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Abstract

Multivariate exponentially weighted moving average (EWMA) control charts
for monitoring the variance-covariance matrix are investigated. Two basic
approaches, “combine-accumulate” approach and “accumulate-combine” approach.
for using past sample information in the developement of multivariate EWMA
control charts are considered. Multivariate EWMA control charts for monitoring
the variance-covariance matrix are compared on the basis of their average run
length (ARIL.) performances. The numerical results show that multivariate
EWMA. control charts based on the accumulate-combine approach are mors
efficient than corresponding muitivariate EWMA control charts based on the
combine -accummulate approach.

1. Introduction

Control charts are used to monitor quality variables from a process to detect
changes in the parameters of the distribution of these variables. A control chart
is maintained by taking samples from a process and plotting in time order on the
control chart the relevant statistic computed from the samples.

When control charts are used to monitor production process the main objective is
to detect any change in the process that may affect the quality of the output of the
Process.

There are many situations in which the simultaneous control of two or
more quality characteristics is necessary. The original work in multivariate
quality control was introduced by Hotelling (1947). Alt (1984) and Jackson (1985
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reviewed much of the literature on the multivariate control charts. We will be
looking at multivariate EWMA charts for monitoring the variance-covariance
matrix.

Suppose that the process of interest has p quality characteristics represented by
the random vector X = (X, X,, -, X,)’, p = 2, 3, -, and X has a multivariate
normal distribution with mean vector y and variance-covariance matrix .. Let
the sample of » observations taken at the ¢ sampling point be represented by X,
=(X,", X, ., X.,'), where X,,” = (X,;,,, X,,», -, Xi;,) is the j* observation
vector among » observation vectors taken at the ;" sampling point. Thus X;
is an 1 x np vector. It will be assumed that the observation vectors within
and between samples are independent. Even though most control charts have
this assumption, one should note that this is perhaps not very realistic, since
production processes are inherently time dependent.

Suppose that the objective is to monitor ¥ where the target value }_, is known.
We will consider the case in which the primary objective is to detect changes
in the variances, not in the correlation coefficients. Several different control
statistics for ¥, will be presented since different statistics can be used to describe
variability. In the univariate case, the S*-chart is used to control the variance
under the normality assumption. The S?-chart signals for large values of S° or
equivalently for large values of V, = (n—1)S:*/ 0.2, where S;* = ¥, (X,, - X,)*
/(n—1). One possible multivariate version of V, is

V. - z (X, X)) To' (X, - X) = tr(AT, (1.1)

7

where A, = Y7 (X, - X )(X,—-X,). When ¥, = ¥,, V. has a chi-squared
distribution with (»n--1) p degrees of freedom. Hotelling (1947) proposed the use
of the Lawley-Hotelling statistic V; in monitoring the process variance-covariance
matrix. The distribution of V, was studied by Lawley (1938) and Hotelling (1951).

Hui (1980) studied the use of the sample generalized variance in monitoring
the process variance-covariance matrix using a statistic L, = | A/ (n~1) /1 ¥, |.
It is known that ‘n—1)"?(L,—1) is asymptotically normal with mean 0 and
variance 2p (Anderson (1958)). Another chart can be constructed by using the
likelihood ratio statistic for testing H, : Y. = ¥, vs. H, : _#Y ,.

In general, if the process shifts from }_, to 3, then it is difficult to obtain the
distribution of V.. Thus, in order to evaluate the properties of the charts for ¥ it
is necessary to carry out computer simulations.
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2. Multivariate EWMA Charts for the Variance-
Covariance Matrix

2.1 EWMA Charts based on the combine-accumulate approach

Multivariate EWMA control charts based on the combine-accumulate approach
can be constructed by combining multivariate data into a univariate statistic and
then forming a univariate EWMA statistic. For the statistic V, given by (1.1}
the multivariate EWMA control chart is based on the control statistic

= (1-0Y,., +aV,, (2.1
where Y, =0, 0 < 2 < 1. This chart signals when Y, > 4,.

2.2 EWMA Charts based on the accumulate-combine approach

We propose a multivariate EWMA control chart based on the accumulate
combine approach that accumulates past sample information for each parameter
and then combine the separate accumulations into a univariate statistic
Multivariate KEWMA control charts based on the accumulate-combine approach can
be constructed by forming a univariate statistic from vectors of EWMA's.

