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Forecasting Using Interval Neural Networks:
Application to Demand Forecasting

Kitaek Kwon*, Hisao Ishibuchi* and Hideo Tanaka*

. Abstract

Demand forecasting is to estimate the demand of customers for products and services.
Since the future is uncertain in nature, it is too difficult for us to predict exactly what
will happen. Therefore, when the forecasfing is performed upon the uncertain future, it
is Tedlistic to estimate the value of demand as an inferval or o fuzzy number instead
of o crisp unmber. In this paper, we propose o demand forecasting method using the
standard back-propagation clgorithm and then we extend the method te the case of
interval inputs. Next, we demonstrate that the proposed method using the interval neural
networks can represent the fuzziness of forecasting values as intervals. Last, we propase
a demand ferecasting method using the transformed input variables that can be obtained

by taking account of the degree of influence between an input and an output.

1. Introduction

Forccasting methods can be classified by the
following three categories: gqualitative fech-
niques, Hme sertes analysis and causal models
[2]. The qualitative technique is a method that
performs an analysis by using the expert
opinion and judgement, while time seties

analysis is performed on the basis of historical

data, The causal method is the most sophisti-
cated kind of forecasting method, It eipresses
mathematically the causal relationship between
the wvariable to be forecasted and other
variables. A good forecasting can be achieved
by choosing an appropriate forecasting method
from various methods. For example, Parker er
al[8] showed that a good result can be

obrained by the forecasting method using
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regression analysis, Kimura et al,[6] performed
" time series analysis by layered neural neiworks,

Since thers is an uncertainty in  many
variables, it is tealistic to estimate the value of
the future demand as an interval or a fuzey
number insted of a crisp number, Tanaka et
al[10] proposed fuzzy linear regression an-
alysis in order to ntetpret a fuzzy phenomenon
and formuiated fuzzv regression analysis with
the degree of similarity[11] which can be
viewed as the degree of importance. Thus,
input-output data with large importance are
weighed in fuzzy regression analysis, Also,
fuzzy GMDH[12] and fuzzy tegression am-
alysis using neural networks[ 3-5) were pro-
posed to derive a nonlinear fuzzy regression
model.

In thi;s paper, we propose a demand
forecasting method using interval neural net-
works, First, we propose a demand forecasting
method using the standard back-propagation
algorithm{9] and then we extend the method
to the case of interval inputs, Next, we
demonstrate that the proposed forecasting
method using the interval neural networks[4]
can represent the fuzziness of forecasting values
as intervals, Last, we demonstrate that the
forecasting ability of the neural networks can
be improved by inttoducing the transformation
of input variables which takes account of the
degree of influence between an input variable

and an output variable,

2. Forecasting method using neural
networsks

2.1 Learning algorithm

Let us assume that m pairs of input vectors
and target outpuis are given as (xp, _\'P‘J_
p=12;m, where x,= (xpl,xpg,'",xpﬂ) is an
n—dimensional input vector and y, is an
output variable (ie, a target output of neural
networks). The input-output relation of a
three-laver feedforwatrd neural network wirh 7
input units, #, hidden units and a single output
unit is defined for the n-dimensional real
number input ‘vector &= (% Xg 1 Xy,) a5

follows{ 9].
Input layer:

Opi = Xpir i=12,m, (1}
Hidden layer:

Oﬂr=f(ﬂeim), j=1,2,"',n2, (2)

i
nely; = 2 le-,-oﬁx--l- g, 71=12;m, (3)

Output layer:

0 =f(m£p), (4)
Hz

nety = w0, + 8, (5)
j=r 0"

where the activation function f{ -) is the

sigmoid function:
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fx) = 11 + exp{—x)), (6)

and the weights Wy W and the biases 9}, g
are real numbers.

The learning of the necural network for the
training pattern (xp, }'P) is performed in order

to minimize the cost function:
Ey = (3, — 0,42 7

The learning algorithm can be derived from
the cost function Eﬂ in (7). The weights w;
and w@;; are changed by the following rules:

Aw-(H—l) = —7( 2E, ow)) + abuy(1), (8)
wilt+1) = =7l 2K, awy) + adu (i),  (9)

where 7 is the learning rate, a is the

momentum constant and { indexes the number

of adjustments of the weights. The derivatives
Fo2 i 2w

of Eyf 2w and

caculated as follows.

