

N. K. Saha

1. Introduction

Let A and B be two non-empty sets, M the set of all mappings from A to B, and Γ a set of some mappings from B to A. The usual mapping product of two elements of M cannot be defined. But if we take f,g from M and α from Γ then the usual mapping product $f\alpha g$ can be defined. Also we find that $f\alpha g \in M$ and $(f\alpha g)\beta h = f\alpha(g\beta h)$ for $f,g,h \in M$ and $\alpha,\beta \in \Gamma$.

If M be the set of $m \times n$ matrices and Γ be a set of some $n \times m$ matrices then we can define $A_{m,n}\alpha_{n,m}B_{m,n}$ such that $(A_{m,n}\alpha_{n,m}B_{m,n})\beta_{n,m}C_{m,n} = A_{m,n}\alpha_{n,m}(B_{m,n} \circ \beta_{n,m}C_{m,n})$ where $A_{m,n}, B_{m,n}, C_{m,n} \in M$ and $\alpha_{n,m}, \beta_{n,m} \in \Gamma$. An algebraic system satisfying associative property of the above type is a Γ -semigroup [1].

Definition. Let $M = \{a, b, c, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two nonempty sets. M is called a Γ -semigroup if (i) $a\alpha b \in M$ for $\alpha \in \Gamma$ and $a, b \in M$ and (ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in M$ and for all $\alpha, \beta \in T$. A semigroup can be considered as a Γ -semigroup in the following sense. Let S be an arbitrary semigroup. Let I be a symbol not representing any element of S. Let us extend the given binary relation in S to $S \cup \{1\}$ by defining II = I and Ia = aI = a for all a in S. It can be shown that $S \cup \{1\}$ is a semigroup with identity element I. Let $\Gamma = \{1\}$. Putting ab = aIb it can be shown that the semigroup S is a Γ -semigroup where $\Gamma = \{1\}$. Since every semigroup is a Γ -semigroup in the above sense the main thrust of our work is to extend different fundamental results of semigroup to Γ -semigroup. In [2], [3], [4] and [5] we have extended some

Received September 17, 1992.

results of semigroup to Γ -semigroup. In this paper we establish maximum idempotent separating congruence on an inverse Γ -semigroup.

2. Preliminaries

We recall following definitions and results from [2], [3], [4] and [5].

Definition. Let M be a Γ -semigroup. A non-empty subset B of M is said to be a Γ -subsemigroup of M if $B\Gamma B \subset B$.

Definition. Let M be a Γ -semigroup. An element $a \in M$ is said to be regular if $a \in a\Gamma M\Gamma a$, where $a\Gamma M\Gamma a = \{a\alpha b\beta a : b \in M, \alpha, \beta \in \Gamma\}$. A Γ -semigroup M is said to regular if every element of M is regular.

Definition. Let M be a Γ -semigroup. An element $e \in M$ is said to be an idempotent in M if there exists an $a \in \Gamma$ such that $e\alpha e = e$. In this case we shall say e is an α -idempotent.

Definition. Let M be a Γ -semigroup and $a \in M$. Let $b \in M$ and $\alpha, \beta \in \Gamma$. b is said to be an (α, β) inverse of a if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. In this case we shall write $b \in V_{\alpha}^{\beta}(a)$.

We have defined $\mathcal{L}, \mathcal{R}, \mathcal{H}$, the analogue of Green's relation in [3].

Lemma 2.1. Let M be a regular Γ -semigroup and let $a \in M$. Suppose e is an α -idempotent and f is a β -idempotent of M with $eRa\mathcal{L}f$. Then there exists a unique $b \in V_{\beta}^{\alpha}(a)$ such that $a\beta b = e$ and $b\alpha a = f$.

Definition. A regular Γ -semigroup M is called an inverse Γ -semigroup if $|V_{\alpha}^{\beta}(a)| = 1$, for all $a \in M$ and for all $\alpha, \beta \in \Gamma$, whenever $V_{\alpha}^{\beta}(a) \neq \emptyset$. That is every element a of M has a unique (α, β) inverse whenever (α, β) inverse of a exists.