In the univariate case, an EWMA control chart for ¢ can be constructed by
using the statistic

X -X
}“’A» - A ’YA ] +A v u _“k“. ) (:‘2 I
(21
By repeated substitution in (2.2), it can be shown that
X; X 2
Y, = (1-0'Y, + 1 \* S Aa-0 s (——— )} (2.4)

k=12 ,and 0 < <
In the multivariate case, defme vectors of EWMA’s Y, = (Y,,, Y., -, Y, )",

where

Yo = (1-27 Y, +v A1 -2+ { ]( -é{l;]--f)z—(n—l)}, (2.0)

Toi

k=12 - Y, .=0and0 <A, € 1,/7=1,2, -, p A multivariate EWMA chart 1o
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3 is based on the statistic

Tﬂzz = Zk’:‘\k 1Yk9 (25)

where } . is the variance-covariance matrix of Y, which will be given in

Theorem 1. The vector Y, is one possible multivariate extension of Y, in (2.3).
In general the distribution of Y, is difficult to obtain, but the asymptotic distri-
bution will be obtained for the case in which the process is in control. To
simplify notation, let

g X‘,']. "X,’ . z
Z, = ¥ ( kAl A ~(n—1),and Z, = (Zu, Zsr, -, Z.,)',

=1 G o

for / =1,2, -, p, 2 =1, 2, -, then the multivariate EWMA vectors can be
expressed as

Y‘a = (l—l)},’k ¢ + A-_Z_k~ (26)

By repeated substitution in (2.6}, it can be shown that
I3
Yje == 21 All—A)F Z;

It is easy to show that

EZiti = oi=00) = =D [ (Z2) 1], 1122

[X)]

Thus, under the assumption that 4 = yx, and X = .., the expected value of the
random vector Z, denoted by y, is

p. = (n—ﬁl)[(—-gir )2_1, %i_: )2_-1’ ,(z_::_ )2_111.
If =3, theny, = 0.

Theorem 1. The variance-covariance matrix of ¥, when a process is in control
andY, = 0is
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Y, = e L1-(1-0* 18, ¥, = 2(n-DR?,

f

where R*? is used to denote the matrix whose (/, /') element is the 2™ power oi
the (/, /') component of R which is the correlation matrix of X = (X, X, -

X,).

Proof. It is easy to show that from the factY, = Y[, a(1-2)*" Z,,

[/‘
il
‘[/,.

(oz’[ (1-—~A)"Zl'—-~~~ [1-(1-0)*] T ,.

When a process 15 in coctorl, the mean vector and variance-covaiance matrix of
( X - ]l X 11

Z. is defined as follows: recall that Z,, +(n--1, = ¥ 1.,
= g o

) has a chi-

squared distribution with (s —1) degrees of freedom. Thus E(Z,})=0 and Var
(Z)=2n—1:forl=1,2, -, p,i=1, 2, ---. For simplicity, let

Wil = [N — ij "X, iie - s
U, = = )_( Vo= Xf Bkt 24 - and W, = _)gALhX

G a; Tor T o

“Then, they can be expressed that

W, V,1~N,0,0,(n—1) n, (n—-1)] n, p)

and

W, W, )~N, (0,0, (=1 n (n-1)n —p/ (n—1)).
Thus

Cov(Z,,Z, )=Cov | Z,», +(n—-1), Z, +(n-1)]
= Cov [ ¥ U,’, Vn 2]
= n Cov [U,. , V_,2 ,1 +n(n—1)Cov[U; W, 1.

By using the moment generating fuction of the bivariate normal distribution, it
can be shown that

Cov [U,. V'] =2 Cov(U,;,V;)]",
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and
Cov [U;*, W,*] =2[Cov(U,.W,;) 1.
Hence
Cov [ Zs. 2, | =2 2200 po g 02D) e g1y,

Therefore E(Z,) = 0and ¥; = Cov(Z;) =2(n—1)R*.
The following Theorem 2 gives the asymptotic distribution of Y, given by (2.6)

when the process is in control.

Theorem 2. Let p-component vectors X, X,, --- be independently identically
distributed according to N,(yg, ¥'). Then {¥,,7*® Y,, k& = 1} converges in distri-

bution to a multivariate normal distribution with mean vector 0 and variance-
covariance matrix I, as k— 0, A—0and kA — 1.

Proof. Recall that Y, is
Y. = T A(L-D 2

Fork > 1, let
Ay = L5 Cov((1-0)* Z),
B, is the symmetric, positive definite matrix satisfying B, = A, ",
¥, = the smallest eigenvalue of A,.

By the corollaries 18.2 and 18.3 of Bhattacharya and Rao (1975), if

0.1 =& L EIBAQ-DZ I —0

ask— w, A— 0, and A — 1.

then

L By al-0"Z =N, D, as k— o, A— 0, kA — 1.
JE = 2

The inequality given (17.63) of Bhattacharya and Rao (1975) is
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IB. Z I <v. "z, 1<i<k
and this gives
I1B.Z: " < vt I1Z; I, l<i<k

Thus

i

k
o, =k " T EIB.AQ-D" Z]|*

i=1

i
=

k
AL (-0 EIBLZ I

o S e

IA
e

k . . it
3o AS ‘2: (] __l)mk i ﬂyk»sl 2 E ”Zr “ s. (2 |

Now
A e o1 A i _qonmy
44,;, = ’k : I‘ = k (2 ’"l) \ 1 ( 1 - A.) i -! E.. z:

Let ¥ be the smallest eigenvalue of }_, then the samallest eigenvalue of A, can

be expressed as

Yo =t p oy [1=(1=0% ]},

Thus, the right hand side of inequality (2.7) is less than or equal to

Gl A -0 Y e S -0 EIZ (23

R (2=
By using the inequality given by Chung (1974, p. 48), it is easy to show that

Let m, = E|Z,|’ < »,1=1, 2 -, p. Thus, the quantity (2.8) is less than or

equal to

A 3k
{ Dyaie VA (1-(1-2) )y 2—2 IEIN
Mt T gy (e 0

ask-+ o, A— 0, and kA — 1.
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Therefore

"«v,l]%— * ‘f_“} AM1=-M*"Z, =8, Y, = N,(0, D),

ask— c,A—0,and kA — 1.

Corollary. { 7', & > 1} converges in distribution to a chi-squared distribution
with p degrees of freedom as k2 — o, A — 0, and kA — 1.

Proof. Recall that the control statistic 7,.° is

TV =Y. %, Y.

"t
which can be expressed as

T = (S, E (T,

By Theorem 2 and the corollary of Serfling (1980, p. 25),
T =Y, L., 'Y, —=x(p)ask— o, A0, kL — 1.

The multivariate EWMA chart signals that the process is out-of -control whenever
T.® =2 h,. The ARL performance of the multivariate EWMA chart based on
accumulate-combine approach can not be modeled as a simple stationary Markov
chain as described in Brook and Evans (1972). A simulation to obtain the ARL
values and parameter 4z, was used.

3. Numerical Results

The following control procedures will be compared on the basis of their ARL
performances.

1. Multivariate EWMA chart with control statistic given by (2.1).

2. Multivariate EWMA chart with control statistic given by (2.5)
The performance of the charts for monitoring a variance-covariance matrix
depends on the value .. It is not possible to investigate all of the different ways
in which }_ could change, but the following types of shifts are considered:
(V1) all variances and covariances are changed by a constant factorie. Y, = ¢¥,.



62 o  EFAAE A A22¢ A|13 19949 34

(V2) one variance increased to c¢lo,; and the other variances are remained on
target.
iV3) approximately half of the variances and covariances are changed by @
constant and there are no shifts in the rest.

When comparing control charts, some kinds of standard for comparison is
necessary. The charts are matched for ARL when the process is in control.
This enables the performance to be evaluated when the process has shifted away
from its target value. In our computation, the ARL in control was fixed to be 200
and the sample size used for each sample observation was 5. It is assumed that
the correlation coefficient p is the same for all variables. Table 1 and 2 gives the
values of k, and /., respectively for p=2-5 and A when the ARL at ¥ =%, is
approximately 200. ARL values and parameters %,, 4, were calculated by using
Markov chain approach or 10,000 simulations. For p=2 and three different
correlation coefficients p==0.0, 0.5, 0.8, Tables 3-5 give ARL values. As shown in
Tables 3-5, for the multivariate EWMA control charts based on the accumulate
combine approach, smaller values of A are more effective in detecting all shifts in
Y ofor p=2. Also, Tables 3-5 show that for the multivariate EWMA control charts
based on combine-accumulate approach, small values of A are more effective in
detecting small and moderate shifts, and large values of A are more effective in
detecting large shifts. From Tables 3-5, A=0.1-05 seems to work well over »
range of different shifts. For p=5, p=05, Table 6 gives ARL values. The
results in Tables -6 show that multivariate EWMA chart based on accumulate
combine approach is better than multivariate EWMA chart based on combine-
accumulate approach.

4. Conclusions

Numerical results show that ARL of the multivariate EWMA control chars
based on accumulate-combine approach decreases as A decreases. Thus small
values of A may be best for practical applications. The multivariate EWMA
control charts based on accumulate-combine approach are more effective in
detecting all shifts in ¥ in terms of ARL than the multivariate EWMA control
charts based on combine -accumulate approach.
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{ Table 1 > Values of h, for Various Values of A and p
when the ARL at Y =Y, is 200

A=0.7 1=05

A=03

; ;
BRI CR N

17.9326 154050 12.8841

A=01  1=005
10.0350  9.0624 |
14.4509
18.8011

23.1094

{ Table 2 } Values of h, for Various Values of A and p

when the ARL at ¥_.=Y , is approximately 200

b p A=03 r=01 A=0.05
| T
2 0.0 14.0154 9.4105 7.7675
2 0.5 14.3502 95307 7.8020
2 08 | 14.3502 9.5307 7.8020
3 0.5 10.0917
4 0.5 12.1742
5 0.5 14.0632

{ Table 3 : ARL Values for Multivariate EWMA Charts for Monitoring
the Variance-Covariance Matrix (p=2, p=0.0)

A =0.05 A=0.10

A=070

A=0.03 A=0.50
 shift ACCA ACCA ACCA ACCA ACCA
=100 19952000 1996 2000 1995 2000 200.0 2000 |
| e=121 217 505 244 365 344 33 3738 430 |
=169 41 224 46 137 60 79 74 78
| c=256 21 121 22 71 27 36 2.9 27
c1=121 | 384 780 429 648 607 677 755 82.8
c1=169 | 77 365 85 240 117 17.3 185 20.5
3.9 6.2 6.3

c1=2.56

29 206 3.2 125

7.0

In Tables 3-6,

A-C stands for EWMA chart based on the accumulate -combine approach
C-A stands for EWMA chart based on the combine-accumulate approach
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{ Table 4 ) ARL Values for Multivariate EWMA Charts for Monitoring
the Variance-Covariance Matrix (p=2, p=0.5)

I A=0.05 1=0.10 A=0.03 2=0.50 A=0.70

| shift | AACC-A ACCA ACCA ACCA ACCA
S - S e o e e i SR pa— e ]‘
¢=1.00 | 200.6 200.0 2005 200.0  200.2 200.0 200.0 200.0 |
¢=121 249 505 278 365 386 331 37.8 43.0 |
| c=169 47 224 53 137 69 79 7.4 78 |
=256 19 121 21 71 24 36 2.9 2.7 |
S cl-121 . 374 771 425 638 6L7 665 73.9 80.7
| c1=1.69 74 355 8.2 232 114 164 17.2 19.0
| c1=256 | 28 295 31 118 38 55 5.7 7
S — Lo e, e e et e o e i et e e e o i S
( Table 57 ARL Values for Multivariate EWMA Charts for Monitoring
the Variance-Covariance Matrix (p=2, p=0.8)
| { A=005 2=0.10 =003 =050 A=0.70
J shit | ACC-A ACCA ACCA ACCA ACCA
¢=100  200.1 2000  201.7 2000  200.8 200.0 200.0 200.0
¢=121 | 285 505 315 365 420 331 378 43.0 |
=169 ' 54 224 60 137 79 79 74 78 |
=256 21 121 23 71 27 36 2.9 2.7
{ c1=1.21 # 279 739 330 603 52.0 6l4 68.0 732 |
| cl=169 | 54 316 61 202 83 133 13.2 14.2
¢1=256 22 160 24 96 28 51 4.3 4.0 |

{ Table 6 } ARL Values for Multivariate EWMA Charts for Monitoring
the Variance-Covariance Matrix (p=5, p=0.5)

1=0.05 A=0.10 { 1 A=0.05 1=0.10 }
| Shift ~ A-C C-A | shift  AC C-A
S SR . S oo e S
=100 200.4 2000  c1-3=121 | 227 108
c=1.21 18.6 27.8 l c1-3=1.44 75 22.8
L =169 5.2 11.8 | ¢1-3=1.69 | 41 16.4
0 =256 1.4 63 | c13=196 2.7 12.8
c1=121 463 902 | c1-3=225 2.0 10.4
| c1=169 8.5 35.7 c1-3=2.56 1.7 8.8
L c1=256 3.2 18.6 |

¢1-3 represents that 3 variances among 5 variances are changed by a constant and
the other variances are remained on target
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