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SCALING d-MEASURES

Hung Hwan Lee and In Soo Baek

1. Introduction

In [2], the Hausdorff measures which obey a simple scaling law were
investigated. Recently, d-measure was introduced to overcome difficulties
in the theoretical development of a dimensional index induced by lower
capacity [1]. In this note, we are interested in the characterization of
continuous increasing functions @ by which d-measures d’ obeys a scaling
law. We obtain the exactly same results for d° as those in [2]. Thus we
could get the inter-relations of Hausdorff measure, D-pre-measures and
d-measures satisfying a simple scaling law.

2. Preliminaries

Let @ be a continuous increasing function defined on R* with 6(0) = 0.
We define a pre-measure D? of F C R™ by D?(F) = lim,_oN(F,r)(r),
where N(F,r) is the minimum number of closed balls in R™ with diameter
r, needed to cover F. Then D%¢) = 0, D*(F) = D%(F), and Df is
monotone. We employ Method I by Munroe [3] to obtain an outer measure
d’ of EC R™ ; d’(E) = inf{T%, DY(E,) : U2, E, = E}. In particular,
when 0(t) = t*, d° is the a-dimensional d-measure [1]. It is not difficult to
show that d’ is a Borel regular and metric outer measure (cf. [1]). Clearly,
d® is a regular outer measure (cf. [1]). Also, using the subadditivity of
Hausdorff outer measure H? and the definition of d’, we easily see that
HY(E) < d°(E) for every set E C R™. We say that d’ obeys an order
o scaling law provided whenever K C R™ and ¢ > 0, then d°(cK) =
c*d’(K).
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3. Main results

Throughout this section, we assume that 0 is any continuous increasing
map of RT into Rt with (0) = 0 such that  is strictly concave down on
a right neighborhood of 0 : there is some é > O such that if 0 <z <y < §
and 0 <t <1,

O(tz + (1 —t)y) > t0(z) + (1 —1)0(y) [2].

R.D. Mauldin and S.C. Williams construct a special Cantor set
C = Nu[Usew* jo|=ns), Induced by @ such that 0 < H(C) < oo. (See [2]
for the details.)

Lemma 1. For the special Cantor set C induced by 0 in [2],
0 < HY Q) =d(C) = DP(C) < 0
Proof. Since H?(C) < d%(C) < DYC), we only need to show that

D(C) < H?(C). Considering the sequence {m,} and {z,} induced by @
(cf. Lemma 6 in [2]), we have

D’(C)

A

lim, N(C, z,)8(z,)
< lim, [] mif(z,) = H*(C).

=1

Lemma 2([2]). Suppose that for all ¢ > 0

li_mi—>0 H(t)
Then, for all ¢ > 0, lim,;_,o %%l = .
Proposition 3. Suppose that for all ¢ > 0

B(ct)
=0 (%)

(e

If K CR™ and ¢ > 0, then D?(cK) = ¢*D?(K).
Proof. Noting N(¢K,cr) = N(K,r), we obtain the result using the similar
method as the proof of Theorem 4 in [2].
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Corollary 4. Suppose that for all ¢ > 0

2 O(ct 2
h—mt—rﬂ%t)) =HG
If K C R™ and ¢ > 0, then D?(cK) = c*D?(K).
Proof. 1t follows immediately from Lemma 2 and Proposition 3.

Theorem 5. Suppose that for all ¢ > 0 and K C R}, d?(cK) = ¢*d*(K).
9(ct)

o(t)

Proof. First, we show that lim, ,,——

o

0(ct)
0(t)
that there exists K C R! such that 0 < d’(K) < oco. Suppose that
6(ct)
6(t)
B(ce) > Be*0(e) for all 0 < € < gp. Thus,

Then, for all ¢ > 0, lim, ,,——

< ¢%. From Lemma 1, we assure

lim, .4 > Ac® for A > B > 1. Then there exists g > 0 such that

&(cK) = mf{z D(cE,) :

n=1

= mf{z lim, o N(E,,e)8(ce) : USL,E, = K}

n=1

= K}

n-l

> 1nf{z Lim, ,(N(E,,e)Bc*d(c) : U2 E, = K}

= B inf{z D*(E,) : U=,E, = K}

n=1

= Bc*d(K).
Therefore c*d®(K) = d?(cK) > Bc*d’(K). It is a contradiction. It re-
mains to show lim, Z((Ct)) > ¢*. Fix ¢ > 0 and let the sequence {z,}

decrease to zero with

i, Oet)
nioo H(zn) — Mmooy

Here, we consider the special Cantor set C induced by the subsequence
{z.} of {z,}, which is constructed from @ in [2]. Then, from Lemma 1,
we have

0 < H*(C)=d’(C) < .
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Clearly
d’(cC) < D¥(cC)
< lim,_ N (cC, cz,)8(cz,)
= lim,_, [[mif(czs) (cf [2]).
1=1
Thus,
cd’(C) = d°(cC)
< iy i “)[9 Hmtl
" O(cz,
Hence, for each ¢ > 0,
0(cz,) .. 0(ct)
& = .
c = h_.n.—n‘)c 8(.’17“) ll_£—>0 Q(t)

Corollary 6. The following five statements are equivalent.
(1) If ¢ > 0, then !:1_{%98(3)) =,
(ii) If K CR™ and ¢ > 0, then

H(cK) = HO(K).

(i) If K C R! and ¢ > 0, then
H(cK) = “H*(K).

(iv) If K C R! and ¢ > 0, then
D(cK) = ¢*D*(K).

(v) If K CR" and ¢ > 0, then
d’(cK) = d*(K).
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Proof. (i) < (ii) < (iii) follows from Theorem 5 in [2]. It follows from
Proposition 3 and Theorem 5 with Lemma 2 that i) = iv) and v) = 1).
iv) = v) is trivial by the definition of d°.
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