Rc-Lindelöf sets and almost rc-Lindelöf sets

Karin Dlaska

In this paper we introduce the class of rc-Lindelöf sets and the class of almost rc-Lindelöf sets which represent a generalization of the well known class of S-sets. We study some basic properties of (almost) rc-Lindelöf sets and investigate the relationship between (almost) rc-Lindelöf sets and (almost) rc-Lindelöf subspaces.

1. Introduction

Recently there has been considerable interest in studying covering properties of topological spaces involving regular closed sets. In [17] Thompson introduced the class of S-closed spaces which has been extensively studied so far (see e.g.[1], [11] and [13]). A space (X, τ) is called S-closed if every regular closed cover of X has a finite subcover. If we replace in this definition "every regular closed cover" by "every countable regular closed cover" we obtain the important class of countably S-closed spaces (also known as countably rc-compact spaces [12]) which were introduced and investigated in [5]). Furthermore, Jankovic and Konstadilaki [12] defined and explored the class of rc-Lindelöf spaces, i.e. spaces in which every regular closed cover contains a countable subcover. Clearly, a space is S-closed if and only if it is countably S-closed and rc-Lindelöf. Finally, in [6] Dlaska and Ganster introduced and studied the class of almost rc-Lindelöf spaces which generalizes the class of rc-Lindelöf spaces in a natural way. A space (X, τ) is said to be almost rc-Lindelöf if every regular closed cover of X admits a countable subfamily the union of whose members is dense in (X, τ) .

Closely related to the notion of an S-closed space is the concept of an S-set [3]. A subset A of a space (X, τ) is called S-set if every cover of

Received June 21, 1993.

Karin Dlaska

A by regular closed sets in (X, τ) contains a finite subcover. S-sets have turned out to be useful in a variety of instances (see e.g. [2], [4], [9] and [15]).

In the present note the analogous concepts of rc-Lindelöf sets and almost rc-Lindelöf sets are introduced and investigated. We study some basic properties of (almost) rc-Lindelöf sets and explore the relationship between (almost) rc-Lindelöf sets and (almost) rc-Lindelöf subspaces.

For a subset A of a topological space (X, τ) we denote the closure of A and the interior of A by cl A and int A, respectively. The subspace topology on A is denoted by $\tau|A$. A subset G of (X, τ) is called regular open if $G = \operatorname{int} (\operatorname{cl} G)$. $F \subseteq X$ is said to be regular closed if X-F is regular open, or equivalently, if $F = \operatorname{cl} (\operatorname{int} F)$. The families of regular open subsets in (X, τ) and regular closed subsets in (X, τ) are denoted by $RO(X, \tau)$ and $RC(X, \tau)$, respectively. $RO(X, \tau)$ is a base for a coarser topology τ_s on X, called the semi-regularization topology on X. A subset G is called locally dense in (X, τ) if G is dense in an open set, or equivalently, if $G \subseteq$ int (cl G). In [14] Levine called a subset $V \subseteq X$ semiopen if there exists an open set $U \subseteq X$ such that $U \subseteq V \subseteq \operatorname{cl} U$. We will denote the set of natural numbers by ω and $\beta\omega$ is the Stone-Cech Compactification of ω .

2. Rc-Lindelöf sets and almost rc-Lindelöf sets

Definition. A subset A of a space (X, τ) is called an rc-Lindelöf set in (X, τ) (an almost rc-Lindelöf set in (X, τ) , respectively) if for every cover of A by regular closed sets in (X, τ) there exists a countable subfamily that covers A (there exists a countable subfamily the closure of the union of whose members contains A, respectively). Since every regular closed set is semiopen and the closure of a semiopen set is regular closed the following characterization of (almost) rc-Lindelöf sets is obvious.

Lemma 2.1. $A \subseteq X$ is an (almost) rc-Lindelöf set in (X, τ) if and only if every cover $\{V_i : i \in I\}$ of A by semiopen sets in (X, τ) admits a countable subset I_0 of I such that $A \subseteq \cup \{cl \ V_i : i \in I_0\}$ (such that $A \subseteq cl$ $(\cup \{V_i : i \in I_0\})$).

Due to the definitions, (X, τ) is an (almost) rc-Lindelöf space if and only if X is an (almost) rc-Lindelöf set in (X, τ) . Moreover, it is clear that every S-set is an rc-Lindelöf set, and every rc-Lindelöf set is an almost rc-Lindelöf set. The converses, however, are not true as the following example shows.

276

Example 2.2. Let R be the real line with the Euclidean topology. The set Q of all rationals is clearly an rc-Lindelöf set, but it is not an S-set. Furthermore, R is almost rc-Lindelöf [6], but it is not rc-Lindelöf [7].

Lemma 2.3. $A \subseteq X$ is an (almost) rc-Lindelöf set in (X, τ) if and only if A is an (almost) rc-Lindelöf set in (X, τ_s) .

Proof. This follows from the facts that $RC(X, \tau) = RC(X, \tau_s)$ and that for every union of regular closed sets the τ -closure coincides with the τ_s -closure.

Our next example exhibits that if $A \subseteq X$ is an (almost) rc-Lindelöf set in (X, τ) then the subspace $(A, \tau | A)$ is not necessarily an (almost) rc-Lindelöf space.

Example 2.4. Since $\beta\omega$ is S-closed [17] one easily checks that $\beta\omega - \omega$ is an S-set and thus both an rc-Lindelöf set and an almost rc-Lindelöf set in $\beta\omega$. But $\beta\omega - \omega$ is neither an rc-Lindelöf space [12] nor an almost rc-Lindelöf space [6].

In order to prove Theorem 2.6 and Theorem 2.8 the following Lemma will be very useful.

Lemma 2.5. If A is a locally dense set in (X, τ) then

$$RC(A,\tau|A) = \{F \cap A : F \in RC(X,\tau)\}.$$

Theorem 2.6. Let $A \subseteq X$ be locally dense in (X, τ) . Then A is an (almost) rc-Lindelöf set in (X, τ) if and only if $(A, \tau|A)$ is an (almost) rc-Lindelöf subspace.

Proof. (\Rightarrow) : Assume that A is an rc-Lindelöf set in (X, τ) and let $\{F_i : i \in I\}$ be a cover of A by regular closed sets in $(A, \tau|A)$. Then, by Lemma 2.5, for every $i \in I$ there exists $B_i \in RC(X, \tau)$ such that $F_i = B_i \cap A$. Since $\{B_i : i \in I\}$ is a cover of A there exists a countable subset I_0 of I such that $A \subseteq \bigcup \{B_i : i \in I_0\}$. Consequently, we have $A = \bigcup \{F_i : i \in I_0\}$ which proves that $(A, \tau|A)$ is an rc-Lindelöf subspace. In the case that A is an almost rc-Lindelöf set in (X, τ) the proof is analogous.

 (\Leftarrow) : Let $(A, \tau | A)$ be an rc-Lindelöf subspace and let $\{F_i : i \in I\}$ be a cover of A by regular closed sets in (X, τ) . By Lemma 2.5, $\{F_i \cap A : i \in I\}$ is a cover of A by regular closed sets in $(A, \tau | A)$ and thus there exists a countable subset I_0 of I such that $A = \bigcup \{F_i \cap A : i \in I_0\} \subseteq \bigcup \{F_i : i \in I_0\}$. This shows that A is an rc-Lindelöf set in (X, τ) . If we assume $(A, \tau | A)$ to be an almost rc-Lindelöf subspace then the proof is similar.

Karin Dlaska

Corollary 2.7. If $(A, \tau_s | A)$ is an open (almost) rc-Lindelöf subspace in (X, τ_s) then $(A, \tau_s | A)$ is an open (almost) rc-Lindelöf subspace in (X, τ) .

Theorem 2.8. Let A and B be subsets of a space (X, τ) such that $A \subseteq B \subseteq X$ and B is locally dense. Then A is an (almost) rc-Lindelöf set in $(B, \tau|B)$ if and only if A is an (almost) rc-Lindelöf set in (X, τ) .

Proof. We only consider the case that A is an rc-Lindelöf set. If A is an almost rc-Lindelöf set then the proof is similar.

 (\Rightarrow) : If $\{F_i : i \in I\}$ is a cover of A by regular closed sets in (X, τ) then A is clearly contained in the union of $\{F_i \cap B : i \in I\}$ and, by Lemma 2.5, $\{F_i \cap B : i \in I\} \subseteq RC(B, \tau|B)$. Thus there exists a countable subset I_0 of I such that $A \subseteq \bigcup \{F_i \cap B : i \in I_0\}$ and hence $A \subseteq \bigcup \{F_i : i \in I_0\}$. This shows that A is an rc-Lindelöf set in (X, τ) .

 (\Leftarrow) : Let $\{F_i : i \in I\} \subseteq RC(B, \tau|B)$ be a cover of A. By Lemma 2.5, for every $i \in I$ there exists $G_i \in RC(X, \tau)$ such that $F_i = G_i \cap B$. Obviously, $\{G_i : i \in I\}$ is a cover of A and thus we can find countably many G_i 's covering A. Consequently, A is contained in the union of countably many F_i 's.

Corollary 2.9. Let A and B be open sets of a space (X, τ) such that $A \subseteq B$. Then $(A, \tau | A)$ is an (almost) rc-Lindelöf subspace of $(B, \tau | B)$ if and only if $(A, \tau | A)$ is an (almost) rc-Lindelöf subspace of (X, τ) .

Theorem 2.10. If A is an (almost) rc-Lindelöf set in (X, τ) and $B \in RO(X, \tau)$ then $A \cap B$ is an (almost) rc-Lindelöf set in (X, τ) .

Proof. Suppose that A is an rc-Lindelöf set in (X, τ) and let $A \cap B \subseteq \bigcup \{F_i : i \in I\}$ where $F_i \in RC(X, \tau)$ for every $i \in I$. Then A is contained in $F = \bigcup \{F_i : i \in I\} \cup (X-B)$ and since $(X-B) \in RC(X, \tau)$ F is a regular closed cover of A. Thus there exists a countable subset I_0 of I such that $A \subseteq \bigcup \{F_i : i \in I_0\} \cup (X-B)$ and consequently $A \cap B \subseteq \bigcup \{F_i : i \in I_0\}$. In the case that A is an almost rc-Lindelöf set in (X, τ) the proof is analogous.

Recall that a subset $A \subseteq X$ is called θ -semiclosed [13] (θ -semiopen, respectively) if A is the intersection of regular open sets (the union of regular closed sets, respectively).

Remark 2.11. The proof of Theorem 2.10 reveals also that if A is an rc-Lindelöf set in (X, τ) and B is θ -semiclosed then $A \cap B$ is an rc-Lindelöf set in (X, τ) .

Rc-Lindelöf sets and almost rc-Lindelöf sets

Corollary 2.12. i) If (X, τ) is an (almost) rc-Lindelöf space then every regular open set is an (almost) rc-Lindelöf subspace;

ii) If (X, τ) is rc-Lindelöf then every θ -semiclosed subset is an rc-Lindelöf set;

iii) Let A be an (almost) rc-Lindelöf set in (X, τ) and $B \in RO(X, \tau)$. Then

1) $A \cap B$ is an (almost) rc-Lindelöf set in $(B, \tau | B)$;

2) B is an (almost) rc-Lindelöf set in (X, τ) if $B \subseteq A$;

3) int A is an (almost) rc-Lindelöf set in (X, τ) if A is closed;

iv) If $(A, \tau | A)$ is an open (almost) rc-Lindelöf subspace and $B \in RO(X, \tau)$ then $(A \cap B, \tau |_{A \cap B})$ is an (almost) rc-Lindelöf subspace.

Proof. i) follows from Theorem 2.6 and Theorem 2.10. To prove ii) apply Remark 2.11 and let A = X. iii) is a consequence of Theorem 2.8 and Theorem 2.10 and iv) follows from Theorem 2.6 and Theorem 2.10.

The next result is easily proved.

Proposition 2.13. The union of countably many (almost) rc-Lindelöf sets is an (almost) rc-Lindelöf set.

Theorem 2.14. If A is an almost rc-Lindelöf set in (X, τ) then cl A and int(clA) are almost rc-Lindelöf sets in (X, τ) .

Proof. If $F = \{F_i : i \in I\}$ is a regular closed cover of cl A then F is also a cover of A. Therefore there exists a countable subfamily I_0 of I such that $A \subseteq cl(\cup\{F_i : i \in I_0\})$ and thus cl $A \subseteq cl(\cup\{F_i : i \in I_0\})$. Since int (cl A) is regular open, by Theorem 2.10, int (cl A) is an almost rc-Lindelöf set in (X, τ) .

Remark 2.15. If A is an rc-Lindelöf set then cl A and int(cl A) are not necessarily rc-Lindelöf sets. For instance, consider the real line R endowed with the Euclidean topology. Then the set Q of all rationals is an rc-Lindelöf set in R, but cl Q and int (cl Q) are not rc-Lindelöf sets since R is not rc-Lindelöf [7].

As an immediate consequence of Theorem 2.6 and Theorem 2.14 we have

Corollary 2.16. If A is an almost rc-Lindelöf set and B = int(cl A) then $(B, \tau | B)$ is an almost rc-Lindelöf subspace.

To prove the next result note that if A is a semiopen subset in (X, τ) and $B \subseteq A$ is semiopen in $(A, \tau | A)$ then B is semiopen in (X, τ) .

Karin Dlaska

Theorem 2.17. Let A be a subset of space (X, τ) and let G = cl A. If A is an open almost rc-Lindelöf set in (X, τ) then $(G, \tau|G)$ is an almost rc-Lindelöf subspace.

Proof. Let $G = \bigcup \{V_i : i \in I\}$ where every V_i is semiopen in $(G, \tau | G)$. Since G is regular closed and thus semiopen in (X, τ) , every V_i is semiopen in (X, τ) . By Lemma 2.1, there exists a countable subfamily I_0 of I such that $A \subseteq cl(\bigcup \{V_i : i \in I_0\})$ and consequently we have $G = cl_G(\bigcup \{V_i : i \in I_0\})$. This shows that $(G, \tau | G)$ is an almost rc-Lindelöf subspace.

Remark 2.18. Note that Theorem 2.17 is not true if we replace "almost rc-Lindelöf" by "rc-Lindelöf". For example, consider Isbell's Ψ [10]. Then ω is an open, dense rc-Lindelöf set in Ψ , but cl ω is not rc-Lindelöf since Ψ is not rc-Lindelöf [6].

Recall that a space is said to satisfy the finite (countable) chain condition, abbreviated FCC (CCC), if every family of nonempty, pairwise disjoint open sets is finite (countable). In [4] it has been shown that a space satisfies FCC if and only if every subset is an S-set. The next result points out that spaces satisfying CCC may be characterized in terms of almost rc-Lindelöf sets.

Theorem 2.19. The following are equivalent:

- i) A space (X, τ) satisfies CCC;
- ii) Every open subset is an almost rc-Lindelöf set in (X, τ) ;
- iii) Every dense subset is an almost rc-Lindelöf set in (X, τ) .

Proof. Apply Proposition 2.8 in [6] and Theorem 2.6 and the result follows immediately.

In concluding this note recall that Ganster [8] has defined a space to be strongly s-regular if every open set is the union of regular closed sets (i.e. every open set is θ -semiopen). Furthermore, a space (X, τ) is called almost Lindelöf [16] if every open cover of X admits a countable subfamily the union of whose members is dense in (X, τ) . The following observation is easily proved.

Proposition 2.20. If a space is strongly s-regular then every rc-Lindelöf set is a Lindelöf subspace and every almost rc-Lindelöf set is an almost Lindelöf subspace.

References

- D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72(1978), 581-586.
- [2] R. F. Dickman, Jr. and R. L. Krystock, S-sets and s-perfect mappings, Proc. Amer. Math. Soc. 80(4) (1980), 687-692.
- G. Di Maio, S-closed spaces, S-sets and S-continuous functions, Atti della Accad. delle Sci. di Torino 118(1984), 125-134.
- [4] K. Dlaska and M. Ganster, S-sets and co-S-closed topologies, Indian J. Pure & Appl. Math. 23(10) (1992), 731-737.
- [5] K. Dlaska, N. Ergun and M. Ganster, Countably S-closed spaces, to appear.
- [6] K. Dlaska and M. Granster, Almost rc-Lindelöf spaces, submitted.
- M. Ganster and K. Dlaska, On the question of Jiang and Reilly, Q& A in General Topology 10(1992), 187-189.
- [8] M. Ganster, On strongly s-regular spaces, Glasnik Mat. 25(45) (1990), 195-201.
- [9] G. L. Garg and D. Sivaraj, On SC-compact spaces, Boll. U.M.I. (6) 3-B (1984), 321-332.
- [10] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton 1960.
- [11] R. A. Hermann, Rc-convergence, Proc. Amer. Math. Soc. 75(1979), 311-317.
- [12] D. Jankovic and Ch. Konstadilaki, On covering properties by regular closed sets, to appear.
- [13] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc. 80 (1980), 341-348.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [15] T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64(1978), 157-162.
- [16] C. M. Pareek, Some generalizations of Lindelöf spaces and hereditarily Lindelöf spaces, Q& A in General Topology 2 (1984), 131-143.
- [17] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60(1976), 335-338.

Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria.