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A COMPARISON OF TOPOLOGIES ON FREE
GROUPS

Bradd Clark and Victor Schneider

1. Introduction

Let F(X) denote algebraically the free group generated by the points
of the set X — {p} where (X, p) is a pointed topological spaces, and let
inc : (X,p) — (F(X),e) be a map of pairs that includes X into F(X)
with e the identity element of F/(X). In 1948, Graev [5] developed the
concept of a free topological group by endowing F(X) with the finest
group topology making the map inc a continuous function. This topology
is called the Graev topology.

Obviously the Graev topology exists. Describing this topology in con-
certe terms is in general a difficult matter. Ordman [8] described a topol-
ogy on F(X) which is the Graev topology whenever X is a k,-space.
However this topology will not be the Graev topology in general. As an
example, it is pointed out in [4] that Ordman’s topology is different from
the Graev topology when X is homeomorphic to the rationals.

Joiner [7] described a topology which agrees with the Graev topology
on various subsets of F(X). Yet this topology is known to, in general, not
be a description of the Graev topology. In [9] a very complete description
of final topologies on groups is given. While this answer is complete, it
suffers by giving a neighborhood filter description when applied to the
(Graev question as opposed to a basis of open sets. More recently, the
authors [2] described a method for constructing the Graev topology.

The purpose of this paper is to compare the tractible topologies de-
scribed by Ordman, Joiner, and the authors on F(X) and to see which
comes closet to describing the Graev topology. In order to accomplish
this, we will need to discuss the concept of a semicontinuous group, or
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what Fuchs [6] calls a semitopological group. We shall also obtain a new
invariant for pointed topological spaces.

We define the following notations. If G is a group and ¢ some topology
on G, let (G™,1") denote the Cartesian product of n copies of (7, with
the product topology generated by placing the topology f on each copy
of G. Let m, : G® — G denote the map defined by m,(z1,z2,---,z,) =
T2y T,. We also declare m = ma.

There is a natural embedding of (G™,¢") into (G™*!,#"*!) by mapping
(z1,22,"+,Za) € G" to (21,22, ,Tn,e) € G™'. We will denote the
group |22, G™* = G*°. If the product topology {" is placed on G™ C G*
and the topology coherent with these subspaces is placed on G*°, we shall
denote the resulting topology as t°. Finally we define my.(z) = m,(z) if
r € G" C G™.

The quotient topology generated on G by the map m : (G*,{*) - G is
denoted as ¢(t). This “process” can be repeated. Let ¢,41(f) = ¢(qa(t))
for successor ordinals and gg(t) = N,<j 9o(?) for limit ordinals.

2. Semicontinuous Groups

A topology S on G is said to be semicontinuous if and only if inversion
from (G, S) to (G,S) is continuous and m : (G* 5*) — (G,S) is con-
tinuous in each variable separately. Clay [1] has shown that if (G, S) is
semicontinuous then (G, g(.S)) is also semicontinuous. She has also shown
that an arbitrary product of semicontinuous groups is a semicontinuous
group and that the multiplication map m : (G?%,5%) — (G,q(S)) is an
open map.

If ¢ is a topology on G we will let S(t) denote the finest semicontinuous
topology on G contained in t and g(t) denote the finest group topology on
G contained in t. For any topology t on G we can define ™! = {U|U~! €
t}. Clearly S(i) = S(tNt7!) and g(t) = g(t N¢'). Since inversion is
continuous on (G,tN¢~!) we will without loss of generality assume for the
rest of this paper that t =t Nt

The description of g(¢) can be viewed as a generalization of the Graev
question. The description of S(t) can be viewed as a semicontinuous

analog. As we shall see, finding a concrete description of S(¢) is not
difficult.

Proposition 1. If T is the quotient topology generated on G by ms :
(G3,D xtx D) = (G,T) where D s the discrete topology, then T is

semicontinuous.
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Proof. Define f : G® — G® by f(a,b,c) = (¢',671,a7"). Clearly, f is
a homeomorphism since inversion is continuous on (G,t). The following
commutative diagram shows that inversion is continuous on (G, 7).

(G}, DxtxD) -1 (G°DxtxD)

[ |ma

(G,T) o, (G,T)

Now define f : (G®, D xt x D) — (G*, D x t x D) by f(a,b,¢c) =
(za, b, c). Consider the following commutative diagram where m, : G — G
is the translation m,(y) = zy.

(G3,DxtxD) - (G3DxtxD)

I |-

(G,T) =% (G,T)

Clearly m, is continuous. A similar argument shows that multiplica-
tion on the right by z is also continuous.

We are now in a position to obtain two different concrete descriptions

of S(t). We define t((a, b)) to be the translated topology on G defined by
t((a,b)) = {V C Gla~'Vb~! € t}.

Proposition 2. S(t) =T =, ec t((a,b)).

Proof. U € T if and only if m3*(U) is open in (G®, D xtx D). But m3'(U)
is open if and only if m3'(U) N {(a,g,b)|g € G} is open for every fixed
pair a,b € G. Since m3'(U) N {(a,g,b)|g € G} = {(a,g,b)|(g € a7 Ub"}
we have that U € T if and only if U € N, 4cc t((a, b)).

By Proposition 1 we have that T C S(¢). Since S(t) is semicontinuous,
we have that for every a,b € G and for every U € S(t), a2Ub™! € S(1).
Hence since S(t) C t we have S(t) C N, peq t({a,b)).

Proposition 3. ¢;(t) C 5(¢).
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Proof. We remember that m and hence m x m are open maps. The
following diagram proves the proposition:

(G, DxtxDxD) =% (G, %)

lmxm lmxm

(G*,Naect((a,€)) x D) -5 (G2, q(t) x q(t))

= J=

(G, S(1)) 5 (Gae®)
Corollary 4. ¢,(5(1)) = qu.(t).
Proof. For all n € N we have g,4+2(t) C ¢,.(S(%)) C ¢.(1).

3. A Few Comparisons

Ordman’s topology (8], @ is defined using a k-product on X™ instead of
a product topology. We denote this k-product topology by t}. We define
X, 17°, and t* in the same manner as section 1.

Since we will be discussing topologies on generating sets X of the
free group F(X) instead of a topology on the entire group, we will need
to extend the topology from X to F(X). A natural extension is the
topology {U C F(X)|[U N X € t}. We shall abuse the notation and
call this topology on F'(X) by the name ¢ also. By using the same ideas
described in section 2, we may also assume that inversion from (F(X),t)
to (F'(X),t) is continuous.

Proposition 5. ¢,(t) C 4.

Proof. First we wish to show that the map m, : (G*,(S(t))*) —
(G,qu(t)) is an open map. A straightforward induction argument shows
that mny : (G, (5(1))2Y) — (G, ¢a(S(t))) is an open map.

Let B € (S(t))®. Then we have my(B) = U, mn) (B N GEY). If
U(n) = mgen)(B N G*), then we have that U(n) € ¢,(S(t)). But this
means that m(B) € ¢.(S(t)) = gu(t) since m(B) = U2, U(j) for all
m €N, U(n) CU(n+1)forall n € N, and ¢n41(S5(%)) C ¢a(5(t)) for all
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n € N.

Consider the following commutative diagram:

(X=,2) -5 (X%,) 25 ((F(X))™®, 1) -5 ((F(X)®,(S(1)>)
[~ [~
id
(F(X),0) > (F(X),q.(1))

Corollary 6. If (X,t) is a k,-space then q,(t) is a group topology.

Proof. This follows from the work of Ordman [8] and Proposition 5. By
(2] we know that g(t) C g.(t) for all n € N.

Corollary 7. If J is Joiner’s topology for F(X) [7], then q,(t) C J.

4. The Free Index

Let h : G — G’ be an onto homomorphism and suppose that (X, ?) is
a subset of G, (X", ') is a subset of G’ and that h|x is a homeomorphism
from (X, 1) to (X', t'). As before we extend the topology ¢ from X to G
by declaring /' C G to be open if and only if U N X € t. We likewise
extend the topology t' from X’ to G’ and abuse notation by calling these
extended topologies t and t. Also as before we assume that inversion is
continuous on (G,t) and on (G',t').

Proposition 8. If (G, q.(t)) is a topological group, then (G', q.(1')) is a
topological group.

Proof. Let T be the quotient topology on G’ for h : (G, q.(¢)) — (G',T).
Since q,(7) is a group topology, T' is a group topology. Since h|x is
a homeomorphism, we have that inclusion from (X’,t') into (G',t') is
continuous. Hence T' C g(t').

We have that h : (G,t) — (G', 1) is continuous. The following diagram
shows that h is continuous for every successor ordinal:
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(G%(a(t)?) =5 (G2 (4a(t))?)

(Gygair(t)) = (G qena(t))

Since ¢g(t) = MNa<p ga(t) whenever B is a limit ordinal, a transfinite
induction shows that h is continuous for every ordinal. Since T' is the
quotient topology on G’ generated by h, we have that ¢,(t') € 7. But for
every ordinal 4 we have g(t') C ¢,41(%') C ¢,(t'). Thus T = ¢,(t").

It should be noted that k|x need not be a homeomorphism in order
for Proposition 8 to hold. Any map with a continuous right inverse would
suffice.

Let (X,t) be a space and nc : (X,p) — (F(X),e) the map of pairs
described in the introduction. By [2] we know that there is a first ordinal
a such that ¢,(f) = g(f). We call this ordinal the free indez of (X,1).
By the nature of F(X) and Proposition 8, we have that the free index is
an upper bound for the number of iterations of the “g-operator” on any
group G that is generated by X, in order to transform G into a topological
group. By Corollary 6, the free index of a & -space is bounded by w.

Proposition 9. Let t; and t, be topologies on the groups G; and G,.
Then g(t1) x g(t2) = g(t1 x t2).
Proof. Consider the following commutative diagram:

((Gy x G2)2, (11 x 11)?)

(G1 X Ga,q(ty X 15)) -4 (G1 x Gayq(th) x q(t2))

This shows that ¢(¢;) x ¢(t2) C ¢(f; x t;). Therefore g(t;) x g(t2) C
g(t; x t3). Let ¢} x {e} be the relative group topology on G; x {e} C
(G x Gq,g(ty x t3)) and {e} x £, be relative group topology on {e} x G, C
(G x Ga,g(t; x t3)). By [3] we know that the finest group topology on
G x G which simultaneously extends tj C g({,) since the identity map
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(G1x{e}, q(t1 % 2))—2(G, x {e}, q(t1)) is continuous. Likewise t, C g(t2).
Therefore g(t; x t2) C ) x t} C g(t1) x g(tz).

Proposition 10. (a) Ift is coarser than the particular point topology,
then the free index of t is one.

(b) If X is an infinite set and t is the finite complement topology, then
the free index of t is two.

Proof. (a) We have that ¢(t) C [N,eq t((z,€))] N [Neeq t((e,x))]. If every
nonempty open set in  contains a specific point, then g(¢) is clearly the
indiscrete topology.

(b) Let z € Xo = XU, X~ C F(X), where X is as defined in [8]. Let
z € U € g(t). Then (z,e) € m~(U) is open in F(X)x F(X). We can find
a basic open set W; x W3 in the relative topolgy on Xpx Xo C F(X)x F(X)
that contains (z,e) and is contained in m~'(U). Since both Wy and W,
are all but finitely many points of X; and X; is infinite, we have that
m~(e) N (W; x W,) is nontrivial. Thus the relative topology on Xj is
coarser than the particular point topology in ¢(¢) and e fails to be a closed
set. However z® is closed. Hence ¢(t) fails to be a group topology. Hence
by (a), g2(t) is the indiscrete topology.

Proposition 11. If X is a Hausdor[f space that contains a convergent
nonconstant sequence, then the free index of X is greater than one.

Proof. Let Y be the complement of the convergent sequence in X. If Y is
finite, let G = {e}. If Y is infinite, we let I be a set of ordinals with the
same cardinality as X. Let G = @,erZ,. Consider the group G x Z. We
can find a bijection f : X — G x Z which maps the nonconstant sequence
of X onto {e} x Z. If we define t = { f(U)|U is open in X}, then we will
have a nongroup topology on {e} x Z contained in G x Z. Hence g(t) has
a nontrivial normal subgroup {(e,0)}. However (e,0) remains closed in
(G x Z,q(t)). Therefore, by Proposition 8, we are done.

Proposition 12. Let X have the topology of a nonconstant convergent
sequence. Then (F(X),q.(t)) fails to be a topological group for anyn € N.

Proof. Let A(X) denote the free abelian group generated by X. We may
assume that e is the point of convergence for X (i.e. {z,}22, — €). Let
V = {wlw = 2, X2 .-zt with ¢ = &1 for 1 < ¢ < k when w is in

reduced form, or w = e}. As usual we include X into A(X) and extend
the topology from X to A(X). Also as usual we assume that the extended
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topology ¢ makes inversion on A(X) a continuous function.

By Proposition 2 we have that S(t) = U,ea(x)t((a,€)). We note that
V € S(t). Since memy : (AP(X),(S(1))®7) — (A(X),q.(S(t))) is an
open map, we have that V") € ¢,(S(¢)). But ¢.(S(t)) cannot be a
topological group since 22"+ ¢ V) for all m € N yet {z(3"H1}2 e
in g(t).

Corollary 13. The free index for a nonconstant convergent sequence is
w.

We conclude this paper by noting that the pairs (G, X) and maps of
pairs h : (G,X) — (G', X’) where h is a group homomorphism and h|x
is continuous, form a category. The proof of Proposition 8 demonstrates
that h : G — G’ is continuous at each stage of the “g-operator”. Hence the
process actually describes a functor to the category of topological groups
and continuous group homomorphisms, and defines an index for each pair.
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