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Abstract

When independent individual measurements are taken both S/c, and R/d, are
unbiased estimators of the process standard deviation. However, with dependent
data R/d. is not an unbiased estimator of the process standand deviation. On the
other hand S/c¢, is an asymptotic unbiased estimator. If there exists correlation
in the data, positive(negative) correlation tends to increase(decrease) the ARI..
The effect of using Rld , is greater than S/c, if the assumption of independence
is invalid. Supplementary runs rule shortens the ARL of X control charts
dramatically in the presence of correlation in the data.

1. Introduction

Control charts are used in the analysis and control of manufacturing process so
as to produce satisfactory, adequate and economic quality. Samples are taken
from a process and some appropriate statistics computed from the samples are
plotted on a control chart in time order. There are two essential parts in all
control charts: a target value and control limits. The control limits are set up so
that the fluctuations within the control limits might be explained by “chance
causes.” However, if point falls outside the control limits, then it is an indication
that an “assignable cause” of variation in the process has happened to change the
process. Control charts are used to exhibit various kinds of deviations: a shift
in the mean, a transient value, a trend, cyclical behavior, and increase in the
variation. This paper deals with a shift in the mean.

Usually a process is monitored on the basis «f similar subgroups. However,
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production rate may be too slow to conveniently allow subgroup size greater than
1. Some examples are described in Roes, Does and Schurink(1933). In these
cases, control charts for individual observations are used to monitor the process.

The run length is defined to be the number of samples to signal and the average
run length(ARL) is its expected value. If the process is in control, then the ARL
should be large because it is an indication of false alarm. On the other hand, if
the process is not in control the ARL should be small because it is the number of
samples required until out of control is found. Therefore, ARL is a good criterion
for comparison of charts performance. A traditional assumption in quality control
charts is that the observations are independent and identically distributed over
time. However, it is common to have correlation in the manufacturing process,
especially when automatic measurements are made on each manufactured item in
production order.

The effects of autocorrelation have been studied for several types of control
charts. Goldsmith and Witherfield(1961), Johnson and Bagshaw(1974), Bagshaw
and Johnson(1975) have studied the effect of autocorrelation using time series
model on CUSUM charts. Vasilopoulos and Stamboulis(1978) have proposed
modification of X control chart limits for AR(1) process. VanBrackle(1992) has
studied the effect of autocorrelation for EWMA and CUSUM control charts.
Montgomery and Mastangelo(1991) have shown that the EWMA statistic provides
the basis of an approximate procedure that can be useful for autocorrelated data.
Statistical modeling and fitting of time series effects have also been proposed by
Alwan and Roberts(1988). The effects of AR(1: and MA(1) processes on the
retrospective X -charts, both with and without supplementary runs rule, have
been studied using computers simulation by Maragah and Woodall(1992). 1t is
pointed out in Alwan and Roberts(1988) that a few simple special cases of ARIMA
models may serve as good approximations for many or even most practical
applications. For instance EWMA chart is based on ARIMA(0, 1, 1). In this
study, it is assumed that the underlying process is an AR(2) process. In this
paper, my objective is to investigate the effects of autocorrelation on X charts in
terms of average run length(ARL) using Markov chain approach and simulation
method. To begin with, AR(p) process is explained in Section 2. In particular,
AR(2) process is described in detail. In Section 3. the problem of estimating the
process standard deviation is dealt with. Especially, R/d. is to be compared
with S/c.. In Section 4, effects of the autoregressive parameters are to be
investigated when using S/c, with large ». In Section 5, effect of using Rid. is
studied using simulation. Finally, in Section 6, supplementary runs rule is added
to X charts when using S/c, to see how X control charts perform.
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2. AR(P) process

Usually control chars are used for process control assuming that the observations
are independent over time. However, serial autocorrelation is frequently not
negligible in practice. It is assumed that autocorrelation is an inherent part of the
process. Therefore, I want to consider a model that incorporates autocorrelation
in the data, more specifically the second order autoregressive process. Limited
study of the AR(1: process on X charts has been made by Baik(1991).

