LITTLEWOOD-PALEY FUNCTIONS ON GROUPS OF HOMOGENEOUS TYPE

Choon-Serk Suh and Yoon Jae Yoo

1. Introduction

Let G be a group of homogeneous type which is a more general setting than R^n . Then these groups form a natural habitat for extensions of many of the objects studied in Euclidean harmonic analysis. In 1985, R.R. Coifman, Y. Meyer and E.M. Stein [1] introduced the tent spaces on the upper half-space R_+^{n+1} which are well adapted for the study of a variety of questions related to harmonic analysis and its applications. In this paper, we will develop the theory of the tent spaces on $G \times (0, \infty)$, which is an analogue of the upper half-space R_+^{n+1} . The purpose of this paper is to show that there is a connection between the tent spaces $T_2^p(G \times (0, \infty))$ and the atomic Hardy spaces $H_{at}^p(G)$ for $0 . To do this, we shall consider the operator <math>\mathcal{K}(f)$ defined on $T_2^p(G \times (0, \infty))$ for 0 , by

$$\mathcal{K}(f) = \int_0^\infty f(\,\cdot\,,t) * \psi_t \frac{dt}{t},$$

which ψ is an appropriate Littlewood-Paley function defined on G.

2. Terminologies and notations

Let G be a topological group endowed with a positive measure μ on G. Assume that d is a pseudo-metric on G, i.e., a nonnegative function defined on $G \times G$ satisfying

(i)
$$d(x, x) = 0$$
; $d(x, y) > 0$ if $x \neq y$,

(ii)
$$d(x,y) = d(y,x)$$
, and

Received September 1, 1993.

Revised November 30, 1993.

Partially supported by KOSEF, 1992.

- (iii) $d(x, z) \le K[d(x, y) + d(y, z)]$, where K is some fixed constant. Assume further that
- (G1) for $\rho > 0$, the balls $B(x, \rho) = \{y \in G : d(x, y) < \rho\}$ form a basis of open neighborhoods at $x \in G$, and that μ satisfies the doubling property
- (G2) $0 < \mu[B(x,2\rho)] \le A\mu[B(x,\rho)] < \infty$, where A is some fixed constant. Finally we assume that μ is left-invariant:
- (G3) $\mu(xE) = \mu(E)$ for each $x \in G$ and any measurable set $E \subset G$, and
 - (G4) $\mu(E^{-1}) = \mu(E)$,
 - (G5) d is left-invariant:

Then the triple (G, d, μ) is called a group of homogeneous type. Let (G, d, μ) be a group of homogeneous type. Then, for $\rho > 0$, an automorphism δ_{ρ} of G which is called a dilation on G is assumed to satisfy

$$\mu[\delta_{\rho}(E)] = \rho^{n}\mu(E)$$

for some fixed positive integer n and any measurable set $E \subset G$.

It is known that d is left-invariant if and only if

$$d(x,y) = |x^{-1}y|,$$

where $|\cdot|$ is a nonnegative function on G satisfying

- (i) |x| = 0 if and only if x = e,
- (ii) $|xy| \leq K(|x| + |y|)$, where K is some fixed constant, and
- (iii) $|x^{-1}| = |x|$.

For details see [5].

For $x, y \in G$, and $\rho > 0$, the set

$$B(x,\rho) = \{ y \in G : |x^{-1}y| < \rho \}$$

is called the *ball* centered at $x \in G$ with a radius ρ . Now consider the space $G \times (0, \infty)$, which is called the *upper half-space* over G. For any $\alpha > 0$, and $x \in G$, the set

$$\Gamma_{\alpha}(x) = \{(y, t) \in \times (0, \infty) : |x^{-1}y| < \alpha t\}.$$

is called the *cone* of aperture α whose vertex is $x \in G$. For simplicity, we put $\Gamma(x) = \Gamma_1(x)$.

For any closed subset $F \subset G$, and any $\alpha > 0$, let $\mathcal{R}^{(\alpha)}(F) = \bigcup_{x \in F} \Gamma_{\alpha}(x)$. For simplicity, we put $\mathcal{R}(F) = \mathcal{R}^{(1)}(F)$. Let O be an open subset of G which is the complement of F, $O = F^{\circ}$. Then the tent over O, denoted by T(O), is given as $T(O) = \mathcal{R}(F)^c$.

For a function f defined on $G \times (0, \infty)$, we define a functional $\mathcal{A}(f)$, for $x \in G$, by

$$\mathcal{A}(f)(x) = \left[\int_{\Gamma(x)} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{n+1}} \right]^{1/2}.$$

Then the tent space $T_2^p(G\times(0,\infty))$ is defined as the space of functions f on $G \times (0, \infty)$, so that $\mathcal{A}(f) \in L^p(d\mu)$ when 0 . Define $||f||_{T_p^p} = ||\mathcal{A}(f)||_p$. The fundamental principle is that these spaces have an atomic decomposition. Here we will deal with $T_2^p(G\times(0,\infty))$ for 0 . A function <math>a(x,t) defined on $G \times (0,\infty)$ is said to be a T_2^p -atom if

(i) a(x,t) is supported in the tent T(B) for some ball B in G, and

(ii)
$$\left\{\frac{1}{u(B)}\int_{T(B)} |a(x,t)|^2 \frac{d\mu(x)dt}{t}\right\}^{1/2} \leq [\mu(B)]^{-1/p}$$
.

(ii) $\left\{\frac{1}{\mu(B)}\int_{T(B)}|a(x,t)|^2\frac{d\mu(x)dt}{t}\right\}^{1/2} \leq [\mu(B)]^{-1/p}$. Note that the constant C will be used without any explicit explanation throughout this paper.

Lemma 1 ([8]). There exists a constant C so that if $f \in T_2^p(G \times (0, \infty))$ for $0 , then there exist a sequence <math>\{a_j\}$ of T_2^p -atoms, and a sequence $\{\lambda_i\}$ of positive numbers such that

$$|f(x,t)| \leq \sum_{j=1}^{\infty} \lambda_j a_j(x,t), \text{ and } \sum_{j=1}^{\infty} \lambda_j^p \leq C||\mathcal{A}(f)||_p^p.$$

We are now going to introduce the atomic Hardy spaces associated with a group of homogeneous type G. For 0 , afunction a(x) defined on G is said to be a H_a^p -atom if

(i) a(x) is supported in some ball B in G,

(ii) $\left\{\frac{1}{\mu(B)}\int_{B}|a(x)|^{q}d\mu(x)\right\}^{1/q} \leq [\mu(B)]^{-1/p} \text{ if } q < \infty, \text{ or } ||a||_{\infty} \leq$ $[\mu(B)]^{-1/p}$ if $q=\infty$.

(iii) $\int_G a(x)d\mu(x) = 0$.

In the present setting we introduce an appropriate space of linear functionals in order to define the atomic Hardy spaces. In order to do this, we introduce the Lipschitz spaces $\mathcal{L}_{\alpha}(G)$, $\alpha > 0$, consisting of those functions l on G for which

$$|l(x) - l(y)| \le C[\mu(B)]^{\alpha},$$

where B is any ball containing both x and y and C depends only on l.

We now define the space $H_{at}^{p,q}(G)$ for $0 , to be the subspace of the dual <math>\mathcal{L}_{\alpha}^{*}(G)$ of $\mathcal{L}_{\alpha}(G)$, where $\alpha = 1/p - 1$, consisting of those linear functionals h which admit an atomic decomposition

$$h = \sum_{j=1}^{\infty} \lambda_j a_j,$$

where the a_j 's are H_q^p -atoms, the λ_j 's are positive numbers, and $\sum_{j=1}^{\infty} \lambda_j^p < \infty$. The infimum of $\sum_{j=1}^{\infty} \lambda_j^p$ taken over all such decompositions of h is denoted by $||h||_{H_{at}^{p,q}}$. Then R.R. Coifman and G. Weiss [4] show that $H_{at}^{p,q}(G) = H_{at}^{p,\infty}(G)$ whenever $0 . This enables us to define the atomic Hardy space <math>H_{at}^p(G)$ for $0 , to be any one of the spaces <math>H_{at}^{p,q}(G)$ for $0 , <math>1 \le q$.

