) = y^{-1}z$ then we choose xz, yz and z as generators of M(3) and other case is similar. By Theorem 2.7, τ is an automorphism of M(3) of order 2 which induces the identity automorphism on Z(M(3)).

THEOREM 2.9. Let G be a group which contains a normal subgroup F and an element u such that

- (i) $F \cong M(3)$ and
- (ii) u is an element of order 2^n such that $u \notin C_G(F)$, $u^2 \in C_G(F)$ and $u \in C_G(Z(F))$.

Then there exist elements $x, y, z \in F$ such that

$$F\langle u \rangle = \langle x, y, z, u \mid x^3 = y^3 = z^3 = u^{2^n} = 1, \ x^u = x^{-1}, \ y^u = y^{-1}, \ [x, z] = [y, z] = [u, z] = 1, \ [x, y] = z \rangle$$

Furthermore,

$$Z(F\langle u\rangle) = \langle z\rangle \times \langle u^2\rangle = \langle zu^2\rangle.$$

Proof. The conjugation on F by u is an automorphism of F of order 2 which induces the identity automorphism on Z(F). By Theorem 2.8, there exist elements $x, y, z \in F$ such that

$$F = \langle \, x,y,z \, \mid \, x^3 = y^3 = z^3 = 1, \ [x,y] = z, \ [x,z] = [y,z] = 1 \, \rangle$$
 and

$$x^{u} = x^{-1}, \ y^{u} = y^{-1} \text{ and } z^{u} = z.$$

Since $u^2 \in C_G(F)$ and $u \notin C_G(F)$, it is clear that $Z(F\langle u \rangle) = \langle z \rangle \times \langle u^2 \rangle = \langle z u^2 \rangle$. Thus the assertion holds.

REMARK. Using Theorem 2.9, we can find all groups whose degrees of irreducible complex characters are primes ([4], [5]).

References

- [1] D. Gorenstein, Finite groups, Chelsea, New York, 1980.
- [2] B. Huppert, Endliche gruppen I, Springer-Verlag, Berlin, 1967.
- [3] B. Huppert and N. Blackburn, Finite groups II, III, Springer-Verlag, Berlin, 1982.
- [4] J.S. Shin, A characterization of finite groups whose degrees of irreducible characters are 1,2 and 3, So-Gang University (1986).
- [5] J.S. Shin, Properties of finite groups whose degrees of irreducible characters are primes, J. of K.M.S. 31 (1994).
- [6] M. Suzuki, Group theory I, II, Springer-Verlag, New York, 1982, 1986.

Department of Mathematics Kyung won University Sung nam,461-200, Korea