Theorem 2.2. Let M be a Γ -semigroup. M is an inverse Γ -semigroup if and only if (i) M is regular and (ii) if e and f be any two α -idempotents of M then $e\alpha f = f\alpha e$.

3. Maximum idempotent separating congruence on an inverse Γ -semigroup

Theorem 3.1. Let M be an inverse Γ -semigroup. If e be an α -idempotent and f be a β -idempotent of M then $e\alpha f$, $f\alpha e$ are β -idempotents and $e\beta f$, $f\beta e$ are α -idempotent of M.

Proof. Let e and f be two elements of M such that e is an α -idempotent and f is a β -idempotent. We show that $e\alpha f$ is a β -idempotent. Now $e\alpha f \in M$. Since M is an inverse Γ -semigroup let $x \in V_{\delta}^{\gamma}(e\alpha f)$. Then $(e\alpha f)\delta x\gamma(e\alpha f)=e\alpha f$ and $x\gamma(e\alpha f)\delta x=x$. Let $g=f\delta x\gamma e\alpha f$. Also let $h=f\delta x\gamma e$. Then $(f\delta x\gamma e\alpha f)\beta(f\delta x\gamma e)\alpha(f\delta x\gamma e\alpha f)=f\delta(x\gamma e\alpha f\delta x)\gamma e\alpha f=f\delta x\gamma e\alpha f=g$. This shows that $g\beta h\alpha g=g$. Similarly $h\alpha g\beta h=h$. Hence $g\in V_{\alpha}^{\beta}(h)$. Also, $e\alpha f\in V_{\alpha}^{\beta}(h)$. Since M is an inverse Γ -semigroup therefore $g=e\alpha f$. Hence $e\alpha f$ is β -idempotent. Proceeding similarly we can show that $f\alpha e$ is β -idempotent and $e\beta f$, $f\beta e$ are α -idempotents. Hence the theorem.

The following lemma can easily be proved.

Lemma 3.2. Let M be an inverse Γ -semigroup. Let $a \in M$. If $a' \in V_{\gamma}^{\delta}(a)$, then for any α -idempotent e of M

- (i) $a\gamma e\alpha a'$, $a\alpha e\gamma a'$, are δ -idempotents
- (ii) $a'\delta e\alpha a$, $a'\alpha e\delta a$ are γ -idempotents.

Lemma 3.3. Let M be an inverse Γ -semigroup. Let $a, b \in M$. If $a' \in V_{\alpha_1}^{\alpha_2}(a)$, $b' \in V_{\beta_1}^{\beta_2}(b)$, then $b'\beta_2a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1b)$, and $b'\alpha_1a' \in V_{\beta_1}^{\alpha_2}(a\beta_2b)$.

Proof. Let $a' \in V_{\alpha_1}^{\alpha_2}(a)$, $b' \in V_{\beta_1}^{\beta_2}(b)$. Then $a\alpha_1 a'\alpha_2 a = a$, $a'\alpha_2 a\alpha_1 a' = a'$, $b\beta_1 b'\beta_2 b = b$, $b'\beta_2 b\beta_1 b' = b'$. Now $a'\alpha_2 a$ is α_1 -idempotent and $b\beta_1 b'$ is β_2 -idempotent. Hence $a'\alpha_2 a\alpha_1 b\beta_1 b'$ is β_2 -idempotent, $b\beta_1 b'\beta_2 a'\alpha_2 a$ is α_1 -idempotent, $a'\alpha_2 a\beta_2 b\beta_1 b'$ is α_1 -idempotent and $b\beta_1 b'\alpha_1 a'\alpha_2 a$ is β_2 -idempotent.

$$(a\alpha_{1}b)\beta_{1}(b'\beta_{2}a')\alpha_{2}(a\alpha_{1}b) = a\alpha_{1}(a'\alpha_{2}a\alpha_{1}b\beta_{1}b')\beta_{2}(a'\alpha_{2}a\alpha_{1}b\beta_{1}b')\beta_{2}b$$

$$= a\alpha_{1}a'\alpha_{2}a\alpha_{1}b\beta_{1}b'\beta_{2}b$$

$$(since a'\alpha_{2}a\alpha_{1}b\beta_{1}b' \text{ is } \beta_{2} - \text{ idempotent})$$

$$= a\alpha_{1}b$$

$$(b'\beta_{2}a')\alpha_{2}(a\alpha_{1}b)\beta_{1}(b'\beta_{2}a') = b'\beta_{2}(b\beta_{1}b'\beta_{2}a'\alpha_{2}a)\alpha_{1}(b\beta_{1}b'\beta_{2}a'\alpha_{2}a)\alpha_{1}a'$$

$$= b'\beta_{2}b\beta_{1}b'\beta_{2}a'\alpha_{2}a\alpha_{1}a'$$

$$(since (b\beta_{1}b'\beta_{2}a'\alpha_{2}a \text{ is } \alpha_{1} - \text{ idempotent})$$

$$= b'\beta_{2}a'.$$

Hence $b'\beta_2a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1b)$. Similarly it can be shown that $b'\alpha_1a' \in V_{\beta_1}^{\alpha_2}(a\beta_2b)$.

Lemma 3.4. Let M be a regular Γ -semigroup. Let $a, b \in M$. Then $a\mathcal{H}b$ if and only if there exists $a' \in V_{\gamma}^{\delta}(a)$, $b' \in V_{\gamma}^{\delta}(b)$ such that $a\gamma a' = b\gamma b'$, $a'\delta a = b'\delta b$.

Proof. Let $a\mathcal{H}b$. Then $a\mathcal{L}b$ and $a\mathcal{R}b$. Let $a' \in V_{\gamma}^{\delta}(a)$. Then $a\mathcal{L}a'\delta a$ and $a\mathcal{R}a\gamma a'$. Again $a\mathcal{R}b$. Then $a\gamma a'\mathcal{R}b\mathcal{L}a'\delta a$. By Lemma 2.1, it follows that there exists a unique $b' \in V_{\gamma}^{\delta}(b)$ such that $b\gamma b' = a\gamma a'$, $b'\delta b = a'\delta a$. Conversely let $a\gamma a' = b\gamma b'$, $a'\delta a = b'\delta b$ for $a' \in V_{\gamma}^{\delta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$. Then $a\mathcal{R}a\gamma a' = b\gamma b'\mathcal{R}b$. Hence $a\mathcal{R}b$. Again $a\mathcal{L}a'\delta a = b'\delta b\mathcal{L}b$. Then $a\mathcal{L}b$. Hence $a\mathcal{H}b$.

Definition. Let M be a Γ -semigroup. A congruence on M is defined as an equivalence relation ρ on the set M stable under left and right Γ -operation. That is, for every $a,b,c\in M$, $(a,b)\in \rho$ implies $(c\alpha a,c\alpha b)\in \rho$ and $(a\alpha c,b\alpha c)\in \rho$, for all $\alpha\in\Gamma$. A left (right) congruence on M is an equivalence relation on M, stable under left(right) Γ -operation.

Definition. Let M be a Γ -semigroup. A congruence ρ on M is said to be an idempotent separating congruence on M if e be an α -idempotent, f be an α -idempotent of M and $(e, f) \in \rho$ then e = f.

We can prove the following lemma.

Lemma 3.5. Let M be a regular Γ -semigroup. If ρ is an idempotent separating congruence on M then $\rho \subset \mathcal{H}$.

Theorem 3.6. Let M be an inverse Γ -semigroup. Then the relation $\mu = \{(a,b) \in M \times M : \text{there exist } \gamma, \delta \in \Gamma, \ a' \in V_{\gamma}^{\delta}(a), \ b' \in V_{\gamma}^{\delta}(b) \text{ satisfying } a\alpha e \gamma a' = b\alpha e \gamma b' \text{ for every } \alpha\text{-idempotent } e = e\alpha e \in M\} \text{ is the maximum idempotent separating congruence on } M.$

Proof. It is immediate that μ is reflexive and symmetric. Let us prove that μ is transitive. Suppose $(a,b) \in \mu$ and $(b,c) \in \mu$. Then by definition there exist $\gamma, \delta \in \Gamma$, $a' \in V_{\gamma}^{\delta}(a)$, $b' \in V_{\gamma}^{\delta}(b)$ such that $a\alpha e\gamma a' = b\alpha e\gamma b'$, for every idempotent $e = e\alpha e \in M$. From $(b,c) \in \mu$, there exist $\gamma_1, \delta_1 \in \Gamma$, $b^* \in V_{\gamma_1}^{\delta_1}(b)$, $c^* \in V_{\gamma_1}^{\delta_1}(c)$ such that $b\beta f\gamma_1 b^* = c\beta f\gamma_1 c^*$, for every idempotent $f' = f\beta f \in M$. Now

$$b\gamma b'\delta a = b\gamma b'\delta a\gamma a'\delta a\gamma a'\delta a = b\gamma b'\delta (a\gamma(a'\delta a)\gamma a')\delta a$$
$$= b\gamma b'\delta b\gamma (a'\delta a)\gamma b'\delta a = (b\gamma(a'\delta a)\gamma b')\delta a$$
$$= a\gamma(a'\delta a)\gamma a'\delta a = a.$$

Then $a\gamma_1(b^*\delta_1b)\gamma a' = b\gamma_1b^*\delta_1b\gamma b' = b\gamma b'$. Let $\bar{a} = b^*\delta_1b\gamma a'\delta b\gamma b'$.

$$a\gamma_1 \bar{a}\delta a = a\gamma_1 b^* \delta_1 b\gamma a' \delta b\gamma b' \delta a = (a\gamma_1 (b^* \delta_1 b)\gamma a') \delta b\gamma b' \delta a$$
$$= b\gamma_1 (b^* \delta_1 b)\gamma b' \delta b\gamma b' \delta a = b\gamma b' \delta a = a$$

$$\bar{a}\delta a\gamma_1 \bar{a} = b^* \delta_1 b\gamma a' \delta b\gamma b' \delta a\gamma_1 b^* \delta_1 b\gamma a' \delta b\gamma b'$$

$$= b^* \delta_1 b\gamma a' \delta (b\gamma b' \delta a) \gamma_1 b^* \delta_1 b\gamma a' \delta b\gamma b'$$

$$= b^* \delta_1 b\gamma a' \delta (a\gamma_1 (b^* \delta_1 b) \gamma a') \delta b\gamma b'$$

$$= b^* \delta_1 b\gamma a' \delta b\gamma_1 b^* \delta_1 b\gamma b' \delta b\gamma b'$$

$$= b^* \delta_1 b\gamma a' \delta b\gamma b' = \bar{a}.$$

Hence $\bar{a} \in V_{\gamma_1}^{\delta}(a)$. Next let $\bar{c} = b^* \delta_1 b \gamma_1 c^* \delta_1 b \gamma b'$.

$$b\gamma b'\delta c = b\gamma b'\delta(c\gamma_1(c^*\delta_1c)\gamma_1c^*)\delta_1c = b\gamma b'\delta b\gamma_1(c^*\delta_1c)\gamma_1b^*\delta_1c$$
$$= (b\gamma_1(c^*\delta_1c)\gamma_1b^*)\delta_1c = c\gamma(c^*\delta_1c)\gamma_1c^*\delta_1c = c.$$
$$c\gamma_1(b^*\delta_1b)\gamma_1c^* = b\gamma_1(b^*\delta_1b)\gamma_1b^* = b\gamma_1b^*.$$

Then

$$c\gamma_1 \bar{c}\delta c = (c\gamma_1 b^* \delta_1 b\gamma_1 c^*) \delta_1 b\gamma b' \delta c = b\gamma_1 b^* \delta_1 b\gamma b' \delta c$$
$$= b\gamma b' \delta c = c$$

$$\bar{c}\delta c\gamma_1 \bar{c} = b^*\delta_1 b\gamma_1 b^*\delta_1 b\gamma_1 c^*\delta_1 (b\gamma b'\delta c)\gamma_1 c^*\delta_1 b\gamma b'$$

$$= b^*\delta_1 b\gamma_1 c^*\delta_1 (c\gamma_1 (b^*\delta_1 b)\gamma_1 c^*)\delta_1 b\gamma b'$$

$$= b^*\delta_1 b\gamma_1 c^*\delta_1 b\gamma_1 b^*\delta_1 b\gamma_1 b^*\delta_1 b\gamma b'$$

$$= b^*\delta_1 b\gamma_1 c^*\delta_1 b\gamma_1 b' = \bar{c}.$$

Hence $\bar{c} \in V_{\gamma_1}^{\delta}(c)$. Then

$$a\alpha e \gamma_1 \bar{a} = (a\alpha (e\gamma_1 b^* \delta_1 b) \gamma a') \delta b \gamma b'$$

= $b\alpha (e\gamma_1 b^* \delta_1 b) \gamma b' \delta b \gamma b'$
= $c\alpha e \gamma_1 \bar{c}$.

Therefore $(a,c) \in \mu$. Hence μ is transitive.

To show μ is a congruence, let $(a,b) \in \mu$ and $c \in M$, $\beta \in \Gamma$. Then by definition there exist $\gamma, \delta \in \Gamma$ and $a' \in V_{\gamma}^{\delta}(a)$, $b' \in V_{\gamma}^{\delta}(b)$ such that $a\alpha e\gamma a' = b\alpha e\gamma b'$ for every idempotent $e = e\alpha e \in M$. Now, $a' \in V_{\gamma}^{\delta}(a)$. Let $x \in V_{\gamma_2}^{\delta_2}(a'\delta a\beta c)$. Then by lemma 3.3, $x\delta_2 a' \in V_{\gamma_2}^{\delta}(a\gamma a'\delta a\beta c)$. Hence, $x\delta_2 a' \in V_{\gamma_2}^{\delta}(a\beta c)$. Similarly from $b' \in V_{\gamma}^{\delta}(b)$ and $x \in V_{\gamma_2}^{\delta_2}(a'\delta a\beta c)$ we get, $x\delta_2 b' \in V_{\gamma_2}^{\delta}(b\gamma a'\delta a\beta c)$.

$$(x\delta_2a'\delta a\gamma b')\delta(b\beta c)\gamma_2(x\delta_2a'\delta a\gamma b')$$

$$= x\delta_{2}(a'\delta a)\gamma(b'\delta b)\beta c\gamma_{2}x\delta_{2}a'\delta a\gamma b'$$

$$= x\delta_{2}(b'\delta b)\gamma(a'\delta a)\beta c\gamma_{2}x\delta_{2}(a'\delta a)\gamma(b'\delta b)\gamma b' \text{ (by Theorem 2.2)}$$

$$= (x\delta_{2}b'\delta b\gamma a'\delta a\beta c\gamma_{2}x\delta_{2}b')\delta b\gamma a'\delta a\gamma b'$$

$$= x\delta_{2}b'\delta b\gamma a'\delta a\gamma b' \text{ (since } x\delta_{2}b' \in V_{\gamma_{2}}^{\delta}(b\gamma a'\delta a\beta c))$$

$$= x\delta_{2}(b'\delta b)\gamma(a'\delta a)\gamma b' = x\delta_{2}a'\delta a\gamma b'\delta b\gamma b'$$

$$= x\delta_{2}a'\delta a\gamma b'.$$

Similarly $(b\beta c)\gamma_2(x\delta_2a'\delta a\gamma b')\delta(b\beta c) = b\beta c$. Hence, $x\delta_2a'\delta a\gamma b' \in V_{\gamma_2}^{\delta}(b\beta c)$. Next we show that $c\alpha e\gamma_2x\delta_2a'\delta a$ is β -idempotent. Now, $e\gamma_2x\delta_2a'\delta a\beta c$ is α -idempotent and $x\delta_2a'\delta a\beta c$ is γ_2 -idempotent.

$$(c\alpha e \gamma_2 x \delta_2 a' \delta a) \beta (c\alpha e \gamma_2 x \delta_2 a' \delta a)$$

$$= c\alpha (e \gamma_2 x \delta_2 a' \delta a \beta c) \alpha e \gamma_2 x \delta_2 a' \delta a \beta c \gamma_2 x \delta_2 a' \delta a$$

$$= c\alpha e \alpha e \gamma_2 x \delta_2 a' \delta a \beta c \gamma_2 x \delta_2 a' \delta a \beta c \gamma_2 x \delta_2 a' \delta a \text{ (by Theorem 2.2)}$$

$$= c\alpha e \gamma_2 (x \delta_2 a' \delta a \beta c \gamma_2 x) \delta_2 a' \delta a \beta c \gamma_2 x \delta_2 a' \delta a$$

$$= c\alpha e \gamma_2 (x \delta_2 a' \delta a \beta c \gamma_2 x) \delta_2 a' \delta a$$

$$= c\alpha e \gamma_2 (x \delta_2 a' \delta a \beta c \gamma_2 x) \delta_2 a' \delta a$$

$$= c\alpha e \gamma_2 x \delta_2 a' \delta a.$$

Then,

$$(a\beta c)\alpha e\gamma_2(x\delta_2 a') = a\beta(c\alpha e\gamma_2 x\delta_2 a'\delta a)\gamma a'$$
$$= b\beta c\alpha e\gamma_2 x\delta_2 a'\delta a\gamma b'$$
$$= (b\beta c)\alpha e\gamma_2(x\delta_2 a'\delta a\gamma b').$$

This shows that $(a\beta c, b\beta c) \in \mu$. Next let $y \in V_{\gamma_3}^{\delta_3}(c\beta a\gamma a')$. Also, $a' \in V_{\gamma}^{\delta}(a)$. Then by Theorem 3.3, $a'\gamma_3y \in V_{\gamma}^{\delta_3}(c\beta a\gamma a'\delta a)$. Thus $a'\gamma_3y \in V_{\gamma_3}^{\delta_3}(c\beta a)$. Similarly from $y \in V_{\gamma_3}^{\delta_3}(c\beta a\gamma a')$ and $b' \in V_{\gamma}^{\delta}(b)$ we get, $b'\gamma_3y \in V_{\gamma_3}^{\delta_3}(c\beta a\gamma a'\delta b)$. Now,

$$a\gamma a'\delta b = a\gamma a'\delta b\gamma b'\delta b\gamma b'\delta b = a\gamma a'\delta (b\gamma (b'\delta b)\gamma b'\delta b)$$
$$= a\gamma a'\delta a\gamma (b'\delta b)\gamma a'\delta b = (a\gamma (b'\delta b)\gamma a')\delta b$$
$$= b\gamma (b'\delta b)\gamma b'\delta b = b.$$

Thus $b'\gamma_3y \in V_{\gamma}^{\delta_3}(c\beta b)$. Then,

$$(c\beta a)\alpha e\gamma(a'\gamma_3y) = c\beta(a\alpha e\gamma a')\gamma_3y = c\beta b\alpha e\gamma b'\gamma_3y = (c\beta b)\alpha e\gamma(b'\gamma_3y).$$

This implies that $(c\beta a, c\beta b) \in \mu$. Hence μ is a congruence on M. To show μ is idempotent-separating congruence on M, let e and f be two

 α -idempotents of M such that $(e,f) \in \mu$. We have to show that e=f. Now, $(e,f) \in \mu$. Then by definition there exist $\gamma_4, \delta_4 \in \Gamma$, $e' \in V_{\gamma_4}^{\delta_4}(e)$, $f' \in V_{\gamma_4}^{\delta_4}(f)$ such that $e\nu g\gamma_4 e' = f\nu g\gamma_4 f'$, for every idempotent $g = g\nu g \in M$. Now,

$$e\alpha f = f\alpha e = f\alpha (e\gamma_4(e'\delta_4 e)\gamma_4 e')\delta_4 e$$

$$= f\alpha e\gamma_4(e'\delta_4 e)\gamma_4 f'\delta_4 e$$

$$= (f\gamma_4(e'\delta_4 e)\gamma_4 f')\delta_4 e$$

$$= e\gamma_4(e'\delta_4 e)\gamma_4 e'\delta_4 e = e.$$

Again, $e\alpha e\gamma_4 e' = f\alpha e\gamma_4 f'$. So, $e\gamma_4 e' = f\alpha e\gamma_4 f'$. $e\alpha f\gamma_4 e' = f\alpha f\gamma_4 f'$. So, $f\gamma_4 f' = e\alpha f\gamma_4 e'$. Hence, $e\alpha f\gamma_4 f' = e\alpha f\gamma_4 e'$. Then,

$$e\alpha f = (e\alpha f \gamma_4 f')\delta_4 f = (e\alpha f \gamma_4 e')\delta_4 f = f\alpha f \gamma_4 f'\delta_4 f = f.$$

Hence e=f. Thus μ is idempotent separating congruence on M. Finally, suppose that ρ is an idempotent-separating congruence on M. If $(a,b)\in \rho$ then we have by Lemma 3.5 $(a,b)\in \mathcal{H}$. Then by Lemma 3.4, there exist $a'\in V_{\gamma}^{\delta}(a),\ b'\in V_{\gamma}^{\delta}(b)$ such that $a\gamma a'=b\gamma b',\ a'\delta a=b'\delta b$. Then $a'=a'\delta a\gamma a'=a'\delta b\gamma b'$ and $b'=b'\delta b\gamma b'=a'\delta a\gamma b'$. Since $(a,b)\in \rho$, $(a'\delta a,a'\delta b)\in \rho$ and accordingly $(a'\delta a\gamma b',a'\delta b\gamma b')\in \rho$. Hence $(b',a')\in \rho$. Again, $(a,b)\in \rho$ implies $(a\alpha e\gamma a',b\alpha e\gamma a')\in \rho$. Also, $(a',b')\in \rho$ implies $(b\alpha e\gamma a',b\alpha e\gamma b')\in \rho$. Hence $(a\alpha e\gamma a',b\alpha e\gamma b')\in \rho$. Then $a\alpha e\gamma a'=b\alpha e\gamma b'$, since both are δ -idempotents. Hence $\rho\subset \mu$. Thus μ is the maximum idempotent-separating congruence on M.

Acknowledgement. The author expresses his deep sense of gratitude to Dr. M. K. Sen for his guidance in the preparation of this paper.

References

- [1] J. M. Howie, The maximum-idempotent-separating congruence on an inverse semigroup, Proc. Edinburgh Math. Soc. (2) 14(1964), 71-79.
- [2] M. K. Sen and N. K. Saha, On Γ-semigroup-I, Bull. Cal. Math. Soc. 78(1986), 180-186.
- [3] N. K. Saha, On Γ-semigroup-II, Bull. Cal. Math. Soc. 79(1987), 331-335.
- [4] N. K. Saha, On Γ-semigroup-III, Bull. Cal. Math. Soc. 80(1988), 1-12.

[5] N. K. Saha and A. Seth, Inverse Γ-semigroup, Accepted for publication in J. of Pure Maths., Calcutta University.

DEPARTMENT OF MATHEMATICS, PINGLA THANA MAHAVIDYALAYA, MIDNAPORE, WEST BENGAL, INDIA, PIN-721140.