ON THE PETTIS DECOMPOSABILITY AND DUNFORD DECOMPOSABILITY

CHUN-KEE PARK

1. Introduction

Huff[7] studied Pettis integrability using the associated operator from a Banach space into $L_1(\mu)$. Bator[1] introduced the notion of a Pettis decomposable function from a finite measure space into a dual Banach space which is an extension of a Pettis integrable function.

In this paper, in order to generalize the Huff's results we study Pettis decomposability using the associated operator. Furthermore, we introduce the notion of a Dunford decomposable function which is an extension of a Pettis decomposable function, and obtain some properties of the Dunford decomposable function.

2. Preliminaries

Throughout this paper, let (Ω, Σ, μ) be a finite measure space and let X and Y be real Banach spaces with duals X^* and Y^* , respectively. We denote the closed unit ball of X by B_X . The adjoint of a continuous linear operator T from X to Y will be denoted by T^* .

If $f: \Omega \to X^*$ is a Dunford integrable function, then we define $T_f: X^{**} \to L_1(\mu)$ by $T_f(x^{**}) = x^{**} \circ f$ for each $x^{**} \in X^{**}$ and let $\tilde{T}_f = T_f|_X$, where T_f is called the associated operator with f. Note that if $f: \Omega \to X^*$ is a Dunford equi-integrable function then $\tilde{T}_f^{**}(X^{**}) \subseteq L_1(\mu)$.

We use the following theorems in order to obtain our results.

Received December 21, 1993.

Supported by Kangwon National University Research Grant, 1993.

THEOREM 2.1 [1]. A weak* scalarly bounded function $f: \Omega \to X^*$ has the RS-property if and only if for every $\epsilon > 0$ there exists $E \in \Sigma$ with $\mu(\Omega \setminus E) < \epsilon$ such that the set $\{(x \circ f)\chi_E : x \in B_X\}$ is weakly pre-compact.

THEOREM 2.2 [9]. If a bounded weakly measurable function $f: \Omega \to X^*$ has the RS-property, then there exists a Pettis integrable function $g: \Omega \to X^*$ such that $x \circ f = x \circ g$ in $L_1(\mu)$ for every $x \in X$.

THEOREM 2.3 [6]. A bounded linear operator $T: X \to Y$ is weakly compact if and only if $T^*: Y^* \to X^*$ is (ω^*, ω) -continuous.

THEOREM 2.4 [7]. A Dunford integrable function $f: \Omega \to X$ is Pettis integrable if and only if the operator $T_f: X^* \to L_1(\mu)$ defined by $T_f(x^*) = x^* \circ f$ is (ω^*, ω) -continuous.

In particular, if f is Pettis integrable then T_f is a weakly compact operator.

3. Pettis Decomposability

In this section, we investigate some properties of the Pettis decomposable function using the associated operator.

DEFINITION 3.1 [1]. A function $f: \Omega \to X^*$ is said to be μ – weak* scalarly null if $x \circ f = 0$ μ – a.e. for every $x \in X$.

A bounded weakly measurable function $f: \Omega \to X^*$ is called μ -Pettis decomposable if there exist a Pettis integrable function g and a μ -weak* scalarly null function h such that f=g+h.

THEOREM 3.1. If X is a separable Banach space, then a bounded weakly measurable function $f: \Omega \to X^*$ is Pettis decomposable if and only if f is Pettis integrable.

proof. If $f:\Omega\to X^*$ is Pettis integrable, then clearly f is Pettis decomposable.

Conversely, if $f: \Omega \to X^*$ is Pettis decomposable, then there exist a Pettis integrable function g and a μ -weak* scalarly null function h such that f = g + h. Let $(x_i)_{i=1}^{\infty}$ be dense in X. Since h is μ -weak* scalarly null, $x \circ h = 0\mu - a.e.$ for every $x \in X$. For each i, let N_i be μ -null sets

such that $x_i \circ h(t) = 0$ if $t \in \Omega \setminus N_i$. Then for each $i, x_i \circ h(t) = 0$ if $t \in \Omega \setminus (\bigcup_{i=1}^{\infty} N_i)$. Let $x \in X$ be arbitrary. Since $(x_i)_{i=1}^{\infty}$ is dense in X, there exists a subsequence $(x_{i_j})_{j=1}^{\infty}$ of $(x_i)_{i=1}^{\infty}$ such that $\lim_{j \to \infty} x_{i_j} = x$. Hence $x \circ h(t) = (\lim_{j \to \infty} x_{i_j}) \circ h(t) = \lim_{j \to \infty} (x_{i_j} \circ h(t)) = 0$ if $t \in \Omega \setminus (\bigcup_{i=1}^{\infty} N_i)$. Therefore h(t) = 0 if $t \in \Omega \setminus (\bigcup_{i=1}^{\infty} N_i)$. Since $\mu(\bigcup_{i=1}^{\infty} N_i) = 0, h = 0$ $\mu - a.e$. Thus f = g $\mu - a.e$. Since g is Pettis integrable, f is also Pettis integrable.

THEOREM 3.2. Let $f: \Omega \to X^*$ be a bounded weakly measurable function. Then $f: \Omega \to X^*$ is Pettis decomposable if and only if the operator $\tilde{T_f}^{**}: X^{**} \to L_1(\mu)$ is (ω^*, ω) -continuous.

proof. Suppose that $f:\Omega\to X^*$ is Pettis decomposable. Then there exist a Pettis integrable function g and a μ – weak* scalarly null function h such that f=g+h. Since g is Pettis integrable, the operator $T_g:X^{**}\to L_1(\mu)$ defined by $T_g(x^{**})=x^{**}\circ g$ is (ω^*,ω) -continuous by Theorem 2.4. Hence $\tilde{T}_g^{**}=T_g$ ([4], p685). Since h is μ – weak* scalarly null, $x\circ f=x\circ g$ in $L_1(\mu)$ for every $x\in X$. Hence $\tilde{T}_f=\tilde{T}_g$, and so $\tilde{T}_f^{**}=\tilde{T}_g^{**}$. Thus $\tilde{T}_f^{**}=T_g$. Therefore \tilde{T}_f^{**} is (ω^*,ω) -continuous. Conversely, suppose that the operator $\tilde{T}_f^{**}:X^{**}\to L_1(\mu)$

Conversely, suppose that the operator T_f : $X^{**} \to L_1(\mu)$ is (ω^*, ω) -continuous. Then \tilde{T}_f is weakly compact by Theorem 2.3. Hence \tilde{T}_f is also weakly compact, and so $\tilde{T}_f(B_X) = \{\tilde{T}_f(x) : x \in B_X\} = \{x \circ f : x \in B_X\}$ is weakly sequentially compact. Therefore every sequence in $\{x \circ f : x \in B_X\}$ has a weakly convergent subsequence. Hence $\{x \circ f : x \in B_X\}$ is weakly pre-compact. By Theorem 2.1, $f: \Omega \to X^*$ has the RS-property. By Theorem 2.2, there exists a Pettis integrable function $g: \Omega \to X^*$ such that $x \circ f = x \circ g$ in $L_1(\mu)$ for every $x \in X$. Let h = f - g, then h is μ — weak* scalarly null. Therefore f = g + h is Pettis decomposable.

THEOREM 3.3. Let $f: \Omega \to X^*$ be a bounded weakly measurable function. Then $f: \Omega \to X^*$ is Pettis integrable if and only if $T_f = \tilde{T_f}^{**}$.

proof. Suppose that $f: \Omega \to X^*$ is Pettis integrable. Then $T_f: X^{**} \to L_1(\mu)$ defined by $T_f(x^{**}) = x^{**} \circ f$ is (ω^*, ω) -continuous by Theorem 2.4. Let $x^{**} \in X^{**}$ be arbitrary. Since X is weak* dense in X^{**} , there exists a net (x_{α}) in X such that $x_{\alpha} \xrightarrow{\omega^*} x^{**}$. $T_f(x_{\alpha}) = \tilde{T}_f(x_{\alpha}) = \tilde{T}_f(x_{\alpha}) = \tilde{T}_f(x_{\alpha})$ for each α . Since T_f is (ω^*, ω) -continuous,

 $T_f(x_{\alpha}) \xrightarrow{\omega} T_f(x^{**})$. Since f is Pettis integrable, T_f is weakly compact by Theorem 2.4. Hence \tilde{T}_f is also weakly compact, and so \tilde{T}_f^* is weakly compact. By Theorem 2.3, \tilde{T}_f^{**} is (ω^*, ω) -continuous. Hence $\tilde{T}_f^{**}(x_{\alpha}) \xrightarrow{\omega} \tilde{T}_f^{**}(x^{**})$. Therefore $T_f(x^{**}) = \tilde{T}_f^{**}(x^{**})$ for all $x^{**} \in X^{**}$. Thus $T_f = \tilde{T}_f^{**}$.

Conversely, suppose that $T_f = \tilde{T}_f^{**}$. Then \tilde{T}_f is weakly compact since $\tilde{T}_f^{**}(X^{**}) \subseteq L_1(\mu)$. Hence \tilde{T}_f^{*} is also weakly compact, and so \tilde{T}_f^{**} is (ω^*, ω) -continuous by Theorem 2.3. By hypothesis, T_f is (ω^*, ω) -continuous. Therefore f is Pettis integrable by Theorem 2.4.

4. Dunford Decomposability

In this section, we introduce the new concept of a Dunford decomposable function which is an extension of Pettis decomposable function and investigate properties of the Dunford decomposable function.

