
Kyungpook MathematicaJ J ournaJ 

Vol.34 , No.1 ‘ 127-1 35, June 1991 

A COMPARISON OF TOPOLOGIES ON FREE 
GROUPS 

Bradd Cla rk and Victor Schneider 

1. Introduction 

Let F( X) denote algebraically’ the free group generated by the points 
of the set X - {p} where (X ,p) is a pointed topological spaces, and let 
inc : (X , p) • (F(X) , e) be a map of pairs that includes X into F(X) 
with e the identity element of F(X) . In 1948, Graev [5] developed the 
concept of a free topological group by endowing F(X ) wi th the finest 
group topology making the map inc a continuous function . This topology 
is called the Graev topology. 

Obviously the Graev topology exists . Describing this topology in con­
certe terms is i n general a d i田cult matter. Ordman [8] described a topol­
ogy on F(X ) whích is the Graev topology whenever X is a kw-space. 
However this topology 、‘r ill not be the Graev topology in genera l. As an 
example, it is pointed out in [4] that Ordman’s topology is different from 
the Graev topology when X is homeomorphic to the rationals 

Joiner [7] descríbed a topology which agrees with the Graev topology 
。n various subsets of F(X) . Yet this topology is known to, in general, not 
be a description of the Graev topology. In [9] a very complete descript ion 
of final topologies on groups is given. While this answer is complete, it 
suffers by giving a neighborhood filter description when appliecl to the 
Graev question as opposecl to a bas is of open sets. More recently, t he 
authors [2] described a methocl for constructing the Graev topology. 

The purpose of th is paper is to compare the tractible topologies cle­
scribecl by Orclman , Joiner, ancl the authors on F(X) ancl to see which 
comes closet to describing t he Graev topology. In order to accomplish 
this, we wi ll need to discuss the concept of a semicontinuous group , or 
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what Fuchs [6J caUs a semitopological group . We shall also obtain a new 
invariant for pointed topological spaces. 

We defìne the fo llowing notations. lf G is a group and t some topology 
。n G, let (Gn, tn) denote the Cartesian product of η copies of G, 써th 

the prod uct topology generated by placing the topology t on each copy 
of G. Let m n : Gn • G denote the map defined by mn(XI' X2 , . . . , Xn) = 

X1X2 ... X’‘ We also declare m = m2 
There is a natu ral embedd ing of (G’‘,tn) into (Gn+l , tn+1) by mapping 

(Xl1 X2)" ‘ ,Xn) E Gn to (X"X2 , “ ., xn,e)EGn+l . We “riU denote the 
group U풍1 Gn = G∞. If the prod uct topology tn is placed on Gn 드 G∞ 
and the topology coherent with these subspaces is placed on G∞， we shall 
denote the resul ti ng topology as t∞ Finally we define m∞(X) = mn(x) if 
X E Gn 드 G∞‘ 

The quot ient topology generated on G by the map m : (G2 , t 2
) • G is 

denoted as q( t). This “ process'’ can be repeated . Let qa+l(t) = q(q,,(t )) 
for successor ordinals and qβ ( t) = n，， <β q,, (t ) for limit ordinals 

2 . Semicontinuous Groups 

A topology 5 on G is said to be semicontinuous if and only if inversion 
from (G ,5) to (G ,5) is continuous and m (G2,52) • (G,5) is con­
tinuous in each variable separately. Clay [1 J has shown that if (G, 5) is 
semicontinuous then (G , q(5)) is also semicontinuous. She has also shown 
that an arbitrary product of semicontinuous groups is a semicontinuous 
groll p and that the multiplication map m (G2,5 2) • (G ,q(5)) is an 
open map. 

If t is a topology on G we willlet 5(t) denote the fìnest semicontinuous 
topology on G contained in t and g(t ) denote the finest group topology on 
G contained in t . For any topology t on G we can define t-1 = {UIU - 1 E 
t} ‘ Clearly 5(t) = 5(t n r 1

) and g(t ) = g(t n r 1). Since inversion is 
continuolls on (G , t n t- 1

) we will without loss of generality assume for t he 
rest of this paper t hat t = t n r 1. 

