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ON THE BEST APPROXIMATION BY
RATIONAL FUNCTIONS WITH FIXED POLES
IN H(p > 1,9 > 1) SPACES

Xing Fuchong and Jin Yuanze

If a function f(z) is analytic in the unit disc |z] < 1 and satisfies the

condition
/] )92 f(2)|Pdor, < +oo
E: I<1

for parameters p and ¢, where z = = + 1y, do, = dzdy, we say that the
function f(z) belongs to H} spaces. The condition ¢ > 1 is needed, so
that constant-functions f(z) = C belong to HY spaces.

Suppose

W =1f [, 0=t epde]F.

It is easy to prove that HY spaces are Banach spaces if p > 1 and ¢ > 1,
but Frechet spaces if 0 < p <1 and ¢ > 1.

In [1], Charles K. Chui and Xie-chang Shen gave a formula expressing
the function in H? spaces. In [2] and [3], we proved the theorems about
the estimation of the order of the best approximation by polynomials in
H¥(p > 1,q > 1) spaces and their inverse theorems. In [4] and [5], we
made a research on or studied the Hardy-Littlewood-type theorems and
the best approximation by polynomials in H?(0 < p < 1,¢ > 1) spaces.
In this paper, we are going to make a research on the estimation of the
order of the best approximation by rational functions with fixed poles in
HY spaces for parameters p > 1 and ¢ > 1.

Let Z = {z1,22,-+,2,} be a finite sequence of (possibly repeated)
points in the extended complex plane, |z;| > 1(k =1,2,---,n). By R(z)
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we denote the class of rational functions with poles among the points
occuring in Z and of a maximal multiplicity equal to the number of repe-
titions. Hence r(z) € R(Z) if and only if

r(z) = P(z) [[ (== ¢)"
(=2

where P(z) is a polynomial of degree at most n if Z = {z:}7_,. If { = oo,
then (z — ¢)~! is interpreted as 1.

Let p(f, z) be the best approximation error of the function f(z) by the
functions of R(Z) class in HY spaces:

p(f,z)=_ inf {||f(z) —r(2)I]}-

r(z)ER(2Z)
Denoting
h 1
A= 1l =7—
;2 ( | zkl)

noting the result of [2], and using the methods of [6] and [7], we can obtain
the following main result of this paper:

Theorem. For any function f(z) € H)(p = 1,9 > 1) we have

o2 < A [P gty oot

where w(t, f) if the integral modulus of the function f(z) in the sense of
HY space:

w(t, f) = ;?g{llf(z + h) — f(2)|},

and A; is a constant independent of A and f, C is a constant independent
of A.

It is easy to see that the result of [7] is a particular condition of the
result of this paper.

In order to prove the Theorem of this paper, we need introduce two
lemmas first.

Lemma 1. Suppose a function Q(z) is analytic in the unit disc |zg| < -%
then we have the inequality

Q)P < T QeoI?



On the best approximation by rational functions 139

for p >0, ¢ > 1, in which s = max{2,¢}.

Proof. As Q(z) is analytic in the unit disc we have

27 2r .
| Q)P < [T 1Q(0 + re) o 1)
for p>0and r <1 — |z

Multiplying two sides of (1) by rdr and integrating them from 0 to
1(1 — |20), we have

rlQ(z0) P(—— 2 IZO| .//Iz—zok TR &

Then, if ¢ < 2, we can obtain

QG = [f (- l)QE) e

1+|20| =210(2)|Pdo
> [ /IZ_ZGK%U_M — (=222 Q(2) Pd

> (3%“‘”)*-’-(1—‘2'—‘2'“-')*-w|@(z0>|’>

L= ol yo o ) .

> 7

Noticing that for |z| < % we have

ey =y, s = max{e,2)

( 2 T4

so we have 55
Q)P < TR,

when p > 0,9 > 2.
If 1 < g <2, using (2) to |z| < 3 we have directly

1, 2 . yres
;(1 — ]2’0|) //|2—20|<%(1—|ZOI)IQ( )

4° - ,,
;‘//Iz—zoK%(l—lzoI)(l = (121" |Q(2) Pdo
Ll

1Q(z0)]" <

IA

IN
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The proof is complete.