DEFINITION 4.1. A Dunford integrable function $f: \Omega \to X^*$ is called μ -Dunford decomposable if there exist a Dunford equi-integrable function g and a μ -weak* saclarly null function h such that f = g + h.

LEMMA 4.1. Let $f: \Omega \to X$ be a Dunford integrable function. Then $f: \Omega \to X$ is Dunford equi-integrable if and only if the operator $T_f: X^* \to L_1(\mu)$ defined by $T_f(x^*) = x^* \circ f$ is weakly compact.

proof. $f: \Omega \to X$ is Dunford equi-integrable if and only if $\{x^* \circ f: x^* \in B_{X^*} \text{ is uniformly integrable in } L_1(\mu)$. $T_f(B_{X^*}) = \{x^* \circ f: x^* \in B_{X^*}\}$ is uniformly integrable in $L_1(\mu)$ if and only if $T_f(B_{X^*})$ is relatively weakly compact in $L_1(\mu)$. Thus f is Dunford equi-integrable if and only if T_f is weakly compact.

THEOREM 4.2. If $f: \Omega \to X^*$ is Dunford decomposable, then $\tilde{T_f}^{**}: X^{**} \to L_1(\mu)^{**}$ is weakly compact.

proof. If $f: \Omega \to X^*$ is Dunford decomposable, then there exist a Dunford equi-integrable function g and a μ – weak* scalarly null function h such that f = g + h. Since h is μ – weak* scalarly null, $x \circ f = x \circ g$ in $L_1(\mu)$ for every $x \in X$. Hence $\tilde{T}_f = \tilde{T}_g$, and so

 $\tilde{T_f}^{**} = \tilde{T_g}^{**}$. Since $g: \Omega \to X^*$ is Dunford equi-integrable, $T_g: X^{**} \to L_1(\mu)$ defined by $T_g(x^{**}) = x^{**} \circ g$ is weakly compact by Lemma 4.1. Hence $\tilde{T_g}: X \to L_1(\mu)$ is weakly compact, and so $\tilde{T_g}^{**}$ is also weakly compact. Therefore $\tilde{T_f}^{**}$ is weakly compact.

THEOREM 4.3. If $f: \Omega \to X^*$ is Dunford integrable then the following are equivalent:

- (i) $f: \Omega \to X^*$ is Dunford decomposable.
- (ii) There exists a Dunford equi-integrable function g such that for every $x \in X$, $T_f(x) = x \circ g$ in $L_1(\mu)$.
- (iii) For every $\epsilon > 0$, there exist $E \in \Sigma$ and a Dunford equiintegrable function g such that $\mu(\Omega \setminus E) < \epsilon$ and $(x \circ f)\chi_E =$ $x \circ g \quad \mu - a.e.$ for every $x \in X$.
- proof. (i) \Rightarrow (ii). If $f: \Omega \to X^*$ is Dunford decomposable, then there exist a Dunford equi-integrable function g and a μ weak* scalarly null function h such that f = g + h. Since h is μ weak* scalarly null, $x \circ f = x \circ g$ in $L_1(\mu)$ for every $x \in X$. Therefore $T_f(x) = x \circ g$ in $L_1(\mu)$ for every $x \in X$.
- (ii) \Rightarrow (iii). Suppose that (ii) holds. Then there exists a Dunford equi-integrable function g such that $x \circ f = x \circ g$ $\mu a.e.$ for every $x \in X$. Let $E = \Omega$. Then (iii) holds.
- (iii) \Rightarrow (i). Suppose that (iii) holds. By the exhaustion principle ([5], p70), there exists a Dunford equi-integrable function $g; \Omega \to X^*$ such that $x \circ f = x \circ g$ $\mu a.e.$ for every $x \in X$. Let h = f g. Then h is μ weak* scalarly null. Hence f = g + h is Dunford decomposable.

References

- E.M. Bator, A decomposition of bounded scalarly measurable functions taking their ranges in dual Banach spaces, Proc. Amer. Math. Soc. 102 (1988), 850-854.
- [2] E.M. Bator, Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral, Proc. Amer. Math. Soc. 95 (1985), 265-270.
- [3] E.M. Bator, Pettis decomposition for universally scalarly measurable functions, Proc. Amer. Math. Soc. 104 (1988), 795-800.

- [4] E. M. Bator, P. W. Lewis and D. Race, Some connections between Pettis integration and operator theory, Rocky Mountain Math. J. 17 (1987), 683-695.
- [5] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, R.I., 1977.
- [6] N. Dunford and J. T. Schwarz, Linear operators, Part I, Interscience, New York, 1958.
- [7] R. E. Huff, Remarks on Pettis integrability, Proc. Amer. Math. Soc. 96 (1986), 402-404.
- [8] L. H. Riddle, E. Saab and J. J. Uhl, Jr., Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), 527-541.
- [9] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. Vol. 51, no. 307, 1984.

Chun-Kee Park
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea