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Abstract

The strength-stress model has been widely used in a variety of areas including
testing the reliability of the item or design procedures. This model was first
introduced in 1950’s and can be found on various applications in civil, aerospace
engineering etc. This paper considers the strength-stress model in detail and
proposes an estimator which deals with the reliability estimation problem based on
censored observations in the strength variables.

1. Introduction

A physical system, whether it consists of a single component or not, is typically
operating subject to some kind of environmental ‘stress’ which depends on many
factors. Here, the withstanding power against the stress is named as the
‘strength’ of the system.

In strength-stress model, let X be the strength of the unit and Y the stress
placed on the unit by the operating environment. Suppose X and Y are two
random variables with cumulative distribution functions (cdfs) F{x} and G(y)
respectively. Then the reliahility, denoted by R, of a system is the probability
that its strength exceeds the stress. That is,
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R=P(x>Y)= [ GodFw) = [ S()dGt) (1.1

where S(¢) = 1-F(¢).

Parametric analyses are found in most literature: Church and Harris (1970
obtained the confidence interval for K under the assumption that X and Y are
independently normally distributed and the distribution of Y is known. Beg
(1980} derived estimator of R for exponential-family. Sathe and Shah (1981
derived minimum variance unbiased estimator for R when X and Y are
independently exponentially distributed random variables.

However, when the parametric assumption is not realistic, a nonparametri:
approach is called for. Let the data consists of a random sample of size m of
strengths X,. . X,, from F(x) and an independent random sample of size 7 of
stress ¥ , . ¥, from G(y). Birnbaum (1956) show that the Wilcoxon-Mann
Whitney statistic could be used as an estimator of R as follows:

. 1 & < (1, Xi>Y,
R =— U, where U, =
ngZ | lo, X, <v,
We can express R as
R= [ (1-F.)dG,(y) (1.2

where F,, (y) and G, (y) are the empirical cdfs of the X's and Y 's, respectively
Birnbaum and McCarty {1958) derived distribution-free upper confidence bound on
R. which is based on independent samples of X and Y. Govindarajulu (1968
discussed the estimation of R using the Kolmogorov-Smirnov statistic when one
of the distribution is known. They considered complete sample case.

For censored observations Delong and Sen (1981) dealt with the estimation of K
based on progressively truncated version of the Wilcoxon-Mann-Whitney
statistics. They considered the stochastic processes related to some generalized
U/ —statistics under progressive right censoring for prediction purposes
McNichols and Padgett (1988) considered the situation in which censoring is
performed to the strength of the item by some prespecified time.

Now we consider the following situations. Assume that there occur censorec
observations in strength variable. For example, there is a system which can not
measure some characteristics of the strength of an item above a certain value. In
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this case, real strength may exceed the measured value, but we do not know the
exact strength.

In this paper we consider estimation of the reliability in the case that there
occur censored observation on the strength random variable but neither the
distribution of strength nor stress is known.

In Section 2 we propose an estimator for R and derive some properties of the
estimator. To see the finite sample performance of the estimator we give some
simulation results in Section 3. In Section 4, we give some conclusions and
remarks for further studies.

2. Estimation of the Reliability

Let X!, .. X! be real strength random variables from F°(x)and Y., ---, Y, be
stress random variables from G(v) where F° and G are continuous distributions.
We will assume that X/, -, X, and Y, ---, Y, are independent.

In the random censoring model, instead of observing real strength variables, we
observe only censored observations (X, §,), -+, (X,., d.) of strength variables
where

1 if X! < C; (uncensored)

X =min(X ' C)and$§, = i=1 - m.
0 if X' > C: (censored) T

We assume that the censoring random variables C,, ---, C,, are independent and

identically distributed (iid) according to the distribution H and that the X's and
Y's are mutually independent. Hence the observed X,, .-, X, constitute a
random sample from the distribution F given by 1-F =(1—-F°)(1-H). The
product-limit(PL) estimator S,. of S=1-F, introduced by Kaplan and Meier
(1958), is

Sy = [T (SEET) " 0=t< X,

, n—i+1
17:X Gk I
where X,,, ---. X,, are ordered observations and &, is the censoring status
corresponding to X, =1, ---, m. Throughout this paper we treat X,. as

uncensored observation whether it is censored or not and define §m (tr=0"fort:
X\m .
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Now we propose an estimator of R in (1.1) using PL estimator

Re = [ sa0)dc, ) (2.1

O

where S,,(#) and (., (#) are PL estimator of S(¢) and empirical distribution of G(¢).
respectively. When there is no censoring, R .. coincides with R in (1.2).

It is well known that the PL. estimator .S:,n and empirical distribution G, are
uniformly consistent. Using this properties we can show the consistency of the
proposed estimator.

