CONNECTING ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEMS

JUNE GI KIM

0. Introduction

This paper concerns with the existence of some kind of connecting orbits for second order Hamiltonian systems of the form

$$(HS) q'' + V'(q) = 0.$$

It will be assumed that V has a global maximum, e.g. at x = 0. Therefore $q \equiv 0$ is a solution of (HS). We are interested in nontrivial solutions of (HS) that terminate at x = 0, i.e.

$$\lim_{t \to \infty} q(t) \equiv q(\infty) = 0 = q'(\infty).$$

Let Ω be a bounded neighborhood of 0 in \mathbb{R}^n and $V \in C^1(\overline{\Omega}, \mathbb{R})$ with V(x) < V(0) for all $x \in \overline{\Omega} \setminus \{0\}$. Under these hypotheses, P.H. Rabinowitz and T. Tanaka [RT] proved the existence of a solution q of (HS) such that $q(0) \in \partial\Omega, q(\infty) = 0 = q'(\infty)$, and $q(t) \in \Omega$ for all $t \in (0, \infty)$. In this paper we are interested in the starting point $q(0) \in \partial\Omega$ of q.

1. Existence Results

Let $\mathbf{R}^+ = [0, \infty]$ and

$$E = \{ q \in W_{loc}^{1,2}(\mathbf{R}^+, \mathbf{R}^n) ; \int_0^\infty |q'|^2 dt < +\infty \}.$$

E is a Hilbert space under the norm

Received December 29, 1993.

$$||q||^2 = \int_0^\infty |q'|^2 dt + |q(0)|^2$$

and $E \subset \mathcal{C}(\mathbf{R}^+, \mathbf{R}^n)$. Let $B_{\rho}(\xi)$ denote the open ball of radius ρ about $\xi \in \mathbf{R}^n$. If $\xi = 0$, we simply write B_{ρ} .

LEMMA[RAB2]. Let Ω be a bounded open neighborhood of $0 \in \mathbb{R}^n$. Let $\rho > 0$ be such that $\overline{B}_{\rho} \subset \Omega$. Set

$$\beta(\rho) = Min_{x \in \overline{\Omega} \backslash B_a} - V(x).$$

Suppose $w \in E$ and $w(t) \in \overline{\Omega} \setminus B_{\rho}$ for $t \in \bigcup_{j=1}^{k} [r_j, s_j]$. Then

$$I(w) \ge \sqrt{2\beta(\rho)} \sum_{i=1}^{k} |w(r_j) - w(s_j)|.$$

Here $I(q) = \int_0^\infty (\frac{1}{2} |q'|^2 - V(q)) dt$.

Proof.

$$I(w) = \frac{1}{2} \int_0^\infty |w'|^2 dt - \int_0^\infty V(w) dt$$
$$\geq \sum_{j=1}^k (\frac{1}{2} \int_{r_j}^{s_j} |w'|^2 dt - \int_{r_j}^{s_j} V(w) dt).$$

Note that

$$|w(s_j) - w(r_j)|^2 = |\int_{r_j}^{s_j} w' dt|^2$$

$$\leq (s_j - r_j) \int_{r_j}^{s_j} |w'|^2 dt.$$

Hence

$$I(w) \ge \sum_{j=1}^{k} \left(\frac{1}{2} \frac{|w(s_j) - w(r_j)|^2}{(s_j - r_j)} + \beta(\rho)(s_j - r_j)\right)$$

$$\ge \sqrt{2\beta(\rho)} \sum_{j=1}^{k} |w(r_j) - w(s_j)|. \quad \Box$$

THEOREM[RT]. Let Ω be a bounded neighborhood of 0 in \mathbb{R}^n and $V \in \mathcal{C}^1(\overline{\Omega}, \mathbb{R})$ with V(x) < V(0) for all $x \in \overline{\Omega} \setminus \{0\}$. Then there exists a solution q of (HS) such that $q(0) \in \partial\Omega, q(\infty) = 0 = q'(\infty)$, and $q(t) \in \Omega$ for all $t \in (0, \infty)$.

We now state and prove the main theorem of this paper.

THEOREM. Let Ω be a bounded neighborhood of 0 in \mathbf{R}^n and $V \in \mathcal{C}^1(\overline{\Omega}, \mathbf{R})$ with V(x) < V(0) for all $x \in \overline{\Omega} \setminus \{0\}$. Let $p \in \partial \Omega$ be a point such that

- (1) $\overline{B}_r(0) \cap \partial \Omega = \{p\}$, where ||p|| = r.
- (2) There is a number R>r such that $(4r^2+2\alpha(r))\sqrt{2\beta(r,R)}< R-r$, where

$$\alpha(r) = Max_{\|x\| \le r} - V(x),$$

 $\beta(r, R) = Min_{(r+R)/2 \le \|x\| \le R} - V(x).$

(3) $\Omega^c \cap \{x; ||x|| < R\}$ is convex.

Then (HS) has a solution q with $q(0) \in \partial\Omega$ and $||q(0) - p|| \le \sqrt{R^2 - r^2}$.

Proof. Let Γ be a subset of E defined by

$$\Gamma=\{q\in E; q(0)=p\in\partial\Omega, q(\infty)=0\},$$

and $q(t) \in \overline{\Omega}$ for all $t \in \mathbf{R}^+$.

For $q \in \Gamma$, consider the functional

$$I(q) = \int_0^\infty (\frac{1}{2} |q'|^2 - V(q)) dt.$$

Set

$$(*) \hspace{3cm} c = \inf_{q \in \Gamma} I(q).$$

Let (q_m) be minimizing sequence of (*). Since $V \leq 0$ and $\overline{\Omega}$ is compact, the form of I shows that (q_m) is bounded in E. Hence a subsequence of (q_m) converges weakly in E and strongly in $L^{\infty}_{loc}(\mathbf{R}^+, \mathbf{R}^n)$ to $q \in E$ and $q(t) \in \overline{\Omega}$ for all $t \in \mathbf{R}^+$. Since I is weakly lower semicontinuous, we have $I(q) \leq \inf_{w \in \Gamma} I(w)$. Hence $q \in \Gamma$ via Lemma.

Suppose there is a number t_1 such that $q(t_1) \in \partial\Omega, ||q(t_1)|| > R$. Let t_2 be a largest number such that $||q(t_2)|| = r$.

Let

$$\tilde{q}(t) = \begin{cases} (1-t)p + tq(t_2), & 0 \le t \le 1, \\ q(t+t_2-1), 1 \le t \end{cases}$$

Then

$$I(\tilde{q}) = \int_0^\infty \frac{1}{2} |\tilde{q}'|^2 dt - \int_0^\infty V(\tilde{q}) dt$$

$$\int_0^1 ||q(t_2) - p||^2 dt - \int_0^\infty V(\tilde{q}) dt + \int_1^\infty (\frac{1}{2} |\tilde{q}'(t)|^2 - V(\tilde{q})) dt$$

$$\leq \frac{1}{2} 4r^2 + \alpha(r) + \int_{t_2}^\infty \frac{1}{2} |q'|^2 - V(q)) dt.$$

On the other hand

$$\begin{split} I(q) &= \int_0^\infty (\frac{1}{2} \; |q'|^2 - V(q)) dt \\ &= \int_0^{t_2} (\frac{1}{2} \; |q'|^2 - V(q)) dt + \int_{t_2}^\infty (\frac{1}{2} \; |q'|^2 - V(q)) dt \\ &\geq \sqrt{2\beta(r,R)} (R-r)/2 + \int_{t_2}^\infty (\frac{1}{2} \; |q'|^2 - V(q)) dt. \end{split}$$

Hence $I(\tilde{q}) < I(q)$, a contradiction. Therefore there is a solution w of (HS) such that $||w(0)|| \le R$. \square

COROLLARY. Under the hypotheses of the above Theorem , assume further that p is an isolated point. Then there is a solution of (HS) starting at the point p.

References

[Rab1] P.H. Rabinowitz, Periodic solutions of hamiltonian systems; A survey, SIAM J. Math. Anal. 13 (1982), 343-352.

[Rab2] _____, Periodic and heterocclinic orbits for a periodic hamiltonian systems, Ann.Inst.Henri Poincaré, Anal.nonlinéaire 6 (1989), 331-346. [RT] P.H. Rabinowitz and K.Tanaka, Some results on connecting orbits for a class of hamiltonian systems, Math.Z 206 (1991), 473-491.

Department of mathematics Kangwon national University Chuncheon 200–701,Korea