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DIVISION SEMINEAR-RINGS

J. Ayaragarnchanakul and S. Mitchell

We show that any finite division seminear-ring is uniquely determined
by the Zappa-Szép product of two multiplicative subgroups, and classify
all seminear-fields in three out of four categories.

1. Introduction

In [2] the authors investigated semifields in which the addition and
multiplication are both commutative. In [3] the first author extended
most of the work in [2] to the non-commutative case: this paper outlines
the more significant results in [3].

2. Seminear-rings

We say that (S,+,-) is a right seminear-ring if S is a set with two
binary operations + and - such that (S, +) and (S, ) are semigroups and
the right distributive law holds: (z 4+ y)z = zz 4+ yz for all z,y,2 € S.
A left seminear-ring is similarly defined, and if S is both a left and a
right seminear-ring then it is a semiring. An important example of a right
seminear-ring is obtained by starting with an arbitrary semigroup (S, +)
and letting M(S) denote the set of all maps from S into itself; if + and -
are defined on M(S) as pointwise addition and composition respectively,
then (M(S),+,-) is a right seminear-ring which is not left distributive
provided |S| > 1.

In what follows, the word ‘seminear-ring’ will mean a ‘right seminear-
ring’. A division seminear-ring is a seminear-ring (D, +, ) in which (D,-)
is a group. The set R of positive real numbers with the usual addition
and multiplication is a division seminear-ring in which the left distributive
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law holds: that is, it is a division semiring. To obtain a family of right
(but not left) division seminear-rings, we need the following notion.

If (G,-) 1s a group and H, K are subgroups of G, we say (& is a Zappa-
Szép (ZS) product of H and K, written G = H+ K, if G = HK and
H N K = 1. Note that any direct product is a ZS-product but not
conversely. For example, if G = S; and H =< (1,2) >, K = Aj then
G = H * K but S; is not a direct product of any of its subgroups. The
proof of the following result is straight-forward and so is omitted.

Lemma 1. If G = H * K for some subgroups H, K of a group G, then
G=K=x*H and

(a) for each & € G there exist unique hy,hy € H and ky,ky € K such
that © = hiky = kyhy, and

(b) for each h € H, k € K there exist unique h' € H and k' € K such
that ik = k'h.

The next result provides a way of constructing division seminear-rings
which are not division semirings.

Theorem 1. [fG' = H* K for some subgroup H, K of group G, then there
exists a unique binary operation + on G such that (G,+,-) is a division
seminear-ring in which (G, +) is a rectangular band containing H and K
as left and right zero subsemigroups respectively and G = H + K.

Proof. Let =1,z € G. By Lemma 1, we can write x; = kyhy, 29 = hoky
and hjk; = kjhy for suitable unique elements of H and K. In this case,
we define x; + x5 to be Al k,.

Suppose * € G and z = khy = hky. Then, by uniqueness and the
definitions, hy = 1- hy, k&4 = 1 - k; imply that hy + k1 = hky = =z.
Moreover, if z = h4+k = h'k = k'h then A’k = hk; and uniqueness implies
k = ky; similarly, A = h; and we have shown that for each z € G, there are
unique h € H, k € K such that « = h + k. In addition, if 2k, = kh; and
h'ky = k'hy then (hy + k1) + (ha + ko) = khy + R'ky. Hence, if 2"k, = k"hy
then (h1 + k1) + (he + ko) = hy + ka2 Now, it is well-known that H x K
under the operation:

(h1, k1) @ (R, k2) = (ha, k2)

1s a rectangular band [1]. And, from the foregoing remarks, f : G —
Hx K, h+k— (h,k),is an isomorphism from (G, +) onto (H x K,®).
Thus, (G, +) is a rectangular band in which H is a left zero semigroup.
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For,if h € H then h-1=1-h implies that h4+ 1 =h-1=h and so H is
isomorphic under f to H x 1, a left zero subsemigroup of (H x K,®).
To show that (G, +,-) is right distributive, let z,y,z € G and write

Irz = hl + k] = hllkl = k;hl

Yyz = hg + kg = h;kg = k;h?_

Then, if # = haks = kshy and y = hsks = kehe, we have z = 271k} hy =
y 1 hhk, and so

k7 K by = haks - hD Rk = kohy - R RGO ks

for some hz, k7 in G. Since h7h3'h, € H and k7'k7'k} € K, we conclude
that 2z + yz = hy + k2 and this equals k7 - h3'hhky. But, z = hy+ k3, y =
he + ks and so

(z4+y)z = [(h4+k3)+(h6+k5)]y_1h’2k2
— (h4 + k5)(h5k5_)_1h;k2 = h-{hglh;kg
= Z& - 12

since hy + ks = hiks = kihy implies that Ay = h;. Finally, to show
+ is unique, suppose @ is another operation for which (&, @,-) has the
same properties as (G, +,-). Now, under the stated conditions, k + h =
(1+k)+(h+1) = 14+(k+h)+1 = 1. Thus, if bk = hiky = kohy = hyt+ k.
Then

l=10kh'@l=(hdkh @l=khh'al

andso 1l =k, @ hh;l = (kahah™' B l)hh;’ — hh{l. Hence, h = hy; and
similarly & = k;. So, if z,y € G satisfy 2 = hy @ ky = hy + k; and
y=ho®ky=hy+kythenzPy=h, Bk, =h +k; = z+y, as required.

With the same notation as in Theorem 1, it can be shown that (G, +)
is always isomorphic to the direct product of (H,+) and (K,+). On the
other hand, the division seminear-ring (G, +,-) is left distributive if and
only if (G,-) is the direct product of (H,-) and (K, ).

We say that the division seminear-ring defined in Theorem 1 is in-
duced by the ZS-product G = H * K. In the finite case, we can prove
the converse of Theorem 1.
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Theorem 2. Every finite division seminear-ring D is induced by a ZS-
product of multiplicative subgroups of D.

Proof. Since (D, +) is a finite semigroup, d + d = d for some d € D[1] and
soz+z = (d+d)d" 'z =z forallz € D. Now,let H={z € D :z+1 =z}
and K = {z € D:z+1=1} where 1 is the identity of (D,-). Note that
HNK =1andifz,y € H thenzy+1 = (z4+1)y+1 =zy+y = (z+1)y =
xy: that is, zy € H. Hence, since (D,-) is a finite group, if € H then
" =1 for some n > 1 and 27! = 2"~! € H: that is, (H,-) is a group,
and the same holds for (K,-). In particular, if z,y € H then zy™! € H
and so zy~' 4+ 1 = zy~!: that is,  + y = z. Hence, if u,v € D, we have
utvtu=[l+(vu'+1)Ju=usincevu'+1¢€ H, and so (D,+) is a
rectangular band.

To show D = H x K, let z € D and note that z +1 € H, and
z(z+1)'+1=(z+(+1))(z+1)"! =1: that is, z(z + 1) € K.
Thus, z = z(z + 1)"(z + 1) € KH and so, by Lemma 1, D = H * K.
Finally, let z,y € D, and note that z = z(z + 1) (z + 1) € KH, y =
y(1+y)'Q+y)e HK andif z=(z+ 1)1 +y) ' =2(z+1)" =2+ 1)
then (2 4+ 1)(1 +y) = (2 +1)z7 (2 + 1) where (z + 1)z~! € K. That is,
if & denotes the addition induced on D by the ZS-product of H and K
then

sy = (z+1)(1+y)=(z+1)+(1+y)
= z+[l+(z+y)+1]+y=2+y,

and this completes the proof.

It can be shown that two finite division seminear-rings are isomorphic if
and only if there is a multiplicative group isomorphism between them that
preserves the ZS5-products of their subgroups, as specified by Theorem 2.

3. Seminear-fields

A right seminear-ring (F,+,) is a seminear-field if there is a € F
such that ¢*> = a and (F'\a,-) is a group. In this case, we write F, = I'\a
and say that /' has base a.

If F = {a,z} and we define operations + and - on F so that (F,+) is a
right zero semigroup and (F,-) is a band with @ as an identity then (F,+,-)
is a seminear-field in which both F, and F, are multiplicative groups. On
the other hand, it is easy to check that if (F,+,-) is any seminear-field
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with |F| > 2 then there is a unique a € F such that a® = ¢ and (F,,") is
a group.

Theorem 3. If (F,+,-) is a seminear-field with base a, then F belongs
to one of the following categories of seminear-field.

l.Lar = za =a forallz € F, 1l. az = za = z for all z € F, 1IL
ar=aandza=zx forallz € F,IV.az =z andza=a foral z € F.

Proof. Let 1 denote the identity of F, and suppose a-1 = a. If z € F, and
az # a then there exists y € F, with (az)y =1 and so a = a(az)y =1, a
contradiction. That is, if a-1 = e thenaz =aforallz e F. Ifa-1#a
then (a-1)? = a-1 implies a-1 = 1 and so az = z for all z € F. Similarly,
we can establish the disjunction: za = a for all z € F or za = z for all
xz € F, and this proves the result.

Note that any division ring is a category I seminear-field (with a = 0),
so there is little hope of describing all seminear-fields in category I. On
the other hand, those in categories 1I-1V can be completely characterised.

Theorem 4. If F' is a category Il seminear-field with base a, then (F,, +,-)
is a division seminear-ring. Conversely, suppose (D,+,-) ts any division
seminear-ring and a € D. Then the operations on D can be extended to
D* = DUa so that (D*,+,-) is a category II seminear-field.

Proof. Wax,y € F,anda+y =athenl=a-1=2-14+y-1=a,a
contradiction. Hence, (F,,+,-) is a division seminear-ring. If D is any
division seminear-ring and we extend its operations so that az = za = 2
andz+a=x+1,a+z =1+ z then it can be checked that (D*,+,-) is
a category Il seminear-field.

Theorem 5. If F' is a category III or I'V seminear-field with base a, then
|F| =2.

Proof. If F' is category IIl and z € F, then z* = (za)z = z(az) = z and
so ¢ = 1. A similar argument works for when F is category IV.

It can be shown that there are only five pairwise non-isomorphic pos-
sibilities for the additive structure of category 11l seminear-fields; namely:

+ 1 + 1 + 1
a a a a a 1
1 1 1 1 1 1

2 8 2
-8 f
& 8 8
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4+ a 1 + a 1
a a a a a 1
1 a a 1 1 a

Likewise, it can be shown that there are only three pairwise non-isomorphic
possibilities for the additive structure of category IV seminear-fields: namely,
the first three tables listed above.
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