ALy 2wiare  explicitly

Ak, 2w, = (5}0),5_}-, (10}
PRy dwy = dyop, (1)
where

9 = —lpmool=0,),
O = op{1—0y) 0y

The biases § and g; are changed in the same

manner as the weights ; and w;;, respectively.

i

2.2 Application 1o demand forecasting

The standard back-propagation algorithm|[$]
shown in the previous section is applied to the
demand forecasting of Cherryoak Company,
The demand data for 24 years (1947~1970)
of the Cherryoak Company are given as shown
in Table 1{8), In this paper, the learning of
the neutal network is performed with the data
from the p-th to the (p+t— )-th year in
Table, ie., (D, M,),S,)~((Hy vy Ly
My, ), Sy4i-y), and then the demand of the
next vear (ie,{p+#)-th year) is forecasted,
where p=1947 and £=12]13,--23. In the
learning of the neural network, the output
variable v, is the actual sales 5, that is
normalized into 2 real number in the closed
interval [0.1,0.9] and the input variables
(%% 0%y} are given by the input variables
{HP’IP’M ] which are also normalized in the
same manner as the ourput variable. Using the
normalized traiming data, we trained the neural
network with three input units, six hidden units
and 2 single output unit by the learning
algorithm wiht #=0.5 and =09, The. initial
values of the weights and the biases were
randomly specified as real numbers in the
closed intervai [-1, 1].

The explicit caculation was done through the
tfollowing steps:

[Step 1] Let us assume that training patterns
are given as the data from the p-th o the
{p+t—1)-th year in Table 1, where p=1947
and =12,

[Step 2] Specify the initial values of the
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Table 1. Data for 24 years of Cherryoak Co.{quoted from [8])

Year Housing Disposable : New Company

o) staris(H,) personal income{t,} marriagesiM,) sales(S,)
[thousands}] $ billions] [thousands] i [$ millions]

1947 744 158.9 2,291 92.920

1948 942 169,5 1991 122.440

1949 1,033 188.3 1811 126.570

1950 | 1,138 1872 1,580 110.460

1951 1,549 205.8 1,667 139.400

1952 1,211 2249 1,595 154.020

1953 1,251 235.0 1,539 ! 157.590 _

1954 1,225 247.9 1,548 . 152230

1955 1,354 254.4 1450 139.130

1956 1475 2744 1,531 156.330

1957 1,240 292.9 1585 -f 140.470

1958 1,157 308.5 1518 128.240

1959 1,341 318.8 1,451 117.450

1960 | 1,531 337.7 1494 132.640

1961 | 1,274 350.0 1527 126.160 :

1962 1327 364.4 : 1,547 116.990

1963 1,469 385.3 1,580 123900

1964 1615 4046 | 1,654 141320

1965 1,538 4366 , 1,719 166.710

1966 1,488 469.1 | 1,789 171930 :

1967 1,173 505.3 i 1844 184790

1968 1,200 546.3 1913 202.700 i

1969 1,524 590.0 2,059 237340 :

1970 1,479 620.6 " 2,132 254,930

weights and the hiases.

[Step 3] Calculate the output 0, cortespond-

ing to the input vector.

[Step 4] Compate the actual output o, with

the rarget output ¥,, and caculate the value of

the cost function.

[Step 5] Adjust the weights and the biases

using the cost function.

{Step 61 Repeat from [Step 3] to [Step 5]

for all the input-output daia.

[Step 7] If a prespecified stopping condition
is not satisfied then return to [Step 3] else go
to {Step 8]. In this paper, we used the total
number of iterations of these steps {from [Stcp
3] to [Step 61} as a stopping condition

[Step 8] If a prespecified stopping condition
is satisfied then estimate the output of the

{p+1#)-th vear using the input values of the



Forecasting Using [nrerval Neural Networks! Application to Demand Forecasting 139

(p+i)-th vear.

(Step 9] If a prespecified experiment condi-
tion is not satisfted then return 1o [Step 2]
else go to [Step 13]. In this paper, we used
the total number of trials of these steps (from
[Step 2] 1w [Step 8]) as a experiment
condition,

(Step 10] If a prespecified experiment
condition is satdsfied then forecast the demand
of the(p+7)-th vear using the average of the
estimated outputs,

[Step 111 Ler & =¢+1

[Step 12] If =24 the stop else return to
[Step 21.