A function ψ defined on G is said to be a *Littlewood-Paley function* provided it satisfies the following properties:

(2.2 a) ψ has a compact support in the unit ball,

(2.2 b) $|\psi(x)| \le C(1+|x|)^{-(n+\alpha)}$ for some $\alpha > 0$,

(2.2 c) $\int_G |\psi(xy) - \psi(x)| d\mu(x) \le C|y|^{\gamma}$ for all y in G and some $\gamma > 0$, and

(2.2 d) $\int_G \psi(x) d\mu(x) = 0$.

For t > 0, we define ψ_t by

$$\psi_t = t^{-n} \psi \circ \delta_{1/t}$$
, i.e., $\psi_t(x) = t^{-n} \psi(\frac{x}{t})$.

Let f and g be measurable functions defined on G. Then the *convolution* f * g of f and g is defined by

$$f*g(x) = \int_G f(y)g(y^{-1}x)d\mu(y) = \int_G f(xy^{-1})g(y)d\mu(y)$$

for all x such that the integral exists. For ψ as in (2.2), we consider the operator $\mathcal{K}(f)$ defined on $T_2^p(G \times (0,\infty))$ for 0 , by

(2.3)
$$K(f) = \int_{0}^{\infty} f(\cdot, t) * \psi_{t} \frac{dt}{t}.$$

3. Main results

Lemma 2. Suppose $1 . Let <math>f \in T_2^p(G \times (0, \infty))$ and $g \in T_2^{p'}(G \times (0, \infty))$, with 1/p + 1/p' = 1. Then we have

$$\int_{G\times(0,\infty)} |f(y,t)g(y,t)| \frac{d\mu(y)dt}{t} \le C_n^{-1} \int_G \mathcal{A}(f)(x) \mathcal{A}(g)(x) d\mu(x),$$

where C_n is the volume of the unit ball.

Proof. Suppose $1 . Let <math>f \in T_2^p(G \times (0, \infty))$ and $g \in T_2^{p'}(G \times (0, \infty))$, with 1/p + 1/p' = 1. Then it follows from Schwarz's inequality that

$$\begin{split} & \int_{G\times(0,\infty)} |f(y,t)g(y,t)| \frac{d\mu(y)dt}{t} \\ & = C_n^{-1} \int_G [\int_{G\times(0,\infty)} \chi_{B(y,t)}(x) |f(y,t)g(y,t)| \frac{d\mu(y)dt}{t^{n+1}}] d\mu(x) \\ & = C_n^{-1} \int_G [\int_{\Gamma(x)} |f(y,t)g(y,t)| \frac{d\mu(y)dt}{t^{n+1}}] d\mu(x) \\ & = C_n^{-1} \int_G \mathcal{A}(f)(x) \mathcal{A}(g)(x) d\mu(x), \end{split}$$

where C_n is the volume of the unit ball, and $\chi_{B(y,t)}$ is the characteristic function of the ball B(y,t) of radius t centered at y. Thus

$$\int_{G\times(0,\infty)} |f(y,t)g(y,t)| \frac{d\mu(y)dt}{t} \leq C_n^{-1} \int_G \mathcal{A}(f)(x) \mathcal{A}(g)(x) d\mu(x),$$

which completes the proof.

Theorem 3. Let 1 . Then the operator <math>K, defined as (2.3), can be extended to a bounded linear operator from $T_2^p(G \times (0,\infty))$ to $L^p(d\mu)$. Proof. Let $f \in T_2^p(G \times (0,\infty))$ for $1 . Then it suffices to bound <math>\int_G K(f)(x)g(x)d\mu(x)$ for $g \in L^{p'}(d\mu)$, where 1/p + 1/p' = 1. Let $\tilde{g}(x,t) = g * \tilde{\psi}_t(x)$, with $\tilde{\psi}_t(x) = \psi(x^{-1}/t)t^{-n}$. Then, by Hölder's inequality, it readily follows from Lemma 2 that

$$(3.1) \quad \left| \int_{G} \mathcal{K}(f)(x)g(x)d\mu(x) \right| \leq \int_{G\times(0,\infty)} \left| f(y,t)\tilde{g}(y,t) \right| \frac{d\mu(y)dt}{t}$$

$$\leq C_{n}^{-1} \int_{G} \mathcal{A}(f)(x)\mathcal{A}(\tilde{g})(x)d\mu(x)$$

$$\leq C_{n}^{-1} ||\mathcal{A}(f)||_{p} ||\mathcal{A}(\tilde{g})||_{p'},$$

where C_n is the volume of the unit ball. Now it is true that, with slight modifications of [6, Ch.3], we have $||\mathcal{A}(\tilde{g})||_{p'} \leq C||g||_{p'}$ for some constant C. Therefore the last side of (3.1) is less than $C||f||_{T_2^p}||g||_{p'}$. Thus

$$\left| \int_{C} \mathcal{K}(f)(x)g(x)d\mu(x) \right| \le C||f||_{T_{2}^{p}}||g||_{p'}$$

for some constant C, and $||\mathcal{K}(f)||_p \leq C||f||_{T_2^p}$, which completes the proof.

Theorem 4. Let $0 . Then the operator <math>\mathcal{K}(f)$, defined as (2.3), can be extended to a bounded linear operator from $T_2^p(G \times (0,\infty))$ to $H_{at}^p(G)$. Proof. Let $f \in T_2^p(G \times (0,\infty))$ for 0 . Then by Lemma 1, <math>f can be written as

$$|f(x,t)| \le \sum_{j=1}^{\infty} \lambda_j a_j(x,t),$$

where the a_j 's are T_2^p -atoms, the λ_j 's are positive numbers, and $\sum_{j=1}^{\infty} \lambda_j^p \leq C||\mathcal{A}(f)||_p^p$. Thus it suffices to show that $\mathcal{K}(a)$ maps a T_2^p -atom to a bounded multiple of an H_2^p -atom for 0 . Let <math>a(x,t) be such a T_2^p -atom, associated to the ball B. Then a(x,t) is supported in T(B). Since ψ is supported in the unit ball, it follows from the definition of \mathcal{K} that $\mathcal{K}(a)$ is supported in the ball B^* having the same center as B, but twice the radius. Moreover, by the proof of Theorem 3,

$$\int_{G} |\mathcal{K}(a)|^{2} d\mu(x) \leq C||a||_{T_{2}^{2}}^{2}$$

$$= C \int_{T(B)} |a(y,t)|^{2} \frac{d\mu(y)dt}{t}$$

$$\leq C[\mu(B)]^{1-2/p}.$$

Finally, $\mathcal{K}(a)$ satisfies

$$\int_{C} \mathcal{K}(a)(x)d\mu(x) = 0,$$

since $\int_G \psi(x) d\mu(x) = 0$. The proof is therefore completed.

References

- R. R. Coifman, Y. Meyer and E.M. Stein, Some new function spaces and their applications to harmonic analysis, J. Func. Anal. Vol.62 (1985), 304-355.
- [2] ____, Un nouvel espace fonctionnel adapté a l'étude des opératéurs définis par des intégrales singulières, Proc. Conf. on Harmonic Analysis, Cortona, Lecture Notes in Math., Vol. 992, 1-15, Springer-Verlag, Berlin and New York, 1983.
- [3] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math., Vol. 242, Springer-Verlag, Berlin, 1971.

- [4] ____, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. Vol. 83 (1977), 569-645.
- [5] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press and Univ. of Tokyo Press, Princeton, New Jersey, 1982.
- [6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
- [7] J. Suerio, On maximal functions and Poisson-Szegő integrals, Trans. Amer. Math. Soc. Vol. 298 (1986), 653-669.
- [8] C. S. Suh, A decomposition for the tent spaces $T_2^p(G \times (0, \infty))$, preprint.

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA.