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LITTLEWOOD-PALEY FUNCTIONS ON
GROUPS OF HOMOGENEOUS TYPE

Choon-Serk Suh and Yoon Jae Yoo

1. Introduction

Let G be a group of homogeneous type which is a more general setting
than R™. Then these groups form a natural habitat for extensions of
many of the objects studied in Euclidean harmonic analysis. In 1985, R.R.
Coifman, Y. Meyer and E.M. Stein [1] introduced the tent spaces on the
upper half-space R}+" which are well adapted for the study of a variety of
questions related to harmonic analysis and its applications. In this paper,
we will develop the theory of the tent spaces on G x (0, 00), which is an
analogue of the upper half-space R%*'. The purpose of this paper is to
show that there is a connection between the tent spaces T3 (G x (0,00))
and the atomic Hardy spaces HE,(G) for 0 < p < 1. To do this, we shall
consider the operator K(f) defined on T} (G x (0,00)) for 0 < p < oo, by

00 dt
£ = [ 10T,
which # is an appropriate Littlewood-Paley function defined on G.

2. Terminologies and notations

Let GG be a topological group endowed with a positive measure g on
GG. Assume that d is a pseudo-metric on G, i.e., a nonnegative function
defined on G x G satisfying

(i) d(z,) = 0; d(z,y) > 0 if = £y,

(i) d(z,y) = d(y,), and

Received September 1, 1993.

Revised November 30, 1993.
Partially supported by KOSEF, 1992.

199



200 Choon-Serk Suh and Yoon Jae Yoo

(i) d(z, z) < K[d(z,y) + d{y, z)], where K is some fixed constant.
Assume further that

(G1) for p > 0, the balls B(z,p) = {y € G : d(z,y) < p} form a
basis of open neighborhoods at € G, and that p satisfies the doubling
property

(G2) 0 < p[B(z,2p)] £ Au[B(z,p)] < oo, where A is some fixed
constant. Finally we assume that yu is left-invariant:

(G3) p(zE) = pu(F) for each z € G and any measurable set F C G,
and

(G4) p(E7') = p(E),

(G3) d is left-invariant:
Then the triple (G,d,u) is called a group of homogeneous type. Let
(G,d,p) be a group of homogeneous type. Then, for p > 0, an auto-
morphism é, of G which is called a dilation on G is assumed to satisfy

(2.1) w[6,(E)] = p"pu(E)

for some fixed positive integer n and any measurable set £ C G.
It is known that d is left-invariant if and only if

d(may) = |:C_1y|.,

where | - | is a nonnegative function on G satisfying
(i) |z] = 0 if and only if z = e,
(1) |zy| < K(|z| + |y|), where K is some fixed constant, and
(i) |+~ = Jz].
For details see [3].
For z,y € G, and p > 0, the set

B(z,p) ={y € G: |7 'y| < p}

is called the ball centered at z € G with a radius p. Now consider the
space (G x (0,00),which is called the upper half-space over G. For any
a > 0, and z € (G, the set

Lo(z) = {(y,t) € x(0,00) : |z71y| < at}.

is called the cone of aperture a whose vertex is z € G. For simplicity, we
put I'(z) = I'y(z).

For any closed subset F C G, and any o > 0, let R()(F) = U erl ().
For simplicity, we put R(F) = RM(F). Let O be an open subset of G
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which is the complement of F', O = F¢. Then the tent over O, denoted
by T(0), is given as T(0) = R(F)°.

For a function f defined on G x (0, o0), we define a functional A(f),
for z € G, by

dul(y
AN =1 1f.0F Hylfpn

Then the tent space T3 (G x (0,00)) is defined as the space of functions
f on G x (0,00), so that A(f) € LP(du) when 0 < p < oo. Define
[fllzz = [lA(f)|lp- The fundamental principle is that these spaces have
an atomic decomposition. Here we will deal with T3 (G x (0,00)) for
0 < p < 1. A function a(z,t) defined on G x (0,00) is said to be a
T7-atom if

(1) a(z,t) is supported in the tent T(B) for some ball B in (7, and

() { iy oy (P22 < (B,

Note that the constant C' will be used without any explicit explanation
throughout this paper.

Lemma 1 ([8]). There exists a constant C so that if f € T3(G x (0,00)) for
0 < p <1, then there exist a sequence {a;} of T%-atoms, and a sequence
{Aj} of positive numbers such that

<3 Naj(x,t), and ZA’“ < CllAAII-
i=1

j=1

We are now going to introduce the atomic Hardy spaces associated
with a group of homogeneous type G. For0 < p< ¢, p<1<¢< 0, a
function a(z) defined on G is said to be a H}-atom if

(1) a(z) is supported in some ball B in G,

) {25y Ja lawdu(x)}”" < B if g < 0, o llalle <
[u(B))"17 if ¢ =

(i) fy a(z)du(a) = 0.

In the present setting we introduce an appropriate space of linear func-
tionals in order to define the atomic Hardy spaces. In order to do this, we
introduce the Lipschitz spaces L,(G), a > 0, consisting of those functions
[ on G for which

() — I(y)| < Clu(B)),

where B is any ball containing both z and y and C depends only on .
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We now define the space HL'(G) for 0 < p < 1 < ¢ < oo, to be the
subspace of the dual £3(G) of L,(G), where @ = 1/p — 1, consisting of
those linear functionals A which admit an atomic decomposition

h = i )‘iai’
=
PR

where the a;’s are HY -atoms, the A;’s are positive numbers, and 332, A
oo. The infimum of Dy A” taken over all such decompositions of h is
denoted by ||h|p;s. The.n R.R. Coifman and G. Weiss [4] show that
H??(G) = HY™(G) whenever 0 < p < ¢ < co. This enables us to define
the atomic Hardy space H.,(G) for 0 < p < 1, to be any one of the spaces
H(G)for0<p<g<oo,1<yq.

A function ¥ defined on G is said to be a Littlewood-Paley function
provided it satisfies the following properties:

(2.2 a) ¥ has a compact support in the unit ball,

(2.2 b) [¥(z)] < C(1 + |z])~"**) for some a > 0,

(2.2 ¢) [ |¥(zy) — ¥(z)|du(z) < Cly|” for all y in G and some v > 0,
and

(22 d) f ¥(2)du(z) = 0.

For t > 0, we define ¢, by

. . o0
d’t = t_nl}{/‘ o 61/17 Le. , %bt(-??) =1 d’(;)

Let f and g be measurable functions defined on G. Then the convolution
f*gof fand g is defined by

frglz)= ff(y Vg(y ™" z)dp(y ff (zy~")g(y)dp(y)

for all = such that the integral exists. For ¥ as in (2.2), we consider the

operator K(f) defined on T; (G x (0,00)) for 0 < p < o0, by

(23) KU) = [ renens

3. Main results

Lemma 2. Suppose 1 < p < oc. Let f € T3 (G x (0,00)) and g €
T3 (G x (0,00)), with 1/p+1/p' = 1. Then we have

du(y)d |
/Gmm) lf(y,t)g(yi)li(?—{ <c;! /GA(f)(a:)A(g)(x)du(x)’
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where C,, is the volume of the unit ball.

Proof. Suppose 1 < p < co. Let f € T3 (G x (0,00)) and g € T{I(G X
(0,00)), with 1/p+ 1/p' = 1. Then it follows from Schwarz’s inequality
that

dp(y)dt
[ 10,00t/ 20

du(y)d
= o [1f, o Xeua@1 000 0D d(z)

ozt [, w05t 0152

¢ [ AN Alg)(@)du(),

where C, is the volume of the unit ball, and xp(y, is the characteristic
function of the ball B(y,t) of radius t centered at y. Thus

du(y)dt
t

Lo 0000, 0 EEZ < 1 [ () o) @i,

which completes the proof.
Theorem 3. Let | < p < oo. Then the operator K, defined as (2.3), can
be extended to a bounded linear operator from T3 (G x (0,00)) to LP(dp).

Proof. Let f € T}(G x (0,00)) for 1 < p < co. Then it suffices to bound

Je K(f)(z)g(x)du(z) for g € L¥(du), where 1/p 4 1/p' = 1. Let §(z,t) =
g * Y(z), with ¥,(z) = (z71/t)t™". Then, by Holder’s inequality, it

readily follows from Lemma 2 that

du(y)d
(3.1) |/G}C(f)(1?]g(;r)du(:r)[ < /wam) [f(y,)g(y, 1) #(i;) t

¢! [ AD@)AG) @)du(a)
< CINAMDILIAG

where C,, is the volume of the unit ball. Now it is true that, with slight
modifications of [6, Ch.3], we have ||A(§)||,» < C||g||,s for some constant
C. Therefore the last side of (3.1) is less than C||f||zz||g][,». Thus

l]G’C(f)(&f)y(I)du(r)l < Clifllzzliglly
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for some constant C, and [[K(f)||, < C||f|zz, which completes the proof.

Theorem 4. Let 0 < p < 1. Then the operator K(f), defined as (2.3), can
be extended to a bounded linear operator from T3 (G x (0,00)) to HEY(G).
Proof. Let f € T3(G x (0,00)) for 0 < p < 1. Then by Lemma 1, f can
be written as .
|f($?t)| S Z)\jaj(‘rrat)a

=1
where the a;’s are T} -atoms, the A;’s are positive numbers, and Y et )\? <
CllA(f)|[P. Thus it suffices to show that K(a) maps a T7-atom to a
bounded multiple of an H}-atom for 0 < p < 1. Let a(z,t) be such a
T3 -atom, associated to the ball B. Then a(x,t) is supported in T(B).
Since ¥ is supported in the unit ball, it follows from the definition of
that (a) i1s supported in the ball B* having the same center as B, but

twice the radius. Moreover, by the proof of Theorem 3,
| K@Pdu(z) < Cllal
du(y)dt

= ¢ lalw.nPTEEE
< Clu(B).

Finally, X(a) satisfies

[ K(@)e)du(z) =0,

since [ ¢¥(z)dp(x) = 0. The proof is therefore completed.
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