Suppose that the observation X' (¢) at time ¢ is

X () = X))+ doy,
where

X)) =9¢ XU-1)+¢,X(t-2)+ - +¢, X(t—p)+ alt)

The random shock «(#) is an uncorrelated random variable with E(«(¢)) =0 and
Var(a(1))=0,. Properties of an AR(p) process are described in Box and
Jenkins(1976). It is assumed that X (f) is a stationary process. Then the
parameters ¢ , ¢ ., -, ¢ . satisfy some specified conditions. For p=2, the
parameters ¢ , and ¢ , satisfy

¢ 1 +’ 9’5 1 << 1
. —¢, <1

The stationary region for the parameters ¢ , and ¢ . is shown is Figure 1. The
variance of AR( p' process is known to be

o' =, [ (I=pD) ¢, ~p2)¢, — - —p(p)de),

wher pli), i=1, 2, -+, p is the autocorrelation between X (¢) and X (¢+7). Then
the variance of the AR!2) process is

1—¢ 5 O B
1+¢

7

mt o=

(:l ‘¢ ’) e ¢ \i

Note that as ¢ , or(and) ¢ . approaches the boundary of the stationary region in
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Figure 1 the process variance increases. Note also that for AR(1) process

()')(:3 = G’az /‘ (1‘ ¢ 12) .

¢

2

Figure 1. Stationary region of an AR(2) process

3. Estimation of the Process Standard Daviation

If the process standard deviation ¢y is known, then it can be used to set the
control limits. The traditional control limits would be y, + 3ox where u, is the
target value. However, the process stsndard deviation ¢x is not usually known.
Hence, it needs to he estimated from previous observations. There are a couple
of ways to estimate the process standard deviation oy .

According to Ryan(1989), the most commonly used procedure to estimate the
process standard deviation ¢x when the smple size is only 1 is to create ranges
by taking differences of successive observations, and dropping the sign of the
difference when it is negative. Let R(¢#) be the range of observation X’ ({+1]
and X' (£); R() = | X’ (++1) — X' (¢t) | . If the process mean is in control (6 =0),
then the average of the moving range of size 2 is used to estimate ox; oy = R/d )
where d. is a correction factor that makes R/d, an unbiased estmator of the
process standard deviation o if the sequential observations are independent.
Ryan(1989) gives values of d, for different sample sizes. For example, 4., =2/n"/
for a moving range of size 2.

The other approach to the estimation of the process standard deviation is to use
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the sample standard devation. Ryan(1989) suggests taking a sample of at least 50
observations, and calculating the sample variance S* = ¥ (X’ ()~ X)*/(n—1) in
order to use S/c, as an estimator of the process standard deviation where X' is
the average of X (1), X (2), -, X" (n) and ¢, is a correction factor that makes
S/c, an unbiased estimator of ¢ if the sequential observations are independent.
Values of ¢, for different sample sizes are also given in Ryan(1989). For
instance, ¢, =0.9949 for »=>50. Note that ¢, is always less than 1.

Both R/ d. and S/c, are unbiased estimatiors of the process standard deviation
o+ for independent data. Hence, Wadsworth, Stephens and Godfreyv(1986, p. 194
propose using any one of the above two estimators. However, Cryer and Ryan
{19907 showed that if the observations are independent, then the variance of Rid.
is at least 60% greater than that of S/c,. A number of other possible estimators
of the standard deviation have been discussed by Roes, Does and Schurink(1993'.
But attention will be restricted to the above two most commonly used estimatiors

Cryer and Ryani 1990} have also shown that even if the data are correlated S/c ,
is still an asymptotic unbiased estimator of .. However k/’d{ 1S a biased
estimator of ¢.. More specifically, if we let »{k) = Cov( X' (¢), X' (t+£k)), then
for a general AR{p} process

X' () — X 1t—1) ~ N0, 207(0) —»(1))).

