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ON THE PETTIS DECOMPOSABILITY AND
DUNFORD DECOMPOSABILITY

CHUN-KEE PARK

1. Introduction

Huff[7] studied Pettis integrability using the associated operator
from a Banach space into L;(u). Bator[l] introduced the notion of
a Pettis decomposable fuaction from a finite measure space into a dual
Banach space which is an extension of a Pettis integrable function.

In this paper, in order to generalize the Huff’s results we study
Pettis decomposability using the associated operator. Furthermore,
we introduce the notion of a Dunford decomposable function which
is an extension of a Pettis decomposable function, and obtain some
properties of the Dunford decomposable function.

2. Preliminaries

Throughout this paper, let (2, %, 1) be a finite measure space and
let X and Y be real Banach spaces with duals X* and Y*, respectively.
We denote the closed unit ball of X by Bx. The adjoint of a continuous
linear operator T from X to Y will be denoted by T™.

If f:Q — X*is a Dunford integrable function, then we define
Ty : X* — Li(p) by TH(z**) = 2** o f for each ™ € X™ and
let ’f'f = T¢|x , where Ty is called the associated operator with f.
Note that if f : & — X* is a Dunford equi-integrable function then
Ty (X**) C Li(p).

We use the following theorems in order to obtain our results.
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THEOREM 2.1 [1]. A weak* scalarly bounded function f: Q — X*
has the RS-property if and only if for every € > 0 there exists E € ©
with u(Q2 \ E) < € such that the set {(z o f)xg : ¢ € Bx} is weakly
pre-compact.

THEOREM 2.2 [9]. If a bounded weakly measurable function f :
0 — X* has the RS-property, then there exists a Pettis integrable
function ¢ : 2 — X* such that xo f =z og in Li(u) for every z € X.

THEOREM 2.3 [6]. A bounded linear operator T : X — Y is weakly
compact if and only if T* : Y* — X* is (w*,w)-continuous.

THEOREM 2.4 [7]. A Dunford integrable function f : @ — X is
Pettis integrable if and only if the operator Ty : X* — L;(u) defined
by Ty(z*) = * o f is (w*,w)-continuous.

In particular, if f is Pettis integrable then Ty is a weakly compact
operator.

3. Pettis Decomposability

In this section, we investigate some: properties of the Pettis decom-
posable function using the associated cperator.

DEFINITION 3.1 [1]. A function f : Q — X* is said to be yu — weak*
scalarly null if z o f =0 p — a.e. for every ¢ € X.

A bounded weakly measurable function f : @ — X* is called u-
Pettis decomposable if there exist a Pettis integrable function ¢ and a
p — weak* scalarly null function h such that f = g + h.

THEOREM 3.1. If X is a separable Banach space, then a bounded
weakly measurable function f : Q — X* is Pettis decomposable if and
only if f is Pettis integrable.

proof. If f : 2 — X* is Pettis integrable, then clearly f is Pettis
decomposable.

Conversely, if f : @ — X* is Pettis decomposable, then there exist a
Pettis integrable function g and a y—weak* scalarly null function A such
that f = g+h. Let (2;)32, be dense in X. Since h is p—weak* scalarly
null, zoh = Op —a.e. for every z € X. For each #, let N; be g-null sets
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such that z; 0 h(t) = 0if t € @\ N;. Then for each i, z; o h(t) = 0 if
t € Q\(UR,N;). Let z € X be arbitrary. Since (z;)$2, is dense in X,
there exists a subsequence (z;;)$2; of (¢;){2, such that lim;_ . z;; = z.
Hence z o h(t) = (limj o0 z;;) 0 h(t) = limj_(z;; o k(1)) = 0 if
t € Q\ (UZ,N;). Therefore h(t) = 0if t € Q\ (UR,N;). Since
#wURN;)=0,h=0 p—ae Thus f=g py—a.e. Since g is Pettis
integrable, f is also Pettis integrable.

THEOREM 3.2. Let f :  — X* be a bounded weakly measurable
function. Then f : Q — X* is Pettis decomposable if and only if the

operator ’ff** : X** — Lyi(p) is (w*,w)-continuous.

proof. Suppose that f : € — X* is Pettis decomposable. Then
there exist a Pettis integrable function ¢ and a u — weak* scalarly null
function h such that f = g+h. fince g is Pettis integrable, the operator
Ty : X** — Ly(u) defined by Ty(z**) = 2** 0 ¢ is (w*,w)-continuous
by Theorem 2.4. Hence T," = T, ([4], p685). Since h is p — weak*
scalarly null, zo f = zogin L,(u) for every z € X. Hence Tf = T’g, and
so Ty =T, . Thus T}H = T,. Therefore T} is (w*,w)-continuous.

