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Abstract

We obtain the Bayes estimator (BE;, the minimum variance unbiased estimator
{(MVUE) and maximun likelihood estimator (MLE) of the reliability when the
distribution of the stress and the strength are Weibull with known shape
parameters. The experiment is terminated before all of the items on the test
have failed and the failed items are partially replaced. Performance of the
three estimators for moderate size samples are compared through Monte Carle
simulation.

1. Introduction

Let X be the strength of the unit and Y be the stress placed on the unit by the
operating environment in the strength-stress model. An unit is able to perform
its intended function if its strength is greater than the stress imposed upon it.
We define the reliability, #, as the probability that the unit performs its task
satisfactorily. If the strength X is distributed continuously with ¥ (x:, the stress
Y is also distributed continuously with G({ y), then the reliability is

§ = P(Y<X)= [PIY<X|X=x)dF(x)
= [G(x)dF (x). (1.1)
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of Education 1993, Project No BSRI1-93-108.
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The problem of estimating 6, first considered by Birnbaum (1956) has found an
increasing number of applications. For other related studies on this problem, we
see Mazumder (1970), Church and Harris (1970), Enis and Geisser (1971}, Johnson
{1988) and Weerahandi and Johnson(1992), among others.

In the case of a complete sample is not available the problems of estimating ¢
have been also studied for the censored data in strength-stress model. The
practice of terminating a life test with only partial information available is called
censoring. .

In this paper. the Bayesian estimator (BE), maximum likelihood estimator
(MLE; and minimum variance unbiased estimator (MVUE) of # are considered in
the failure censored case with partial replacement. When # items are placed on
life test and the first k£ that fail are immediately replaced but subsequent failures
are not replaced, we call it the partial replacement procedure. The experiment is
terminated when the " item fails so that, for a partial replacement, # +1 < » <
n +£k.

In section 2, we are concerned with the BE, MLE and MVUE of 4 to the
failure consored case with partial replacement. In section 3, performance of the
three estimators for moderate sized samples are compared through Monte Carlo
simulation.

2. Estimation of ¢

2.1 Bayes estimator of 6
Let X, X, . X, and Y,, Y., -, Y, be independently and identically
distributed as

Filxla p) = apx” 'exp(—ax’), x>0, a p >0 (2.1)
and

oy B b = pp " exp( 3", ¥20, 8, p.>0 (2.2)
respectively. In Weibull reliability analysis it is not unusual that the value of the
shape parameter is known. We assume that the shape parameters are known and

equal to p, i.e, p =p, =p. It is well known that, if 7 has a Weibull distribution W
(A, p), then T follows an exponential distribution. Since X and Y are independent
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0= Pr(Y<X)= [ [ I(Y.X)dF.(y)dF,(x)
- ﬂﬁ?“ﬁ“ (2.3)
g1 if Y<X
I ) =
where Y. X L0 otherwise .

Consider the procedure that # and m items are placed on life test and the first k&,
and %. that fail are immediately replaced but subsequent failures are not replaced,
respectively. The experiments are terminated when » and s items fail, i.e, k& +1
<r<n+k,and k. +1 <5 < m +k,, respectively. X, X, . X, .. . X,

andY,.Y., B .Y, . .Y, berand s ordered failure times, respectively.

We assume that « and § are independent, a priori, and employ conjugate prior
distributions for « and g,

qla) « a'.yI l e‘ala ., Y, 8 >0 (2.4)
and
@B B e, v, 8, >0 (2.5)

Since the likelihood of the sample of » and s observations from (2.1) and (2.2} are

Lia) € a expl—al,), (2.6)
¥ ,"l
where ¢ =nx  ~ ¥ x4 . + (n—r +k)x?,
7=
and,
Lip) o« B expl—BLt), (2.7)
sk

where ¢, = myf + ¥ yh, o + {m—-s +E)y
. o Vi

respectively, using :2.4) and (2.5), we obtain the posterior densities for « and f as
follows;
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. [T [ atd +og N
nla) £ a P (2.8
and

mf) o g e M (2.9

If we let 8 = -“-—_‘_LB- and w=a + B, using (2.8) and (2.9), we obtain the joint

posterior of 6 and w as follows

g (0w 2w VT g T (=) Y
exp —w(t +6)(1—ci)], (2.10)
h 1 Lo+ 5, <1
ere ¢ =1-—=—" :
wher { =+,

Integrating out w in (2.10), we obtain the marginal posterior density of 0,

¥ Y] FYe

g0 w0 " T=0""" T 41— (2.11)

For the estimation of (), we may use the posterior mean of 6 given by

> = E0) Y e
e 2

Fir+s+y. +7.,s+y, +L, r+s+v. +7, +1;¢), lc] <1 (2.12)

where .F.(a, b, ¢ x) = ppp oy [0 (1= (1=t dt.
If welet p = llt__(”{,“ , we obtain

Fipyeep L=, 0<p < (2.13)
Thus for 0 < p, <p, < 1,

Prip. < p-Zp, =1Ilpsr+7,s+Y.)=I{pr +7,s +7). (2.14)
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"r—&s—)li-—(’;,,l)‘ff'f“ ‘(1-t)7'dt, 0<p<1, s7>0.

o F ) =
where [ip:s,r» T (s

Using (2.14) we obtain the limits on 6

Pr : _1_:5"-’_ < H< ll | ¢ |
1—cp- 1—cps
= [Un;r-%Y,S‘+YQ-—I(A;7‘F%,s-+yﬂ. (2.15)

{2.15) can be used to obtain the probability that # is within the profixed interval
(0, 0,) as follows,

1“—01 . 1_01

Prio,<o<8, . ¢c)=1(- cr Y, s 7, ) —1(
1—ct 1~c6,

v +Y s +Y.)

(2.16)

In order to obtain the bound on the Bayes estimator, we note the following.
If z*=a/p > 0, then

E(z) = [ [ z*nla)n(p)dadp
M e (2.17)
= T '+‘ y», _ 1 \ ) . . /
Similary let z= '«
B =200 e (2.18)
F(z) = o (1—¢) | . 2.
' 41 ¢

If we define 0 =h.:*)=(1 +2z*) ' then A(z*) is a convex function of z* and if we
define #=g(2z)=(1--z"') ' then g(z) is a concave function of z. Thus by Jensen's
inequality we obtain

+7
BUEG | = 114 T (el ]
< E(0, = 0*
y +7 —1 L o
< [1+— (1=c) ] = glE(2)]. (2.19)

s +7.
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As an alternative to the use of the subjective priors of (2.4) and (2.5), we may be
inclined to employ so-called “vague” prior distributions for both « and 8,

& la) = -*1,— and g.(f) = —.

a’ f

It is easily seen that, for these priors, the results corresponding to those
obtained using conjugate priors, may be obtained by putting 6, =4. =0, ¥, =1 -«
and 7. =1—bin (2.8) —(2.18), and substituting

oo bt (2.20)

for ¢ in these expressions. In particular bound on E (8) for this case is

4

y—a-—+1 *y 71 . Y A/ S TRt B {
H+——x*bw(l—c)J <E(“U)<U+s—b+1 {(1=c*)] ' . (2.21)

2.2 MLE of 0

From the point view of sampling theory, it is clear that the MLE of a*=«"' and
B*=p " are

Hence, by the invariant property of MLE, the MLE of 9 is

0 - — (2.22)
a*+ B

Since 2at, and 2¢. are independent and follow central X* distribution with 2» and
pt,

a’tl '+[ft

parameters s and » Thus for », <., limits on U such that

2s degree of freedom, respectively, U = - follows a beta distribution with

Priu<U-<wu, . = ITlu s, v)—Iu ;s r) (2.23)

may, after some algebraic manipulations, be converted to limits on 6,
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ru, 6 << ru,0
51w, ) (1—6) +ru, 0 s(1—u,)(1—0) +ru0

]

=Tiw ;5. v)~T(u ;s v). , (2.24)

Now, letting p, =1-u,, p. =1—u, and noting

s S )
b= 0= Fs (2.25)
tl iy .
where ¢* = —?— , we obtain that
1'_'/)1 _ l_[h i ,
Pri———<0< - 1 =1Cp, 7, 8)=1(p ;7,8 (2.26)
1—c*p. 1—c*p,

Hence by comparing (2.15) with (2.26), we can see that the MLE of 6 based on
confidence procedures are equivalent to the Bayesian estimator of ¢ based on
“informationless” priors.

2.3 MVUE of ¢

Sinha and Kale(1980) showed that «* and g* are complete sufficient statistics for
« and f, respectively. Using the Blackwell-Rao and Lehmann-Scheffe Theorem.
the unique MVUE of 8 is obtained by taking the conditional expectation of 7(Y.
X) given (a*, ji*).

0= E I'Y.X) & f*.

ff[w x)hix, yidxdy (2.27)

I

I

where A is the simple space in which both f (x| a*) and g( | *) are nonzero and

L0 if Y > X
Hy, X, = :
1 if Y <X,

For the case of . <. {,,

6 =E[I(X Y)la "
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- (,C:L’-_S__J) f( (1- L Lf (1~——-)” dx1dy

I

w»

1
—
_ b
i

{

~
C/

(1-ze)" 'de

t.
= F (1 » 1 s;—), (2.28

where £ = ¢ and — =

3. Empirical comparision for moderate sized sample

In this chapter. we compare the relative performance of the Bayes estimator,
MLE and MVUE of 0, for a moderate sized sample through Monte Carlo
simulation. For »=s=3(1) 10, 12, 15, 20 and #» =m=20, estimates of the mean
square error (MSE) and bias are obtained from 2,000 trials with 8=0.5, 0.666, 0.75,
0.8. The results on the estimated MSE and bias appear in the table. Although
MVUE is known to be unbiased, its estimated bias is recorded as a check on the
computation. From the results of the simulation, we know the following fact;

" When #=0.5 the estimated MSE’s are not small for » =5=3(1) 6.

2 The estimated MSE’s of Bayes estimator are smaller than the others.

3 The estimated MSE’s are influenced by the number of censoring.
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{ Table ) The Estimated MSE and Bias
It (y,s) ———— MSE,_ S — ‘*,J S — Blas e :
- ' BE_ | MLE | MVUE BE | MLE |, MVUE |
, (3 3 | 00284 | 003543 | 0.04359 | 0.00033 | 0.00019 | 0.05808
| (4, 4 | 002349 | 0.02811 | 0.89361 | 0.00107 | 0.00135 | 0.03575
(5 5 | 002021 | 002349 | 0.05421 | 000169 = 000182 | 0.02222 |
| (6, 6) | 001661 | 001892 | 0.06674 | 0.00001 | 0.00010 | 0.00755
| (7, 70| 001467 | 0.01649 | 0.01808 | 0.00016 | 0.00016 ~ 0.00270
05 | (8 8 001338 | 001485 | 0.01693  0.00175 | 0.00185 | 0.00156 |
(9, 9 | 0.01224 | 001345 | 0.01481 _ 0.00339 | 0.00354 | 0.00335
(10,10) | 0.01054 | 0.01149  0.01289 | 0.00140 | 0.00141 | 0.00169
(12,12) | 0.00909 | 0.00979  0.01064 , 0.00290 | 0.00298 | 0.00310
(15,15) | 0.00766 | 0.00814 | 0.00869 | 0.00223 _ 0.00232 | 0.00241
| j_vggg_z_qu _0.00750  0.00785 | 0.00928 | 0.00333 | 000342 | 0.00279
(3,3 027149 003163 & 0.04169 ' 003744 | 0.02297  0.01693
(4, 4  0.02132 | 0.02403 | 0.02866  0.03020 | 0.01826 | 0.00076
L0655 | 0.01852 002053 0.02276 , 0.02461 | 0.01424 | 0.00061
; _ (6, 6 _ 001471 _ 001599 ; 001792 | 0.02135 _ 0.01219 | 0.00063
| (7, T 001317 0.01420 ) 001567  0.01912 | 0.01094 | 0.00089 |
| 06667 (8 8 001107 001182 | 001288 10.01560 | 0.008134  0.00084
(9, 9 001237 | 001331 | 001470 001713 | 0.00918 | 0.00063 _
(10,10 __o_poggs 10 le_@g 0.01077 | 0.01466 o.oossgjro.oous
| (12,12) | 0.00859 ~ 0.00897 | 0.00946 . 0.01163 . 0.00642 | 0.00051 ;
' (15, 15) f 0.00659  0.00683 | 0.00714 ~ 0.00895 | 0.00461 ' 0.00022 |
| (20,20)  0.00603 ' 0.00621 | 0.00643  0.00432 | 0.00098 | 0.00264
(3, 3) | 002573 | 00279 * 004757 0.05254 | 0.03243 | 0.00504
[ (4, 4) | 001836 | 001922 002118  0.04024  0.02343 | 0.00095
]7_(;;, 5) 001504 | 001553 | 0.01618  0.03424 , 0.01999  0.00128
(6, 6 001205 001235 | 0.01299 002605 | 0.01349  0.00176
(7, 7) | 0.01026 = 001036 ' 0.01073 002562 | 0.01454  0.00139
075 (8 8 | 000934 | 0.00942 ' 0.00969  0.02447 | 0.01467 | 0.00320
L9, 9 | 001006 | 001023 001064 0.02346 | 0.01271 | 0.00004 R
L (10.10) | 000755 000761 | 0.00779  0.01754 _ 0.00943 | 0.00022
| (12,12) ' 0.00614 000618 | 0.00630  0.01394 | 0.00697 ' 0.00075
flj 15) ~ 0.00511 | 0.00513 | 0.00521  0.01117 | 0.00550  0.00067
(20.20) | 0.00494 | 0.00497 | 0.00505  0.00745 | 0.00315 | 0.00141
(3 3 | 002126 | 002133 002032 005615 | 0.03299 ' 0.00271
(4, 4 | 001609 | 001596 | 0.01664 . 0.04228 ' 0.02368 _ 0.00021 N
‘ (5. 5 _ 001329 001302 | 0.01277 003858 _ 0.02202 | 0.00361 |
| (6 6 001038 001010 | 0.01005 0.03096 | 0.01742 ' 0.00148 W‘
7,70 000802 000775 | 0.00767  0.02552 | 0.01346 _ 0.00038
0.8 (8 8 | 000721 , 0.00697 ~ 0.00690  0.02284  0.01232 | 0.00026
(9. 90 ] 0.00832 _ 0.00808 090§91 002531 001373 | 0.00039
(10,100 | 000593  0.00577  0.00572 001837  0.00974 | 0.00015 |
" (12,120 7 0.00501  0.00486 | 0.00479 . 001772  0.01034  0.00234
(15.15;  0.00386  0.00386 = 0.00383 ~ 0.01179 (ﬁp_o_qs@s ~ 0.00050
(20,200 . 0.00363  0.00359 = 0.00358  0.00775 | 0.00326 ' 0.00146
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