We here assume that the stopping condition
is 10000 iterations and experiment condition Is
10 trials. Since the result of the learning of
neural networks depends oa the inidal values
of the weights and the biases, we use the
average of the outputs over 10 experiments as
the demand estimate, The average of the
outputs obtained from the trained neural
networks are shown in Fig, 1, where the solid
line stands for the avetage outputs for the
training data and the dotted line stands for the
average outputs for the test data, From Fig.l,
we can observe both the good rtesult to the
training data and the good forecasting to the

test data,

2.3 Forecasting with interval input vari-
ables
In this section, we perform a demand

fotecsisting with interval input vatidbles, To

Sales (in $ millions)

280
- & Acrlual sales -
- .
F <L
180}
.
100+
1947 1959 1970
Year
Fig. 1 Demand forecasting by the neurai

network.

consider th fuzziness of the input variables, let
us use M, AH, . (thousand), [, + &
Ipﬂ(billions) and Mrpﬂ + AMPH(thousand}
as input variables where AM,,, Al,,, and
AM, ., stand for the fuzziness of all input
variables, Therefore, the inpur wvector of
(p+1t)-th vear becomes a three-dimensional
interval input vector (ie, ([HP+I_AHP+!!
Hp4:+AHp+s:|, [Ipﬂ_&fpﬂs Ip+.f+A p+::;r
(Mg, —OM, M, ,+8M,.,])) The inpuc-
ourput relation of neural netwotk in {1)~(5)
can be extended to the case of the input vector
XiJ as follow[?], where XP_=(X),)1, szs

X

;.m) is an #-dimensional interval vector.

Input layer:
OP],':.:YPI-, 1= 1,2"",?‘3, (14)
Hidden layer:

04 =flnety:), j=12,m, (15}
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Net,; = ’gwj,-opﬁ- 8, 1=1,2,m, (16)

Output layer:

0, = f(Net,), (17)
iy
Where 0,;, 0, 0,, Neiy; and Net, are intervals.

The input-outpat relation in (14)~(18) can
be explicitly caculated by interval arithmetic[1]
(see Kwon et al, [71),

In this paper, let us assume that the input
variables have the fuzziness of AH,,,=30,
AIP+I=5’ and AM};H =30. Demand forecast-
ing results for the interval inputs are shown
in Fig.Z. In Fig.2, the dotted two lines are the
upper limit {F*) and the lower limit {FY) of

the forecasted interval demand, respectively,

280

& Actual sales

180 }

Sales (in $ millions)

100

Fig. 2 Dernand forecasting with the interval

inputs.

3. Forecasting method using interval
neural networks

3.1 Learning algorithm

Let us define a three-laver feedforward
neural network that has interval weights and
interval biases, The input-output relation of the
neurzl network with » inputs, #hidden units
and a single output is defined for the =-
dimensional real vector x, = (xpl,xpz,“-,xp”) as
follows[ 4],

Input layer:

0pi= Xy 1=12,000m, (19)
Hidden layer:

Oy =f(Nety:), j=12,m, (20}

Nety= 2 W0, + 0, j=12,m, (21)
=1

b i

Qutput layer:

0, =f(Net,), (22)
Nety = 3. W,0,;+ 8, (23)

where the weights W, W, and the biase
@ i © are intervals, For simplicity, We assume
that the input vectors are non-negative (ie,
x5 2 0).

The input-output relation in (19)~(23)

can be explicitly calculated by interval arithmet-



Forecasting Using Interval Neural Nerworks:

Application to Demand Forecasting 141

ic[1] as follows,
Input layer:
(}PJI = fo" @ = 1729' ",ﬂ, (24)

Hidden layer:

Oy = [oi,, Of I=f(Net,;) = U{m 2% "{(ng:;;)]’

7

j = 1123' MY (2 (25)
-neti,- = z:lw‘ﬁop,--!- E{?L , (26)
netpj Zu},up,i-g (27)

Qutput layer:
0y Loy, 0} 1=f(Nety) = [f(rety), flnet})], (28)

netL 2 W oP}—i- Z“J P}+9L (29)