Conversely, suppose that the operator ff** XY > Ly(p)
is (w*,w)-continuous. Then 'ff* is weakly compact by Theorem 2.3.
Hence Ty is also weakly compact, and so Ty(Bx) = {Ts(z) : z €
Bx} ={zof :z € Bx} is weakly sequentially compact. Therefore
every sequence in {z o f : # € By} has a weakly convergent subse-
quence. Hence {z o f : z € Bx} is weakly pre-compact. By Theorem
2.1, f : & — X* has the RS-property. By Theorem 2.2, there exists a
Pettis integrable function ¢ : § — X * such that zo f =z o0¢ in Li(p)
for every @ € X. Let h = f — g, then h i1s y — weak* scalarly null.
Therefore f = g + h is Pettis decomposable.

THEOREM 3.3. Let f: Q — X* be a bounded weakly measurable
function. Then f : Q — X* is Pettis integrable if and only if Ty = T .

proof. Suppose that f : @ — X* is Pettis integrable. Then Ty :
X** — Li(p) defined by Tp(z**) = a** o f is (w*,w)-continuous by
Theorem 2.4. Let z** € X** be arbitrary. Since X is weak* dense in
X**, there exists a net (z4) in X such that x, — z**. Tf(zq) =
~ i 2
T(za) =Ty

(z«) for each a. Since Ty is (w*,w)-continuous,
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Telwa) — Ty(z**). Since f is Pettis integrable, T’y is weakly compact
by Theorem 2.4. Hence Tf is also wealdy compact, and so T; is
weakly compact By Theorem 2.3, Tf is (w*,w)-continuous. Hence
f'f (To) = Tf (a:**) Therefore Tg(z**) = fff**(m**) for all z** €
X**, Thus Ty = Tf

Conversely, suppose that Ty = Tf**. Then Tf is weakly compact
since ff**(X **) C Ly(p). Hence ff* is also weakly compact, and
50 ff'f** is (w*,w)-continuous by Theorem 2.3. By hypothesis, T is
(w*,w)-continuous. Therefore f is Pettis integrable by Theorem 2.4.

4. Dunford Decomposability

In this section, we introduce the new concept of a Dunford decom-
posable function which is an extension of Pettis decomposable function
and investigate properties of the Dunford decomposable function.

DEFINITION 4.1. A Dunford integrable function f : 8 — X* is
called p-Dunford decomposable if there exist a Dunford equi-integrable
function ¢ and a u— weak* saclarly null function h such that f = g+h.

LEMMA 4.1. Let f : Q@ — X be a Dunford integrav.e function.

Then f :  — X is Dunford equi-integrable if and only if the operator
Tj: X* — Ly(p) defined by  Ty(z*) = z* o f is weakly compact.

proof. f:Q — X is Dunford equi-integrable if and only if {z* o f :
z* € Bx+ is uniformly integrable in Li(u). Tp(Bx-) = {z*o f :
x* € Bx~} is uniformly integrable in L;(p) if and only if Ty(Bx-) is
relatively weakly compact in L;(). Thus f is Dunford equi-integrable
if and only if T is weakly compact.

THEOREM 4.2. If f : Q@ — X* is Dunford decomposable, then T}ﬂ
X** — Lqi(p)** is weakly compact.

proof. If f : @ — X* is Dunford decomposable, then there exist
a Dunford equi-integrable function g and a pu — weak* scalarly null
function h such that f = g + h. Since h is p — weak™* scalarly null,
zof =axogin Li(p) for every z € X. Hence Ty = T,, and so
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ff** = ’f’g**. Since g : 2 — X* is Dunford equi-integrable, T, : X** —
Ly(p) defined by  T,(z**) = 2** og is weakly compact by Lemma 4.1.
Hence Tg : X — Ly(p) is weakly compact, and so f'g** is also weakly
compact. Therefore Tf“ is weakly compact.

THEOREM 4.3. If f : @ — X* is Dunford integrable then the fol-

lowing are equivalent:

(i) f:9Q — X* is Dunford decomposable.
(ii) There exists a Dunford equi-integrable function g such that for
every z € X, Ty(z) =z o g in Ly(p).
(iii) For every € > 0, there exist E € ¥ and a Dunford equi-
integrable function g such that u(2\ E) < e and (z o f)xg =
zog p—a.e foreveryz e X.

proof. (1)=-(ii). If f : @ — X* is Dunford decomposable, then there
exist a Dunford equi-integrable function ¢ and a p — weak™* scalarly
null function h such that f = g+ h. Since h is y — weak* scalarly null,
zof ==xzogin Li(u) for every € X. Therefore Ty(z) = z0g in
Ly(p) for every z € X.

(ii)= (iii). Suppose that (ii) holds. Then there exists a Dunford
equi-integrable function g such that zo f =z 0g p — a.e. for every
z € X. Lt E = Q. Then (iii) holds.

(iii)=(i). Suppose that (iii) holds. By the exhaustion principle ([5],
p70), there exists a Dunford equi-integrable function g; 2 — X* such
that zof =x0g p—a.e forevery z € X. Let h = f —g. Then h is
i — weak* scalarly null. Hence f = ¢ + h is Dunford decomposable.
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