Therefore, E(R(t1/d,) = (1 — pi1))"" oy.
Hence, if the average of moving ranges of size 2 is used

If the underlying process is an AR(2) process then
E(RId.) =11 ~¢ (1-¢.)" oy

since p(1) =¢ {1—¢ ,) for AR(2) process. Note that for AR(1) process

since p(1) = ¢ . for AR(1) process. Hence, if the process mean is in control then
S/¢, should be used to estimate the process standard deviation o x.
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4. X Control charts with 3¢.(Markov chain approach)

It may be interesting to consider how X control charts perform as the
correlation structure changes in terms of the autoregressive parameters. It is
assumed that the correlation structure has been indentified and the control
limits has been set at u, + 3cx. This would be the case when using S/c¢, as an
estimator of the process standard deviation with large » assuming that the process
is in control.

Since the underlying process can be modeled with AR process Markov chain
approach can be used to evaluate the ARL of X charts. For a simple AR(1)
process, if we want to know where the process is at time ¢ +1, then we need to
know where the process was at time /. At each time the process could be in any
state within the control limits. In other words, in Figure 2, states k2, and j, at
times ¢t and ¢ +1 could be any states within the control limits. The total number
of states for AR(1) process is assumed to be v. That is, the whole interval within
the control limits is discretized into v discrete intervals. Then, for any given
state, say, k£, at time ¢ it is probabilistically determined what the next state will be
at time ¢ +1.

UCL | o -
« -
Y ’~ I <//
CL // S E— <= 1‘
| t tH1 Ot 42
| O D _

Figure 2. Markov chain representation

For an AR(p) process, if we want to know where the process is at time ¢ +1,
then we need to know where the process was at times ¢ +p~—1,¢ +p -2, .-, and
t. At each time the process could be in any state. Let %,, k,, -, B, be a
sequence of states that the process is in at times ¢ +p~1,¢ +p—2, .-, and¢. Let
7., 72, -+, 7, be a sequence of states that the process is in at times ¢ +p—2,¢ +¢
-3, -, and f +1. In this case, the transitional probability for an AR(p) process is
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P(lky ko, k)= Goo,ndn))

=P(X(t-p+2e IGLX U-p+Iell,) - X t+Del(,)]|
X (t—p +1) € I(k), X' (t-p +2) € I(k,), -, X' (t) € I(k,))

# P(X4+DeIG) | X t-p+D e k), X (t—p +2) € I(k,), -,
X' (tye Ik,)), if k,=j ki=j,. o ko=7,

= P(¢ (ilk,)=d55) + ¢ (ilk, )=dcy)+ - + ¢ ,(i(k)—d5,)+
a(ty + ooy € I(,)),

where I(j,.) is the interval for state ;. and i(;,) is the middle point of the
interval 7(j..}. Then the ARL vector becomes

AR l; e ( I - (L)) - l ,

where @ is a +" by v matrix whose elements can be obtained from the previous
transitional probability and 1is a.” by 1 column vector of 1's. Note that the total
number of transient states for a general AR(p) process is v”.

et ARLy be the ARL when there are »” transient states. Similar to the
procedure of Brock and Evans(1972), an extrapolation to an infinite number of
transient states is based on fitting the following formula by least squares:

ARLy = asymptotic ARL + A/v" + B/u'.

As p increases, the total number of transient states that is needed for relatively
accurate asymptotic value of ARI. increases exponentially. A greater number of
transient states is needed for an accurate asymptotic value of ARL near the
boundary of the stationary region.

As an illustration, suppose that p=2. Then the transitional probability becomes

P((k;,}i’,)“"‘ (]bl!]‘i.’,))
P(Xu-De lGH)I X @t-De k)X t)e Ik,)), ifj=k,
P( ¢ (l('l‘f>) """ faﬂx) + ¢ ;‘(Zv(kl)“éﬂza) -+ Cl(t) + (SO')( € -[(]))

i

Here @ is a +* bv v* matrix. For simplicity, it is assumed that the process starts
at a fixed point. In this case, if we let X' (~1) = u, +8ox and X (0) = u, +édo
at times —1 and 0 respectively and if ;. is such that X' (—1) € I(;,) and X" (1))
e I(j,), then the ((j, —Dv +7.)" element of the ARL vector is my desired
ARL for a given deviation § with starting state of 7,. Even with an AR(2
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process, the total number of transient states that is needed for an accurate
asymptotic value of ARL increases very rapidly as v increases. In this paper it is
found that relatively accurate value of ARL can be obtained with v = 9, 12, 15, 18
and 21 transient states. An extrapolation to an infinite number of transient states
is based on those ARL’s. The computation is done assuming that the random
shock a(¢) for the unit time series is a(£)~N (0, 1).

Table 1 shows the ARL for some values of ¢ , and ¢ , within the stationary
region in Figure 1, and for § = 0.0, 0.5, 1, 3. Values of ¢ ; and ¢ , are arbitrarily
chosen to show the effect of each parameter on the control chart. They are —0.4,
0 and 0.4 respectively. According to Table 1, for a given value of ¢ ,, the ARL is
smaller when ¢ . ( 0 than when ¢ , ) 0. For instance, suppose that ¢ , = 0 and y
= yu, + 0.565. Then the ARL for ¢ , = —0.4 is 158.033 while the ARL for ¢ , =
0.4 is 167.701. The same phenomenon holds when ¢ ,= 0 and ¢ ,# 0. For
instance, the ARL when¢ =0,¢,= —04and u = u, + 050 is 158.646 while
the ARL when¢ ,=:0,¢.,=04and g = u, +050« is 168.048.

< Table 1 ) ARL of X charts of an AR(2) process with
UCL = u, + 304

CL = u,
LCL = Uy °’30’X

s 5. ° 0 05 1 3
~0.40 0.40 531.065 219.015 67.650 1.886
0.00 0.40 384.947 168.048 51.552 2.239
0.40 0.40 531.142 267.862 98.703 3.564
~0.40 0.00 384.223 158.033 44.287 1786
0.00 0.00 370.398 155.224 43.895 2.000
0.40 0.00 384.223 167.701 51.032 2.424
~0.40 ~0.40 385.312 159.495 44.711 1.713
0.00 - 0.40 384.947 158.646 44.563 1.862

0.40 -0.40 l 385.286 162.161 46.731 2.095

Next, it may also be interesting to know the effect of ¢ , together with the
effect of ¢ ,. It is known that the effect of ¢ , alone is to increase the ARL
whether the process is in control or not with the effect of positive ¢ | being larger
than that of negative ¢ ,. But now if ¢ , is also positive then the ARL gets even
greater. However, the effect of ¢ | is not great when ¢ , < 0. The behavior of
ARL can also be explained in terms of correlations:
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pl) =¢ /11 —¢.)
p(2) =¢, +¢ (1 ~¢,)

That is, positive correlations tend to increase the ARL while negative
correlations tend to decrease the ARL. Finally, the ARL increases as ¢ , or(and)
¢ , approaches the boundary the stationary regior.

5. Effects of R/d. and S/c¢. (Simulation)

In Section 4, it is assumed that the control limits have been set up using S/c .,
with large » in order to estimate the process standard deviation. However.
when individual measurements are taken the usual textbook approach to obtaining
the control limits for an X control chart is to estimate the process standard
deviation ¢ in terms of moving ranges of consecutive observations. Therefors,
it may be interesting to see how X control charts perform when using Rid, as an
estimator of ¢

{ Table 2 © Average run length and its standard error of an AR(2) process
when S /¢, is used with large » (5,000 simulations)

J
6, é 0 05 1 3

- 40 40 537.902 212.261 67.640 1.822
{ 7.583) { 2942) { .918) t.016)

00 40 379.466 168.511 50.022 2.124
5.303) { 2.325) ( .703) v .026)

40 40 522.933 265.795 96.908 3.617
[ 7.452) ( 3727) ( 1.318) {.073)

-.40 .00 390.640 159.431 44.607 1.794
{ 5.398} ( 2.243) { 614) ( .015)

.00 00 369.429 158.198 42.672 2.023
{ 5195 ( 2.242) {597 {.020)

40 00 385.193 171.647 48.754 2.378
{ 5563 ( 2.415) ( 674> ¢ .030}

—.40 —.40 392.064 160.595 44.738 1.794
{ 5503 ( 2.226) ( 617) {.014;

.00 - .40 385.198 159.385 44.707 1.890
{ 5.462) ( 2219} { 619) {.016)

40 -4 385.996 165.562 45.889 2.048
{ 5471) ( 2.385) { .636) {.021)
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Tables 2 and 3 show simulation results when using S/c, and Rid , as estimators
of the process standard deviation o, respectively. Note that Table 2 is the

sirnulation results of Section 4(Table 1). Therefore, Table 2 should be similar to
Table 1. In Table 3, the control limits are in fact assumed to be

Mo + 3(1_¢ / (1""¢ 2:))]/2 [N

since E(R/d,) = (1—p(1))""* and p(1) = ¢,/ {1-¢,) for an AR(2) process.
Note that the control limits for an AR(1) process are

ll() i 3 (1“¢ z}l/tf(fx.

Therefore, the effect of positive ¢ , for an AR(1) process is to decrease the
ARL while the effect of negative ¢ , is to increase the ARL compared to the
ARL that can be obtained with S/c, as an estimator of o as seen from the
simulation results of Tables 2 and 3.

( Table 3) Average run length and its standard error of an AR(2) process
when R /d, is used (5,000 simulations)

5

s s 0 05 1 3
~ 40 40 | 10746050  3035.464 629.566 6.947
(105535) ( 43.103)  ( B754)  (.090)
.00 40 379.466 168.511 50.022 2.124
(5303 ( 23%) ( .703)  ( .02)
40 40 23.790 19.052 10.497 1.068
(315 (2671 (1700 ( .006)
.40 00 2704.328 892577 187.532 3.021
(383100 ( 12975)  ( 2693)  (.034)
00 00 369.429 158.198 42.672 2.023
(5195 ( 2242) ( 597)  (.020)
40 00 | 5323 31.874 13.229 1.447
(7300 (  446) ( .185)  ( .014)
~ 40 - 40 1543.624 526.957 123.874 2.554
(21922) ( 7.355) ( 1734)  (.024)
.00 -.40 385.198 159.385 44.707 1.890
( 5462) ( 22190 ( 619)  (.016)
40 .40 96.438 46.729 17.309 1507

P 1.345) 641) ¢ .237) (.013)
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Since 0 < 1—-¢ ., < 2 for stationary AR(2) process, ¢ ,/ (1—¢ ,) > 0 if and only
if . > 0. That is, effect of positive (negative) ¢ , is to decrease (increase) the
ARL whether ¢ . > 0 or not compared to the ARL that can be obtained with S/,
as an estimator of ¢.. For instance, the ARL. when ¢ , =04, ¢ ,=0, §=05 in
Table 2 is 171.647 while the ARL in Table 3 is 31.874. Now if ¢ . is also positive
then the ARL in Table 3 gets even decreased. For instance, if ¢ , =04, ¢ , =0 4.
4=05, then the ARL is 19.052, However, if ¢ ./ (1—¢ .} <0 then the AKL
increases compared to the ARIL that can be obtained when using S/c,. For

instance, the ARL when ¢ , = —04, ¢ , =0, §=0.5 in Table 3 is 892.577 while the
ARL in Table 2 is 159.531. Note that the ARL when ¢ , = —04, ¢ .= —0.4 and
6 =0.5 in Table & is 526.957 while the ARL when ¢ , = —04, ¢ ., =04, §=05 ic

3035.464. 1In other words, if ¢, < 0 and ¢ , > 0 then the ARL’s are a lot larger
than would be expected when using S/c, as an estimator of ¢« .

6. Supplementary runs rule (Simulation)

Supplementary runs rules are frequently used in control charts. Commonly
used rules are given by the Western Electric Handbook(1956), Wheeler(1983), and
Champ and Woodall(1987). In the Section, it is assumed that a signal is given (1’
if one observation is outside 3-sigma limits, (2) if two out of there consecutive
observations fall between the same 2-sigma and 3-sigma limits, (3) if four out of
five consecutive nbservations fall between the same 1-sigma and 3-sigma limits.
or (4) if eight consecutive observations are on the same side of the center line
Here, sigma refers to the process standard deviation o .

Simulation results are shown in Table 4. First, the results show that even for
independent observations supplementary runs rule decrease the ARL dramatically.
For instance, the ARL with the above supplementary runs rules when the process
is in control is 92.044 while the ARL without the runs rules is 369.193 in Table 2.
Simulation results in Table 4 for independent observations are similar to the exact
results in Champ and Woodall(1987). Now if ¢ , is positive(assuming that ¢ , = (})
then the effect of supplementary runs rules becomes greater. For example, when
¢, =04 and ¢ . =0 the ARL when the process is in control is 33.258. However.
if ¢ , is also positive, say, ¢ , =0.4 then the effect of supplementary runs rules
decreases the ARL further down to 17.971. On the other hand, if the process is
out of control then it takes less number of observations before control charts
signal with supplementary runs rules. Even with negative values of ¢ , or(and’
¢ . the ARL with supplementary runs rules is much smaller than the ARL
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without supplementary runs rule in Table 2.

( Table 4 ) Average run length and its standard error of an AR(2) process
when S /¢, as an estimator of g x and with supplementary runs

rules. (5,000 simulations)

. ¢, ° 0 05 1 3
— .40 40 113.178 27.773 8.748 1.673
( 1564)  ( 324) (.068) (.011
00 40 43611 22.274 9.856 1.812
( 566)  ( .270) ( .103) (014
40 40 17.971 15.306 10.119 1.958
(.185)  ( .164) ¢ .111) (.017)
— .40 00 189.259 36.254 9.202 1.701
( 2654)  ( .455) (.083) ( .011)
00 00 92.044 27.654 9.193 1.792
( 1283) (341 (.089) (.013)
40 00 33.258 19.483 9.337 1.946
( 411)  ( .226) (.090) (.016)
~ 40 - 40 298.726 45.151 9.407 1722
( 4160)  ( .588) (.081) (.011)
00 - 40 193.411 36.200 9.078 1.779
(2.629)  ( .469) ( .077) (.012)
40 - 40 89.183 25.260 8.874 1.859
( 119  ( .301) (.079) ( .014)

7. Conclusions

It has been shown that with large number of observations S/c, is better than
Rid., as an estimator of the process stanard deviation oy with or without
correlation in the data.

For an AR(1) process, effect of ¢ , is to increase the ARL whether the process
is in control or not with the effect of positive ¢ , being larger than that of
negative ¢ ,. With additional positive value of ¢ . the ARL becomes even
greater.

The effect of using R/ d, as an estimator of the process standard deviation
instead of S/c, is enormous when dealing with correlated data. Especially, if ¢ ,
and ¢ . are positive then the ARL's that can be obtained using R/d, are a lot

smaller than would be expected when using S/c,. However,if ¢ ,<0Oand ¢ ,>0



L _ FAAAHHA #2270 A1% 1994+ 3%

the ARL’s are a lot larger with Rid , than with S/c,.

Supplementary runs rules cause the ARL to decrease. The decrease in ARL s
noticeable when ¢ | and ¢ . are both positive. However, even for independen::
data the decrease in the ARL is great with supplementary runs rules.

In this paper the effect of correlation in the data has been investigated
assuming that the underlying process can be modeled in terms of a time series.
especially the first and second order autoregressive process. For any higher order
of autoregressive process the properties of control charts can be investigatecl
using the same Markov chain approach or simulation method that have been usec
in this paper.
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