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FIXED POINT THEOREMS FOR
LIPSCHITZIAN SEMIGROUPS IN
p-UNIFORMLY CONVEX BANACH SPACES-

Sung Kag Chang and Sang Sik Shin

1. Introduction

Let X be a Banach space with norm || - | and let C' be a nonempty
closed convex subset of X. A mapping T of C into itself is said to be
Lipschitzian if there exists a positive number k& such that

|Tz—Ty||<k|z—y]| forallz,yeC.

If k can be taken to be 1, then the mapping T is said to be nonexpan-
sive.

Goebel and Kirk (3] first studied the existence of fixed points for uni-
formly Lipschitzian mappings in uniformly convex Banach space. Since
then, many authors have studied fixed point properties including ergodic
properties for Lipschitzian mappings and/or Lipschitzian semigroups in
Hilbert spaces and uniformly convex Banach spaces. For instance, Lif-
schitz [6] proved that uniformly k-Lipschitzian mappings in a Hillbert
space have fixed points if k& < v/2. Lim|[7,8] studied fixed point theorems
for uniformly Lipschitzian mapping in LP-spaces. Lau[5] showed that a
nonexpansive semigroup in a Hilbert space has a fixed point by using
left invariant means. Also Downing and Ray([2] and Ishihara and Taka-
hashi[4] showed that a uniformly k-Lipschitzian semigroup which is left
reversible has a commom fixed point in a Hilbert space if £ < v/2. Re-
cently Mizoguchi and Takahashi [9] showed that a Lipschitzian semigroup
in a Hilbert space has a common fixed point by using a left invariant sub-
mean. Also Xu[12] studied the existence of common fixed points for a
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uniformly Lipschitzian semigroup in a uniformly convex space by using a
left invariant mean.

In this paper, our purpose is to give a fixed point theorem for a Lips-
chitzian semigroup in a p-uniformly convex Banach space by using a left
invariant submean.

Our main result generalizes those of Mizoguchi and Takahashi[9] and
Xu[12].

2. Preliminaries

Throughout this paper, the Banach space X is assumed to be p-
uniformly convex with p > 1.
Then we have a lemma.

Lemma 2.1[12]. If a Banach space X is p-uniformly convex with p > 1,
then there exists a constant d > 0 such that for allz,y € X and 0 < A < 1,

| Az + (1= Ay |7 (2.1)
SA[e|P+A =M [y |7 —dAQ = AP + XA =) [l —y |

Remark [13]. The constant d can be taken as

d = inf{(Allz|P+1=A) |y P — | Az + (1 = Ay [P)/(A(L = A)
+XP(1-A)):0< A<, 2,y € Xwith ||z —y ||=1}

Let S be a semitopological semigroup. That is, S is a semigroup
with Hausdorff topology such that for mapping ¢ — st and s — st are
continuous for s, € S. Let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm | - |, and let B denote a
subspace of B(S) which contains all constant functions.Now we introduce
a submean on B which is a generalization of "mean” and "limsup”.

Definition. A submean g on B is a real valued function on B satisfying
the following conditions:
(1) u(f +9) < p(f) + u(g) for all f,g € B,
(2) p(Af) = Ap(f) for all f € B and real constants A > 0,
B)u(f)Swg)if f<gfor fgeB
(4) plc) = ¢ for all constant functions .

Occasionally, we use the notation u,(f) instead of u(f) in order to
indicate the variable of functions f.
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Lemma 2.2. Let C be a nonempty closed convez subset of X and let {z, |
t € S} be a bounded set in X. Assume that the function f.(t) =| z,—z ||?
isin B for each z € C. Let

r(z) = p(f=(t)) for z € C.

Then r(z) is a continous and convez functions on C. Furthermore, there
exists a unique z € C such that

r(z) = inf{r(z) | z € C}
and
r(z)+d||z—z||’P<r(z) forallz € C (2.2)
Proof. We show first that r(z) is continuous. Let {z,} be a sequence in
C converging to z. Then, using the inequality
|a? — | < pla — b|(a® ' + &) for a,b >0 and p > 1,
we have for all n, and t € S,

Il 2o = @a P = [l 2 — = []°|
pllze—zall = lze—2 Il (| 2e— 2 77" + | 2 — 2 |P77)
Plaa—all(lze—2a P + [ 2o — 2 |P7)

IA A

Since {z;} and {z,} are bounded, p(|| z: — z, |P™* + || z: —z ||P7") is
bounded by some number M uniformly on n and t. Thus we have for all
n, and all £,

Mze—zn P —l[ze—2 PIS M || 2 — = |
By taking the submean p, we get
| r(zn) —r(z) |K M || 2, —x || for all n.

Hence r is continous on C.
For z,y € C and 0 < A < 1, from (2.1)

fze=dz =0 =Ny [P = | Mze—2)+(1=A)(z—y) |
< Ma—z|P+0-N)||z—y|F forallte S
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By taking the submean y, we have
r(Az 4 (1= A)y) < Ar(z) + (1 = Ar(y).