'JEL) a {[1
nef E w; OP}+ Z uf Jf,,"'é) (30)
,;_ 20 u) \u

The learning of the neural network is
performed so that the target output ¥, may be
included in the actual interval ourpur 0, = [02,
o;‘]. The cost function to be minimized in the

learning of the inrerval neural nerwork is

defined as follows[4].
ep=v eht ey, (31)

where

: IA
- {;” i _"Pfiﬁ’ (32)
, i v}., O,

1, if ol (v,
p= ? Jp
@, if y,= ot

(33)

P9
e;;=(yp——op)2_.52, (34)
e; = (v,—05 )72, (35)

where @ is 2 small positive constant such the
@ 1
We use the following decreasing function

instead of the constant @,

1

@) = 20607

(36)

In a similar manner as the back-propagation
algorithm[9], the learning algorithm for the
neural network defined by (19)~{23} or
{(24)~(30) can be derived from the cost
function £ in (31). The interval weight
W;-=[zef‘,w;"]is changed by the following

rules:

am{r(g-q-l):—:;{ aep,fanf’Ha&w-L(ﬂ), (37)

H-l)-"?( aepfate )+mﬁzc {0, (38

The derivatives in (37), (38) can be
calculated from the cost function in (31) (see
Ishibuch? et al [41) The lower limit w}r‘ and
the upper hmit w of the interval weight W)

are changed as:

wl(t+1) =wi{t) + B/ (14 1), (39)

w;f"(t+1)=ia};'(t) +Aw;'(t+1). (40)
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In order to cope with the sitnation that the
lower limit of the interval weight exceeds its
upper limit after the adjustment by (37), (38},

the interval weight is defined as:

Wit+1) = [minfw (1+1), w (t+1)},
maxfw) (t+1), w! (+101, (41)

The interval weight ij and the interval
biases @, @ ; are changed in the same manner

as the interval weight W}-,

3.2 Application to demand forecasting

Let us apply the interval neural netwotk
shown in the previous section to a demand
forecasting problem. A demand forecasting is
performed in the same manner as described in
the section 2,2, An average of interval cutputs
obtained from the trained neural netwotks for
ten trials is shown in Fig.3. Fig.3 shows the
upper estimate F U and the lower estimate F-
of the demand, From Fig.3, we can see that
the actual outputs include all the training data
(_the solid lines). For the test dara which are
not used in the learning phase, we can ocbserve
the difference between the interval forecasts
{the dotted lines) and the actual sales. In the
section 4, this fnethod will be improved to

obtain better results.

3.3 Forecasting with interval input vari-
ables
In this section, we propose a demand

forecasting method for the case of interval

Sales (in $ miilions)

280
® Actual safes
L]
s
180+
100+
'l S T T T W WU N N N T N L i S Y |
1947 1959 1570

Year
Fig. 3 Demand forecasting by the interval
neural network.
input variables, The input-output relation of
each unit in (19)~(23} is defined by interval
arithmetic[1} for the interval jopur vecror

XP = (XP”XP?’“ '-Xpm) as follows! 7],

input layer:

OP!-Z){PT" 1’ = 1,2,"‘,?’3, . (42)
Hidden layer;

().f))" :f( I\‘-gt}’} )‘ -? = ls2|' . "?12, (43)

n

‘;\'-Btp_j = Z Ii’;fxopt+ @ ] .} = 1s2" Ty, (44)

i=1 g

Output layer:

0, =f(Net,), - (45}
"2 .
Net, ZEWJ"OPJ" + B, (46)

The above input-output telation in (42)~

{46) can be explicitly caculated by interval
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arithmetic[1] (see Kwon et al.{7]).
Demand forecasting results for the interval

inputs are shown in Fig, 4.

280
- & Actuzl sales
-
iy 1 ry
= &
=] - P
= s
= L i
£ i
w 180+ Ih:
£ b i
v
2 -
100 +
1947 1959 470

Year

Fig. 4. Demand forecasting by the interval
neural network with the interval inputs.