The description of g(t) can be viewed as a generalization of t he Graev 
qllest ion. The descri ption of 5(t) can be viewed as a sem iκc∞o이on따1냐ti따II1Uω10l이u 

analog. As we shall see, finding a concrete description of 5( t) is not 
diffìcult. 

Proposition 1. 1/ T is the quotient topology generated 0η G bν m3 ’ 

(G3 ,DxtxD) • (G , T) where D is the discrete topology, then T is 
semicontinuous 
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Proof Define J : G3 • G3 by J(a ,b,c) = (c- l, b- 1,a- 1
) . Clearly, J is 

a homeomorphism since inve띠。n is continuous on (G , t) . The following 
cornrnutative diagram shows that inversion is continuous on (G, T) ‘ 

(G3 ,DxtxD) f 
- -’ (G3 ,Dx t xD) 

(G,T) ‘nv - -• (G,T) 

Now define J : (G3,D x t x D) • (G3 ,D x t x D) by J (a ,b,c) = 
(xa , b, c). Consider t he following commutative diagram where η~x: G • G 
is the translation mx(Y) = xν. 

(G3,DxtxD) 
j 

---+ (G3 ,Dx t xD) 

3 m 
1 
1 1 l 
+ 

(G,T) m. 
---+ (G ,T) 

Clea.rly mx is continuous. A sirnila.r a.rgument shows th a.t multiplica 
tion on the right by x is also continuous 

We a.re now in a. position to obtain two different concrete descriptions 
of S(t). We define t((a ,b)) to be the transla.ted topology on G defined by 

t((a , b)) = {V 드 Gla- 1 Vb-1 E t} 

Proposition 2. S(t) = T = n.,bEG t((a , b)). 

Proof U E T if and on ly if m긴(U) isopen in (G3 ,DxtxD). Butm강 (U) 
is open if a.nd only if m강 (U) n {(a ,g, b)lg E G} is open for every fi.xed 
pair a,b E G. Since m 3' l (U) n {(a ,g,b)lg E G} = {(a ,g,b)l(g E a-1Ub-1

} 

we have that U E T if a.nd only if U E n.,bEG t((a, b)) 
By Proposition 1 we have that T 드 S(t) . Since S(t) is semicontinuous, 

we ha.ve that for every a, b E G a.nd for every U E S(t) , a-1Ub- 1 E S(t). 
Hence since S(t) C t we ha.ve S(t) 드 n.,bEG t((a , b)) 

Proposition 3 . q2(t) ζ S(t). 
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Proof We remember that m and hence m x m are open maps. The 
following diagram proves the proposition: 

(G4,DxtxDxD) id• (G4, t4) 

(G2, naEct((a, e)) x D) 표~ (G2,q(t) x q(t)) 

(G ,5(t)) id 
(G ,q2(t)) --t 

Corolla r y 4. q，ω (5(t)) = qw(t). 

Proof For all n E N we have qn+2(t ) 드 qn(5(t) ) 드 qn(t) . 

3. A Few Comparisons 

Ordman’s topology [8] , 0 is defined using a k-product on Xn instead of 
a product topology. We denote this k-product topology by t;; . We defìne 
X∞ ， t'k, and t∞ in the same manner as section 1. 

Since we wiJl be discussing topologies on genera.ting sets X of the 
free group F(X) instead of a topology on the entire group, we will need 
to extend the topology from X to F(X). A natural extension is the 
topology {U 드 F(X)IU n X E t}. We shall abuse the notation and 
call this topology on F(X ) by the name t also. By using the same ideas 
described in section 2, we may also assume that inversion from (F(X) , t) 
to (F(X) , t ) is continuous. 