Theorem 2.1 l.et F", G and H be continuous distributions. If

TRENESH dF‘([) .
J. —HO <% (2.2
and
Yooy S dF’ vl ay ‘o o
Slistw [ s gy A< (2.3

hold, then f?p, is a consistent estimator of R as m. n — .

Proof.
Ry —RI =1 [ St1dG. - [ stacw) |
<M.+ M.,
where
M, =1 [ (5=StNEG, ()| and M., ~ | [ SEG.(—dGuN .

We will show that M., and M., converge in probability to 0 as m, n — o.

YN )
M., < [ 15.()-S@)1dG. ()
< sup |85 (0-50)1 f, 4G, (1)
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- ~
Since | v m sup| S,(t)—S(#) |} is bounded in probability (see Joe and Proschan
(1982)) by condition (2.2) and (2.3), M,, converges in probability to 0. And by
Helly's theorem, M., converges in probability to 0. Therefore we have that R,

converges in probability to R asm, n — «. O
In order to study the limiting distribution of F,, in terms of the joint limiting

distribution of S, and G,. we define A, (¢) and A, (t) by A,(t) =~ m (S.(t)-
St and A, (1) =~ n (G,(t)~G (1)), respectively. Then we have the expansion

—e N\ l?"—_ /7——'— 7_.__
N R R =y A ey A Bo VDR
where N = m + n.
A = [ ADdG®),
B\[ 2“{:17/\(;"()/‘)01}70(1‘) (24'

and Ry = A0d(G.()-GD)).

We will show that A, and B. converge weakly to A and B defined by A =
[ ABdG(@) and B = [, A (8)dF* (1), respectively. Likewise we will show that
R . converges in probability to 0. This will establish the following theorem.

Theorem 2.2 Suppose F', G and H are continuous distributions. Let 1 =

lim —;VE- and 0+ A<C1. In addition to (2.2), (2.3) suppose that

wee s

, " dF"
§ 2 —— o }
S isqw oo e <« (2.5
and
S eha-Gw i dF ) < o (2.6
hold. Then

— Fas d
vN (R —R)— N0, 0/ /A + a//(1=A)) as mn— 0
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where

e . 7 1 ’ . 2 o
ot = f SO E0 L [7S()dG(s) ]2 dF°(#)

and ot = [ ) dG(O—( [ F (1 dG)) . (2.7

Proof. To prove the limiting normality, it suffices to examine the convergence
mentioned above. We use the fact, proved by Gill(1983), that {A,.(#), 0<t< X,
converges weakly to {A(t), 0t <+ if Sy I-H()] "dF ()< 2. where = = min
PFP(1), H7 (1)) and A(t) is a Gaussian process with mean 0 and covariance

dF’(t)

Cov (Al ), Al)) =SS [ — s

Condition (2.2) implies that »=F "' (1) and f;[1-H@) ] 'dF° ()< o, And it
is well known (Billingsly (1968) Theorem 16.4) that A, (¢) converges weakly to

A (t) where A (f} is a Gaussian process with mean 0 and covariance

4G

Cov(Aa(t). Ac(t)) = 1=GU NGz, ) [ TErITNE

Next note that [.“ A(t)dG (¢) is a proper random variable since

E JTiawideny = [[EIAM1d6(H < [ TEA (D] dGit)

by condition (2.5) Similarly, [, A.(£)dF"(¢) is a proper random variable by
condition (2.6). By the continuous mapping theorem (Billingsly (1968, p. 30), the
leading terms in i2.4) Ay and B. converges weakly to A and B. respectively.
Turning to the remainder term, since sup|{A(¢) | is bounded in probability, R.

converges in probability to 0. And by Slusky’s Theorem VN (15) - R converges
weakly to

L ["Amde) + —L=—= [ A .(aF @),
NA vVi1i—2a
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By the theory of stochastic integration (see Chapter 5 in cramér and Leadbetter
(1967) ), we can obtain that the limiting random variable is normal with mean 0 and
the variance given by (2.7). &

3. Simulation Results

To see the finite sample performance of the proposed estimator we carry out the
following Monte Carlo experiment. The simulation is performed on the subroutine
FORTRAN of the package IMSL in CYBER 962-31 at Seoul National University.

The strength random numbers are generated from the Weibull distribution W
(e, ﬁ), ie.

F'(t) =1-expi—(—1"} 20, a,>0, >0

o

The stress random numbers are generated from the Weibull distribution W(a«,, ).

ie.

G(t) - 1-expi—(—)r), t20, a,>0, p>0.
a:;
In this case, the exact reliability is given by

alﬁ
R=PriX'>YV]=——.
a -+ a;

The censoring random numbers are generated from 1—-H (¢) ={1-F"(#)}” for v =
1/9 and 1/2, here 7 is viewed as a censoring parameter since the probability that

an observation will be censored is Pr (5, =0) = —77%—1- .

Tables 3.1~3.3 show that the results of the simulation with 1000 replications
when =1 (i.e. exponential distribution), («,, a,) =(1, 1), (1, 3/7) and (1, 1/9)
for m/N = 1/4, 2/4 and 3/4. Tables 3.4 ~3.6 show that the results of the
simulation with 1000 replications when f =2, (a,, ;) =(1,1), (1,~ 3 A7) and
(1,1/3) form/N =1/4, 2/4 and 3/4.
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{ Table 3.1 ) Results of the simulation with 1000 replications from X°~W(1,1) and Y~W (1, 1)

T

Sample size

no censoring

5005

10% censoring ' 33% censoring

.5005

.0021

" Exact B
N | (m. n R SE. R. SE. R. SE.
1.4 05 | 5,15 5033 0050 | 5023 0051 4888 0055
(10, 30} 4978 0034 4956 0035 4913 0037
(15, 45) 4990 0027 4984 0027 4952 0030
(20, 60} 4969 0024 4969 0024 4945 0025
(25, 75) 5026 0021 5027 0021 4996 0023
1/2 | (10, 10° 4971 0041 4967 0041 4908 0044
| (20, 20° 5015 0028 5015 0029 4977 0031
‘ 130, 30) 5020 0024 5018 0025 5015 .0026
40, 40) 4994 0021 5000 0021 4987 0022
50, 50) 5021 0018 5022 0018 5013 0019
34 (15, 5 5041 0047 5036 0047 4997 0050
(30, 10) 5016 0034 5008 0034 4988 0035
(45, 15 5018 028 5022 0028 5001 0029
(60, 200 5027 0023 5028 0024 5020 0024
(75,25 0021 .4998

0021

{ Table 3.2 ) Resuits of the simulation with 1000 replications from X °~W({1, 1} and Y ~W(3/7, "1

W ‘sample size no censoring 10% censoring 1 33", censoring
. Exact K | . . ) - ‘
N (om0 K SE. R.. SE. R, SE.
P 174 0.7 0, 156) 7039 .0048 | 7035 .0049 6977 0051
(16, 303 6993 0034 1 6990 0034 6978 0036
(15, 453 011 0026 7006 .0026 002 0027
20, 600 015 0023 7013 .0023 010 .0024
L2h, 750 6994 0021 6993 0021 6993 0022
1/2 (10, 10) J010 .0039 7001 .0039 7026 0040
24, 20) 6956 .0026 6950  .0026 6958  .0027
{30, 30 G011 0021 7011 .0021 7011 .0022
40, 40) 6994 0019 6996  .0019 6990 0020
54, 50) H991 0017 6990 0017 6989 0018
1 3/4 (15, 3) T002 0 .0041 7005 0041 7002 0042
(30, 10} 0981 0027 6982 .0028 H989 0028
(45, 15) 0977 0023 6976 .0023 6976 0024
160, 20 6993 0020 6988 0020 6989 0020
CTh, 250 2027 0017 q027 0017 7025 0 .0017
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( Table 3.3 ) Results of the simulation with 1000 repllcatlons from X°~W(1,1) and Y~ W(1/9 1)

m Sample size no censormg ]000 censoring 33 %o censoring
Exact R
N (m, n) R SE ; R»x. SE. RP’L SE
1/4 . .9 ( 5, 15) 9019 .0031 9021  .0031 .90]1 .0031
(10, 30) 8984  .0021 8984  .0021 .8989  .0021
(15, 45) 9001 .0018 9000 0018 8999 0018
(20,600  .9020 .0015 9020 .0015 9019 0015
(25, 75) 9002 0013 ¢ 9003 0014 9005  .0014
1/2 | (10. 10) 8959 0025 8960  .0025 8953 0025
‘ (20, 20) 9030 .0017 9032 .0017 9036  .0017
(30, 30) 8994  .0013 8994  .0013 8995 0013
(40, 40) 9012 0011 . 9013  .0011 9012 0011
(50, 30) 9014 .0010 9013 .0010 9015 .0010
3/4 (15, b5) 9008 0022 9004  .0022 9011 .0022
(30, 10) 9001 0015 9001  .0015 9002 0015
(45, 15) 8082 0013 8981  .0013 8978 0013
{60, 200 9006 .0011 | 9006  .0011 9009 0011
75, 25) 8992  .0010 8993 .0010 | 8993 0010

{ Table 3.4 ) Results of the simulation with 1000 repllcatlons from X°~W(1 2) and Y~W (1, 2)

{ m S.ﬂnple size no censoring 10% censoring 3‘3"0 censoring
Exact R ‘
N Cm, n) R SE. R, SE | R. SE
P14 0.5 { 5 15' 5035 .0031 .4995 .0052 T 4901  .0056
( 10 30) 5052 .0034 5046  .0035 4977 0037
(15,450 4982 .0027 4985 .0028 4940 0030
(20,600 | 4957  .0023 4952 0024 | 4943 0025
(25.75) 4986 .0021 4979 0022 4971  .0023
L 1/2 (10, 10V 4967 .0042 4960  .0043 ‘ 4888 0045
(20, 20) 5012 .0029 5008 0030 | 4967  .0031
(30, 300 4980 0024 4972 0024 | 4954 0026
(40. 400 ¢ 5024  .0021 5024 .0021 © 5024 0022
(50. 30} 5033 L0019 5039 .0019 5027 .0019
3/4 (15, 5 4919 0048 4912 0049 | 4860 0051
€30, 10) 5081 .0034 5079 .0035 } 5068 .0035
(45, 15) 4966 .0027 4963 .0027 i 4961 0028
(60, 20) 5011 0023 5010 .0023 1 5013 .0023
) 4987 0022 4987  .0022 4976 .0022

(75,25 ‘
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{ Table 3.5 ) Resuits of the simulation with 1000 replications from X°~W{1,2)and Y ~ W

(v7_3_ \77_ 2)
L m ' Sample size no censoring | 10% censoring 33% censoring
-~ Exact R | .
' N \;vm n) R Sh RH SE | R; S.E.
1/4 0.7 i 15) .6899 40047 6898 0048 ' 6822 0051
{ lO, 30) 6979 0034 6981  .0034 6942  .0035
(15, 45) 7008 0026 7015 .0026 ‘ 6998 0028
(20, 60) 7028 .0022 7036 0022 ¢ 7032 .0023
(25, 75/ 6976 .0020 6972 0020 6964 0021
P 1/2 ( 10 10) (3998 .0038 6998 0038 7003 0039
(20, 20 7026 .0026 7029  .0026 7016 .0027
(30, 300 6975 .0021 6977  .0021 6979  .0022
{40, 40) 7022 .0019 7021 .0019 7020  .0020
{50, 50) 7009 0016 7011 0016 7012 .0017
3/4 (15, 5 6986 0040 | 6981 .0040 6969  .0042
{30, 1) 6995 0029 | 7000 .0029 6982  .0029
(45, 15) 7009 0023 7006 0023 . 7013 .0023
(60, 20) 7024 0020 7029 0020 ¢ 7022 .0020
75,25) 1 7006 .0018 7001 .0018 | 7007  .0018

{ Table 3.6 ) Results of the simulation with 1000 rephcatrons from X°~W(1 2) and Y~ W(1/3 2

Sample size no censoring 1 1()% censoring ] 3% censoring
- Exact R - i

N (m, n) R S P, R«,:,L S E. RH SE.
1/4 05 {5, 15) .9064 00"30 : 90(')1 0030 .9061 .0031
| (10, 30) 8983 0021 | .8983 .0021 | 8985 .0022
i (15,45) 8998 0018 = .8997 .0018 9002 .0018
i (20, 60) 9024 0015 \ 9023 .0015 9026 0015
(25,75) | .9003 0013 90()3 0013 8999 0014
c1/2 (10, 10} 9004 ()023 90()5 0023 9005 .0023
(20, 20; 8992 .0016 8992 0016 | 8992 .0016
{30, 30) 9006 .0014 9007 0013 ' 9005 .0014
(40, 40) 9017 0011 ¢ 9017 0011 9021 .0011
; 50, 50) .9007 ()011 : 9006 0011 9007 0011
3/4 ‘ (15, 5 9036 0022 | 9036 0022 9047 .0022
(30, 107 9036  .0015 9036 0015 ! 9039  .0015
(45, 15) 9004 .0012 9003 0012 | 9002 .0012
(60, 20) 8994  .0011 8993 .0011 8996 0011

{75, 25) 9012 0010 9010 .0010 | 9012 .0010
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4. Conclusion and Remark

In this paper, We proposed an estimator of the system reliability based on the
productlimit estimator in the strength-stress model when there occur censored
observations on the strength variable. And we investigated the asymptotic
behavior of the proposed estimator. We obstained the consistency and anymptotic
normality for the proposed estimator. Finally, we performed Monte Carlo
simulation to see the performance of the peoposed estimator via S.E.. From the
simulation, we may conclude the following facts;

{1) The Standard Error (S.E.) increases as the censoring fraction increases.

{2) For all cases {(no censoring, 10% censoring and 33% censoring case), the S E.

decreases as the exact R increases.

(3) When m/N =1/2, S.E’s of estimators are smaller than others (i.e. m/N =

1/4 and 3/4) except in the case that the exact R =0.9.

(4) When R = 0.9, the smallest S.E. is achieved when m/N = 3/4.

(5) As N increases with fixed m/N, SE. is nearly equal for all cases (no

censoring, 10% censoring and 33% censoring case.)

An interesting subject for further study is estimation of the reliability R when
the strength variable and stress variable are both censored.
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