Lemma 2. If a function g(z) is analytic and bounded by M in a closed
disc |z| < T, where T > 1, we have

plg,Z) < (q

forp>1, and g > 1.
Proof. We know that the rational function with poles {( € Z and interpo-
lating g(z) at -lc- can be expressed by (see [8])

T(Z) - %[M:T)l B B(.’.‘-’) w —

1 M] 9w ,

?

It is easy to see that r(z) € R(Z) and that

g9(z) = r(z) = 5=

L B g,
27t Jwi=T>1 B(z) w—=z

Hence, the extended Minkowski’s inequality gives

plg,Z)

<

<

IA

llg(=) — r(2)ll

?

|zl < 1.

2| < 1.

g( Te'

{.//!zkl(l B |2|2)q_2[§1§ fo% IB.(quj;w) ' Teiw —

1 fon 2vq-2 B(Te*¥) ) Tg(Te')
2_11' 0 [//|:;|<‘.1(1 —lz| ) l B(z) Tew — =

1 21r- ; o
= | TIBTE) - 1g(Te¥))

.{«[./|2|<1(1 — |=)*?(|1B(2)] - |Te™ — z|]'pdgz}%dgp
M T

m

1 m .
- B(T ) d.
or T-1 g=1” -/0 |B(Te™)|dy

From [7] we know that

T-1
< exp(— -
|B(w)| < exp( T_l_lz\), gl =T » L,
Combining (3) with (4) gives
M 4 r
Po.2) < ooy (T
M 1 MT T=1
= ) exp(——=—=4)

) \rdglPdo. )}
&

|pdaz]l?dtp

(3)
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The proof of Lemma 2 is completed.

To prove the Theorem of this paper, we will use the following simple
fact: If Pn(z) is a polynomial of degree at most N and Px(z) satisfies the
inequality

|Pv(2)| < L, if|z|=r,

then it satisfies the inequality

|Pv(2)| < RNL, if |2| = Rr > r.

B(z) =[] F—6

ez 1 - (z

Proof of the Theorem of this paper: In [2] we have already proved that for
any function f(z) € H?(p > 1,4 > 1) and any natural number N there
exists a polynomial Py(z) of degree at most N statisfying the inequality

bl

1) = Pua)l < 4e
where A; 1s a constant independent of N and f. Thus we have

p(f,Z) < |if(Z) Pn(2)|| + p(Pn, Z)
< Az/O (tt Dt + o(Py, 2).

It is evident that we can suppose Py(z) satisfies the condition

[Pn ()] = [LF ()] < [1£(2) = Pa2)]l < 1 £(2) = O] = [l f(2)]]-
Hence we have
| Pn ()]l < 2|1 F(2)|-

From Lemma 1 for |z| < 3 we can obtain

43

Pu()l < (S)F - IPw) < (5

) - 2| £(2)]]-

in which s = max{2, ¢}. Furthermore, we can obtain

()l < @D)Y - (59} -2 (2]
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for |z2| =2T -1 =T > 1. Using Lemma 2, we have

-

pP,2) € (DY (5 2

T T-1
—— ——
717
4* .3 T—-1
- ) A gt .
+Nlog 2T).

Particularly, taking T = 3, N = [2] 4+ 1, we find that

4° 3 A
17 eI —exp(——A+ - log 6 + log 6)

43

=

p(Pn.Z) < (

A8 - expl )

Noting % < 1—;) in this moment, we have

bt f) % w(t,f)
AZ/D & = AZ/[; 2ol

; =

— Az./j Mdt
0 t

< 10/42/7@&
0 i

Finally, taking A; = 104,, C = (qfl

we can obtain the desired inequality

x w(t, f)
l

)7 -18||f(2)]| in which s = max{2, ¢},

plf2] < Al/o dt + Ce™ 10

where A; is a constant independent of A and f, (' is a constant independent,
of A
The proof is complete.
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