Proposition 5. q，ω ( t) 드 θ 

Proof First we wish to show that the map m∞ : (G∞ ， (5(t))∞) • 
(G， q，ω (t)) is an open map. A straightforward induction argument shows 
that m(2n) : (G (2 n) , (5 (t ))(2n)) • (G ,qn(5(t))) is an open map 

Let B E (5(t))∞. Then we have m∞(B) = U응1 m(2n)(B n G(2n)). If 
U(n) = m(2n)(B n G(2

n
)) , then we have that U(n) E qn(5(t)). But this 

means that m∞(B) E q，ω (5( t)) = qι (t) since m∞(B) = U얻m U (j) for all 
m E N , U(n) 드 U(n + 1) for all n E N , and qn+l(5(t)) 드 qn(5(t)) for all 
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nE N 

Consider the following commutative diagram 

(X∞， t말) 우 (X∞ ， t∞) 워 ((F(X))∞ ， t∞) 

id 

(F(X),B) 

;d 
- -• 

>

C orolla ry 6 . 1] (X , t) is a /，;니， -spa ce then qω (t) is a g7'Ou때L 
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((F(X))∞ , (5(t))∞) 

(F(X) , ι(t) ) 

P1'O‘00]. This fo이씨110까ws fro。αom the 、wo아r바마k‘ o이f Or며dman [떼8히] and Proposit ion 5. By 
[2] we know that g(t) 드 qn(t) for all n E N 

Corolla ry 7. 1] J is Joine1' 상 top%gy ]01' F(X) tη" then qw(t ) 드 J . 

4. The Free lndex 

Let h : G • G' be an onto homomorphism and suppose that (X , t) is 
a subset of G, (X' , t' ) is a subset of G' and that hlx is a homeomorphism 
from (X , t) to (X' , t'). As before wc extend the topology t from X to G 
by declaring U 드 G to be open if and only if U n X E t . We likewise 
extend the topology t' [rom X ’ to G' and abuse notation by calling these 
extended topologies t and t' . Also as before we assume that inversion is 
continuous on (G , t) and on (G' , t’) 

Proposition 8 . 1] (G , q,, (t)) is a topologica/ g7'Oup, th eη (G' ， q，，(ν)) is a 
lop%gical group 

P7'00]. Let T be the quot ient topology on G' for h : (G , q,,(t)) • (G' , T). 
Since q,, (r) is a group topology, T is a group topology. Since hlx is 
a homeomorphism, 、ve have t hat inc\ usion from (X' , t' ) into (G’, t') is 
continuous. He마eT 드 g(ν) 

We have lhat h: (G ,t) • (G' , t') is cont inuous. The following diagram 
shows that h is continuous for everv successor ord inal 
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(G2, (q,, (t) )2) 

(G, q,,+1 (t)) 

hxh 
--• 

h 

--’ 

((G')2 , (q,,(t '))2) 

(G냐，，+1(t’)) 

Since qø( t) = n"，<β q,,(t) whenever ß is a limit ordinal, a transfi l1 ite 
induction shows that h is continuous for every ordinal. Since T is the 
quotient topology on G’ generated by h, we have that q,,(t') 드 T. But for 
every ordinal ì we have g(t') 드 q~+1(t') 드 q~(t'). Thus T = q，，(ν) . 

lt should be noted that hlx need not be a homeomorphism in order 
for Proposit ion 8 to hold. Any map with a continuous right inverse would 
suf뀐ce. 

Let (X,t) be a space and inc : (X,p) • (F(X) , e) the map of pairs 
described in the introduction. By [2] we know that there is a first ordinal 
Q such that q",(t) = g(t ). We call th is ordinal the free index of (X , t). 
By the nature of F(X ) and Proposition 8, we have that the free index is 
an upper bound for the number of iterations of the “q-operator" on any 
group G that is generated by X , in order to transform G into a topological 
group. By Corollary 6, the free index of a k.ω-space is bounded by ω 

Proposition 9. Let t1 and t2 be topologies on the groups G1 and G2 • 

Then g(t1) X g(t2 ) = g(t 1 X t2 ). 

Proof Consider the following commutative diagram: 

(G1 X G2 ,q(t1 x t2 ) ) 

((G1 x G2?, (t 1 x t1)2 ) 

nν 

id 
--• 

\m 

(G1 x G2 ,q(td X q(t2 )) 

This shows that q(t1) x q(t2 ) 드 q(t1 X t2 ). Therefore g(t1) x g(t 2 ) 드 
g(t1 X t2 ). Let t~ x {e} be the relative group topology on G1 X {e} 드 
(G 1 X G2, g( t 1 X t 2 )) and {e} X 뎌 be relative group topology on {e} X G2 드 
(G1 X G2 ,g(t1 X t 2 )). By [3] we know that the finest group topology on 
G1 X G2 which simultaneously extends 셔 드 g(td since the identity map 
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(G, x {e} , q(t , x t2))~( G, x {e}, q(t,)) is continuous. Likewise t; ζ g(t2) 
Therefore g(t , x t2) ç t; x t; 드 g(t ,) x g(t2). 

Proposition 10. (a) [f t is coarser than the particular point topology, 
theπ the free index of t is one 

(b) [f X is an in껴nite set and t is the finite complement topology, then 
the free index of t is tψo. 

Proof (a) We have that q(t) 드 [nxEct((x ,e))] n [nxEct((e ,x))]. If every 
nonempty open set in t contai따 a specifìc point, then q(t) is clearly the 
indiscrete topology. 

(b) Let x E X o = XU ,X-' ç F(X) , where X o is as defìned in [8]. Let 
x E U E q(t). Then (x ,e) E m-'(U) isopen in F(X)xF(X) . Wecan find 
a basic open set W, x W2 in the relative topolgy on XoxXo 드 F(X) xF(X) 
that contains (x , e) and is contained in m-'(U). Since both W, and W2 

are all but fìnitely many points of X o and X o is infinite, we have that 
m-'(e) n (W, x W2 ) is nontrivia\. Thus the relative topology on Xo is 
coarser than the particular point topology in q( t) and e fails to be a closed 
set. However x 3 is c\osed. Hence q(t) fail s to be a group topology. Hence 
by (a) , q2(t) is the indiscrete topology. 

Proposition 11. [f X is a Hausdorff space that contains a convergent 
noncoπstant sequence, then the βee index of X is greater than one 

Proof Let Y be the complement of the convergent sequence in X. If Y is 
finite , let G = {e}. If Y is infin따， we let r be a set of ordinals with the 
same cardinality as X. Let G = EÐo ErZo. Consider the group G x Z. We 
can fìnd a bijection f : X • G x Z which maps the nonconstant sequence 
。f X onto {e} x Z. If we defìne t = {J( U)IU is open in X} , then we will 
have a nongroup topology on {e} x Z contained in G x Z. Hence g(t) has 
a nontrivial normal subgroup {( e, O)}. However (e , 0) remains closed in 
(G x Z, q(t)). Therefore, by Proposition 8, we are done 

Proposition 12. Let X have the top%gy of a nonconstant convergent 
sequ eπce . Then (F(X ), qn(t)) fai/s to be a topologica/ group for any 11 E N 

Proof Let A(X) denote the free abelian group generated by X. We may 
assume that e is the point of convergence for X (i.e. {xn }풍1 • e) . Let 
v = {ψ|ψ = z:lX강 .x감 with fi = 土 1 for 1 :s i < k w hen ω IS m 
reduced form, or ψ = e}. As usual we include X into A(X) and extend 
the topology from X to A(X). Also as usual we assume that the extended 
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topology t makes inversion on A ( X) a continuous function 

By Proposit ion 2 we have that S(t) = UaEA (X) t( (a , e)) . We note that 

V E S(t). Since m(2") : (A(2")(X) , (S(t))(2")) • (A(X) ,qn(S(t))) Îs an 
open map, we have that V (2") E qn(S(t)). But qn(S(t)) cannot be a 
topological group since x당’‘ )+1 rf. V (2") for a때배11 m E N yet {x앙앙"맘1 
in g(t) 

Corollary 13. The fiπe index for a noncons tant con vergent s equence is 
μL 

We conc1ude this paper by noting that the pairs (G ,X) and m a ps of 
pairs h: (G ,X) • (G', X' ) where h is a group homomorphism and hl x 

is continuous, form a category. The proof of Proposition 8 demonstrates 
that h : G • G' is continuous at each stage of the “ q-operator" . Hence the 
process actually describes a functor to the category of topological groups 

and continuous group homomorph isms, and defines an index for each pair 
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