Which shows r(z) is convex.
Since {z.} is bounded, r(z,) — oo for any sequence {z,} in C' with
| £ ||— oo. From [1], there exists z € C such that

r(z) = inf{r(z) | z € C}
For any z € C and t € 5, 0 < A < 1, we have from (2.1)

| @ — Az — (1= M)z ||?
SAlec—e P +H1 =) o=z [P =d(AL = AP + A1 =A)) |z — ="

By taking the submean y, we have for all 0 <A<,
r(z) Kr(Ae+ (1 -A)z) < Ar(z)+ (1 = A)r(z) —d ||z — = || .

Thus r(z) 4+ d || z — z ||P< r(z), which implies also the uniqueness of such
minimal element z in C.

Definition. Assume that B is a left translation invariant subspace of
B(S). That is, the function ¢ — f(st) is also in B for every f € B
and every s € 5. A submean p on B is said to be left tnvariant if
p(f(t)) = w(f(st)) for all f € B and s € S.

3. Main Results

In this section, we give a fixed point theorem and an existence of a
continuous retraction of C' onto the set of fixed points for a Lipschitzian
semigroup.

Definition. A family & = {T; | t € S} of mappings T; of C into itself is
sald to be a Lipschitzian semigroup on C if the followings are satisfied ;
(1) Tz =T, Tz for all z € C, s,t € S,

(2) the mapping ¢ — Tiz is continuous of S into X for each z € C|

(3) T; is a Lipschitzian mapping on C for each t € S i.e. there exists a
constant k; > 0 such that

| iz = Ty [|< ke[| 2 —y || forall z,y €C (3.1)

Lemma 3.1. Let {T; |t € S} be a Lipschitzian semigroup on C such that
{k:} is bounded. Assume that {Tiz |t € S} is bounded for some z € C
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and the functions f(t) =|| T,y — = ||P are in B for any z,y € C. Let
q(z,y) = p|| Toy — z ||P) for z,y € C. Then q(z,y) is continuous and
conver in x € C with each fired y € C. Moreover there exists a unique
z € C such that

q(z,y) = inf{q(z,y) | € C}
for each fired y € C. In fact,

q(z,y)+d|| z—z ||P< g(z,y) for all z € C, (3.2)

Proof. Tt follows from lemma 2.2 by letting z; = T}y.
Lemma 3.2. Under the hypothesis of lemma 3.1, assume that the function
g(t) = ki isin B. Then g(z,y) is continuous both for z and y in C.

Proof. Let {z,} and {y.} be any sequences in C such that z,, — z and
Yo — y. Then, using the inequality in Lemma 2.2., we have

I Teym — 2a |I” = || Ty — = |17
S Teym — 2o 1P = | Ty — 2o Pl + || T — 2o P — || Tew — = |7
<SP Ty = Tey || (| et — 2 [P + || Ty — 2 [IP7)
ol en =2 [ (| Ty — 2 [P = || Tey — 2 [[7)
< phe(|| Teym — 2 77"+ (| Toy = 20 P79 Ly — v |
(| Ty — 2 IP = | Ty — 2 ) [ g — ||

Since {y,},{z,.} and {k;} are bounded and {T;} is Lipschitzian, there
exists a bound M > 0 independent of n,m and ¢ such that for all m,n
and t,

Ml Teym — 2 [P = | Toy — 2 [PIS M(| ym —y || + || 20 — 2 {])-
By taking the subman g, we have
| 6(zn,ym) — @z, y) IS M| ym —y | + [| 22 — 2 [))-
Thus ¢(z,y) is continuous both for z and y € C.

Now from lemma 3.1, we can define a mapping G on C such that
Gy = z for y € C if ¢(z,y) = inf{g(z,y) | = € C}. Then we have from
(3.2), forevery y € C and all z € C

q(Gy,y) + d || Gy — z ||’< ¢(z,y), (3.2a)
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Theorem 3.3. Assume that B is a left translation invariant subspace of
B(S) and p is a left invariant submean on B. Under the hypothesis of
lemma 3.2, if u(k}) < 1+ d, then G™u converges to a fized point of the
semigroup I = {1, |t € S} asn — oo for everyu € C.

Proof. From (3.2a) with z = TGy for any y € C, we have

d|| Gy —T,Gy |P < pl|l Ty — T.Gy ||”) — (|| Tey — Gy ||P)
< (K =Dl Ty — Gy |I")

by the left invariance of p. )
ie. || Gy —T.Gy ||P< E M (|| Ty — Gy ||?) for all s € S. Taking the

submean g on both sides, we obtain by definition of &

[1s(K3) — 1]

us(|| T.Gy — Gy ||P) < S

we|l Ty — v |I7)-

Let k = B®8-1  mpey by taking y = G™"'u for any u € C and integer
>1 t
n > 1, we get,

welll TiG™s — G™u |P) < (]| TiG™ — 6™ [P).
Thus by induction, for n > 1
pe(ll TeG™u — G™u |[P) < K™ pe(|| Tew — w ||P), (3.3)

because pu(kf) < 1+4+d,0<k < 1.
From (3.2a) with ¢ = y = G™u, we have

d]| G u — G |P< (] TG — G |P) = (| TG — G [P,

Hence for n > 1, from (3.3) we have

e

k
I G* = Gu P< = (|| Tew —w |P), (3-4)

which implies that {G™u} is a Cauchy sequence in C. Since C is closed

(complete), there exists z € C such that G"u — z asn — oc. Let y = k.
Then from (3.4) we get

| G*u— = ||< %(%q(u,u])%,n =1 (3.5)
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and for s € S,

| z — Tez || | z— G || + || G"u — T,G"u | + || T,G"uv — Tz ||

<
< [L+k(s)] ] 2= G|l + || G*u—T,G™u ||~ 0 as n — .

Which complete the proof.

Now we have some special cases. By taking B = RUC(S) and p a left
invariant mean in theorem 3.3, we have

Corollary 3.4[12]. Under the hypothesis of lemma 3.2, if S is a left
reversible semigroup and sup{ki |t € S} < 1 + d, then the semigroup
{T, |t € S} has a common fired point.

Remark. When X is a Hilbert space, then constant d can be taken as
1. Hence by taking X a Hilbert with d = 1 in theorem 3.3, we have the
following. '

Corollary 3.5 [9]. Under the hypothesis of lemma 3.2, if X ts a Hilbert
space and p(k?) < 2, then the semigroup {T; |t € S} has a common fized
point.

From theorem 3.3., we can define a mapping P on C as Pz = lim,,_,,, G"z

for z € C. Let F(S) be the set of common fixed points for the semigroup
S={T;|te S}

Then we have a lemma.

Lemma 3.6. Under the hypothesis of theorem 3.3, G is a continuous
mapping on C.

Proof. Let {y.} be any sequence in C' converging to y. From (3.2a), we
have for each n > 1,

¢(Gyn,yn) + d || Gyn — Gy ||P< ¢(Gy,yn), (3.6)

Since ¢(Gy, y.) is bounded, {Gy,} is bounded. Suppose that {Gy,} does
not converge to Gy as n — 00. Then there exist a number ¢ > 0 and a
subsequence {Gy,,} of {Gy,} such that

| Gyn, — Gy ||> ¢ for all i.

Without loss of generality, we may assume Gy,, = Gy; for all 1.
Let A= {Gy, |n=1,2,---} U{Gy} and let A be the closure of A.
Take € = 1dc? > 0.
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From the fact that for some 0 < § < 1,
Wl Teyn — = |IP = || Ty — = |I"]
< plll Ty -2l +0( Teyn =2 | = | Ty — ) P ke [ 9 —w |,

we see that g¢(z,y,) converges to ¢(z,y) uniformly for z in any bounded
set as n — 00. ~

Since A is closed and bounded, ¢(z,y,) — ¢(z,y) uniformly for z € A
as n — oo. Hence there exists a number N > 0 such that for all z €
A,| g(z,yn) — q(z,y) |< € whenever n > N. ie. ¢(2,y) — € < g(2,y,) <
g(z,y) +eforallz € A,n > N.

Since Gy, Gy, € A, for n > N, we have

q(Gy,y) —e = inf{q(z,y) |z € A} —¢
< inf{g(z, ) | 2 € A} = ¢(Gyn,ya)
1.8
9(Gy,y) < q(Gyn,yn) + € for n 2 N,
From (3.6), thus for n > N, we have

1(Gy,y) < q(Gy,yn) — ¢

which is a contradiction to the continuity of ¢. Hence Gy, must converge
to Gy as n — oo. This complete the proof.

Theorem 3.7. Under the hypothesis of theorem 3.3, the mapping P is a
continuous retraction of C onto F(S).

Proof. Obviously Pz = z for any z € F(S). Let {y.} be any sequence
in C converging to y and let D = {y, | n = 1,2,---} U {y}. Then D is
a compact set in . Therefore ¢ is bounded on D x D by some number
M > 0. ie. g¢(z,y) < M for all z,y € D. From (3.5), G"z converges
to Pz uniformly for z € D. Hence for any ¢ > 0, there exists a number
N > 0 such that

| G"z — Pz ||< -;; forall z € D and n > N.
Since GV is continuous on C, there exists N,> 0 such that || GNy,, —
Gy |l< 5 for all m > N. Thus for any m > N, we get
I Pym —Py |l < || GVym — Gy || + | Pym — GNym | + 1| Gy — Py |
< €

This implies that Py,, — Py as m — co.
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