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CONNECTING ORBITS FOR SECOND
ORDER HAMILTONIAN SYSTEMS

JuNE GI KIM

0. Introduction

This paper concerns with the existence of some kind of connecting
orbits for second order Hamiltonian systems of the form

(HS) ¢" +V'(g) =0.

It will be assumed that V has a global maximum,e.g. at z = 0.
Therefore ¢ = 0 is a solution of (HS). We are interested in nontrivial
solutions of (HS) that terminate at z = 0, i.e.

Jim g(t) = g(00) = 0 = ¢'(c0).

Let Q be a bounded neighborhood of 0 in R™ and V € C*(Q,R)
with V(z) < V(0) for all z € 2\ {0}. Under these hypotheses, P.H.
Rabinowitz and T. Tanaka [RT] proved the existence of a solution ¢
of (HS) such that ¢(0) € 99,¢(c0) = 0 = ¢'(00), and ¢(t) €  for
all t € (0,00). In this paper we are interested in the starting point
q(0) € 99 of q.

1. Existence Results

Let Rt = [0, 00] and
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lall? = / g/t + g(0)?

and E C C(R*,R"). Let B,(¢) denote the open ball of radius p
about £ € R™. If £ = 0, we simply write B,.

LEMMA[RAB2].  Let Q be a bounded open neighborhood of 0 €
R™. Let p > 0 be such that B, C . Set
Suppose w € E and w(t) € R\ B, fort € Ule[rj,sj-]. Then

k
I(w) 2 v/28(p) 3 _ lw(rs) = w(s;).

Here I(q) = [ (3 la'l® = V(q) ) adt.

Proof.
Tt )= %./0 |w'|2dt—j(; V(w)dt
k . .
l Sj g L
23.2(2/” |2 dt / V(w)dt).
Note that
) =) =1 [ w'dep?
<(sy=rp) [P
Hence
k Y — (e )2
> S (G gy )
et § =T

k
> 1/2B(p) Z lw(r;) — w(s;)|. O
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THEOREM[RT]. Let § be a bounded neighborhood of 0 in R™
and V € C(Q,R) with V(z) < V(0) for all z €  \ {0}. Then there
exists a solution q of (HS) such that ¢(0) € 952, g(c0) = 0 = ¢'(o0),
and ¢(t) € Q for all t € (0, 00).

We now state and prove the main theorem of this paper.

THEOREM.  Let £ be a bounded neighborhood of 0 in R™ and
V € CYQ,R) with V(z) < V(0) for all z € 2\ {0}. Let p € 8Q be a
point such that

(1) B.(0)11 82 = (g}, where [p]] =
(2) There is a number R > r such that (4r? 4 2a(r))/28(r, R) <
R — r, where
afr)= Maxz||<r — V(z),
B(r, R) = Min(,4 ryj2<|lz|<r — V()
(3) QN {z;||z|| < R} is convex.

Then (HS) has a solution q with ¢(0) € 0Q and |q(0) — p|| <
VR? —r2,

Proof. Let I’ be a subset of E defined by
I'={g € E;q(0) = p € 09, ¢(c0) = 0},

and ¢(t) € Q for all t € RT.
For ¢ € I, consider the functional

9= [ G I - Ve

Set,
(*) ¢ = infyerI(q).

Let (gm) be minimizing sequence of (*). Since V < 0 and Qis
compact, the form of I shows that (¢,,) is bounded in E. Hence a sub-
sequence of (¢,,) converges weakly in E and strongly in L{S(R*T,R")
to ¢ € E and ¢(t) € Q for all t € R*. Since I is weakly lower semicon-
tinuous,we have I(¢) < inf,erI(w). Hence ¢ € T via Lemma.
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Suppose there is a number ¢; such that ¢(¢;) € 99, ||¢(¢1)|| > R. Let
t» be a largest number such that ||¢(t2)| = 7.
Let

a (L—t)p+1tg(t2), 0<t<1,
= g(t+t,—1),1 <t
Then

1= [ 5 ara- [ v
] la(tz) — pll?dt — / V(@)dt + f (5 12 OF - V(@)
<34 ta(r)+ / R

ta

On the other hand

Ia) = | "3 Ig - Vi)t
/21MP Wﬂﬁ+/(—MV V(q)dt
> VIR BR-n/2+ [ (5 14 - Vi@t

Hence I(g) < I(q), a contradiction. Therefore there is a solution w
of (HS) such that ||lw(0)| < R. O

COROLLARY.  Under the hypotheses of the above Theorem , as-

sume further that p is an isolated point. Then there is a solution of
(HS) starting at the point p.
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