4. Transformation of input variables

In this section, we improve the performance
of the demand forccasting by introducing a
transformation of input variables which takes
account of the degree of influence between an

input variable and an output variable,

41 The degree of influence of input
variables
In order to introduce the transformation of
input variables considering the degree of
influence, we define the degree of influence of
an input variable on an output variable, Let us
assume that m pairs of input vectors and the
corresponding outputs ate given as(xp, yp),
p=1.2"m, wherc x, = (xpl,xpz,"-,xpn) is an

n-dimensional input vector and My is an output

variable, In this case, we can consider a
polynomial of degree % as a regression model

for y=f(x;), 1=12,#n. ie.,

y=8,+ Bix,+ B+ fsgx? +oeeet ﬁk}:f + g,
i=12--m, {47)

whcrcﬁj is an unkown parameter andég; is the
ertor term,

Using the equation (47), let us assume that
the degree of influence of the input variable
x0=12m is proportional to the well

known coefficient of determination, ¥, =1,

2,0, as:
21 SS(E) _SS{T)—SS(E) _SS(R)
' S8¢) SS{T) S5(T)r
i=124n, {48)

whete SS(E) =3} _(y,~%,)", SS(R)=3]..(3,— )’
and 58({T) = 2;2 i(}"P—_x,_')z. Here, 4 = 2;’__ i,

¥y is the esumate derived from a regression

model. We assume that the regression model
can be determined from the scatter diagram
berween an input variable and the correspond-
ing output variable, The range of 7% is 0<r <1,
and we can consider that the closer value of
7; 1o 1 means the more influence of the input
variable x; on the output variable y.

Using the coefficient of determination #! in
(48), we can derive the degree of influence
o{x;}, =12, n, between each input variable
% 1=1,2+-n, and the output variable ¥, The

degree of influence is heuristically defined as!
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o{x;) =77+, =12 mn, (49)

that s, a real number in the closed interval
[1, 8] is given as the degree of influence. As
£{x;} goes closer to §, the degree of influence

becomes higher.

4,2 Transformation of input variables by
the degree of influence
Taking account of the degree of influence,
we transform the input variables xpr-,i =12,-".m,
into real numbers in the interval [(.1 XP(x},_n-),

09% p(x,)]. ic,

%,,€[0.1,09]= x,, €[01, X p(x,),
09X p(x,)], 1=1,2,n, (50}

where P(xp,-), 1=12+n 1s given by equa-
tion {49}, In other words, the transformed
input variable Xy is a rezl number in the
interval [D.1, 7.2].

In the case of the neural nerwork using an
input variable with the degree of influence, the
initial values of the weights and the biases are
given as follows:

* The weights between the input layer and
the hidden layer: 1

# The weights between the hidden layer and
the output layer! Random real number in the
closed interval [-1, 1]

® The biases of the hidden layer: -3

® The biases of the output laver: Random
real oumber in the closed interval [-1, 1]

By sctuing the inital values of the weights

and the biases as the above, the learning of
the neural network is performed with prioriey
given to the input variable which has a high
degree of influence, It is because the weight
change dictated by the delta rule corresponds
to performing steepest descent on a surface in
weight space whose heights at any point in
weight space is equal to the error measure[ 9].
Thus, the outputs of the neural network are
strongly influenced by the input variable that
has a high degree of influnce. Let us demon-
strate this with a simple numetical example. In
this numerical example, we assume that the
training data for a two-input and single-output
system are given in Table 2. The interrelation
between each input variable and the output

variable in Table Z is shown in Figh.

Table 2. Training data

Input variables Cutput variable

X X, : ¥ |
0.50 0.10 0.1
0.36 0.87 0.2
0.70 0.15 0.3
0.25 0.51 0.4
0.78 0.22 05 :
0.18 075 06
0.15 0.30 0.7 |
0.87 0.64 0.8 g
0.10 0.50 0.9 |

Using the training data in Table 2, we
trained the standard neural network of the
section 2,1 with the input variables transformed

by the degree of influence, Moreover, w¢
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Fig. 5 Relation between an input variable and an output variable

Fig. 6 In The case of the non-transformed inputs,

trained it for the non-transformed input
variables for comparison, In the case where the
transformed input variables are used, the initial

values of the weights and the biases are given

as the above-mentioned case, The number of
hidden units is 6, the momentum constant is
0.9 and the learning rate is (.3. On the other

hand, in the case where the non-transformed
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Fig. 7 In The case of the transformed inputs [£{x)=8, e{x;}=1].

input variables are used, the inital values of
the weights and the biases are given as random
real numbers in the closed interval {-1, 1],
The number of the hidden units is 6, the
momentum constant is 0.9 and the learning rate
is 0.5. For the data given in Table 2, the
degrees of influence of input vatiables {e.g., in
the case of the quadratic regression model) are
p(x) = plx;) =8, However, we consider extra
rwo cases { (x) =8, p{x,) =1] and [ p(x) =1,
P{x,}) =8Jto observe the outputs obtained
from the trained neural networks,

Simulation results after HOO0 iterations are
shown in Fig6~Fig8. Fig.6 is the result for
the non-transformed input variables, Fig.7 and
Fig.8 are the results for the transformed input

vatiables. From the compatison between Fig.7

and Fig8, we can see that the outputs are
different because the inputs were transformed

by the degree of influence.

4.3 Forecasting with transformed input
variables

By the transformation described in  the

previous scction, the input varables x,, 1 =123,

in Table 1 are transformed to real numbers in

the interval [0,1,7.2]. We assume that the

relation berween an input variable and an

* output variable is linear in the case of the

input-output pairs (%,Y,) and (xy,) and
curvilinear in the case of the input-output pair
(4,95} (quadratic up to p=1963 , cubic from
p=1964). For example, the estimated regres-

sion equation (quadratic}) between an input
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Fig. 8 In The case of the transformed inputs {£(x}=1, #{x;)=8].

vatiable x, and an output variable y, (up to
$=1858) was derived as: }Tp = —0.39+5.89%,
—"11.52x§,2. From this regression equation,
r;=0.827 and P(xpz) =6.789. The results of
demand forecasting using transformed input
variables are shown In Fig9 and Fig.l0. Fig.
9 is the result for the standard neural nerwork
(9], while Fig.10 is the result for the interval
neural network{d].

The comparison between Fig9 and Figl is
shown in Tables 3 and 4. Here, we trained the
neutal networks with six hidden units by the
learning algotithms with #=05 and =039,
Table 3 shows the averages of the errors over
ten sepatate trials cotresponding to different
iterations of the learning algorithms using the

data during the years 1947 to 1958, The mean

280
[ # Aciual sales .
2t o
2
s
= I ¢
g of
“ 180 o a\__.".
=
= [ *;
= . .,r"“."'
v r - e
100+
197 1959 1970
Year

Fig. 9 Demand forecasting by the neural
network with the fransformed inputs.

absolute deviation {MAD) of forecasted sales
during the years 1959 to 1970 are summarized
in Table 4. The MAD is defined as:
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Sales (in $ millions)

280
-8 Actual sales -
L o:
_
180
E
100+
15;4'; S Ill.JIS‘J — .19?0
Year

Fig. 10 Demand forecasting by the interval
neural network with the transiormed inputs.

Table 3: Average of the error function E

| Forecasting method ) !
| Forecasting method |

o without the . .
fterations ) lwith the transformation
transformation
0 0.11847 0.15890
1,000 0.01476 0.00633
5000 i 0.01022 0.00113
10,000 0.00747 0.00065

Table 4. Mean absolute deviation (MAD)

Forgcasting method .
] Forecasting method
. without the . )
. with the transformation
transformation
MAD 13.83 925
#
MAD=3X15,—F,| [, (51)
f=1

where SP is the actuﬁl sales of the p-th year,
F, is a forecasted sales of the p-th year and
# is the number of forecasted vears,

From Table 3 and Table 4, we can see that

the results used the transformed input variables

by the degree of influence outperforme those
used the non-transformed input variable in the
aspect of learning speed and forecasting error.
By comparing Fig.3 with Fig.10, we can also
see that the _Out.puts of the trained interval
neural network corresponding to the transformed
input varibles are closer to the actual sales, By
introuducing the degree of influence, we can
get the better forecasting estimate because the
variation of the input variable which has the
highest influence to the output variable can be
reflected mote strongly (in this example, Kot
disposable personal income), The degrees of
influence of input variables for the data during
the vears 1947 two 1958 are as follows!:
P15} =49, P(x,,) =68 and plxy) =49,

5. Conclusion

In this paper, we proposed a demand
forecasting method using interval neural net-
works, First, we proposed a demand forecastng
method using the standard back-propagation
algorithm, Also, the interval forecasting
method was presented by considering the
fuzziness of input variables as intervals. Nesg,
this paper proposed a demand forecasting
method in which the acrual sales should be
included in the interval estimate. Last, we
demonstrated that the forecasting ability of the
neural networks was improved by introducing

the degree of influence of input variables.
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