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ABSTRACT

It is known that the maximum likelihood method does not pro-
vide explicit estimator for the scale parameter of the Weibull distri-
bution based on Type-II censored samples. In this paper we provide
an approximate maximum likelihood estimator (AMLE) of the scale
parameter of the Weibull distribution with Type-II censoring. We ob-
tain the asymptotic variance and simulate the values of the bias and
the variance of this estimator based on 3000 Monte Carlo runs for
n = 10(10)30 and r, s = 0(1)4. We also simulate the absolute biases
of the MLE and the proposed AMLE for complete samples. It is found
that the absolute bias of the AMLE is smaller than the absolute bias
of the MLE.

1. INTRODUCTION

The Weibull distribution has in recent years assumed a position of
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prominence in the field of reliability and life testing where samples are of-
ten either truncated or censored. From a computational point of view, this
distribution is particularly appealing, since its cumulative distribution func-
tion can be expressed explicitly as a simple function of the random variable.
Various topics associated with this distribution have been considered by nu-
merous authors. The results about the truncated and censored samples from
the several distributions including the Weibull distribution may be found in
Cohen (1991). But, for the Weibull distribution, the maximum likelihood
method based on Type-II censored samples does not provide explicit esti-
mators. Hence, it is desirable to develop approximation to this maximum
likelihood method of estimation which would provide us with estimators that
are explicit functions of order statistics. The approximate maximum likeli-
hood estimation method was first developed by Balakrishnan (1989 a, b) for
the purpose of providing the explicit estimators of the scale parameter in the
Rayleigh distribution and the mean and standard deviation in the normal
distribution with censoring. For the generalized logistic distribution, the
AMLE: of the location and scale parameters were obtained by Balakrishnan
(1990). Balakrishnan and Wong (1991) obtained the AMLEs of the loca-
tion and scale parameters in the half-logistic distribution with Type-II right
censoring. Balakrishnan and Varadan (1991) obtained AMLEs of the loca-
tion and scale parameters in the extreme value distribution with censoring.
Some historical remarks and a good summary of the approximate maximum
likelihood estimation may be found in Balakrishnan and Cohen (1991).

Ir. this paper, we provide approximate maximum likelihood estimation
method of deriving explicit estimator by approximating differentiate formula
the log-likelihood equation for the Weibull distrbution with general Type-II
censoring. We obtain the asymptotic variance and simulate the values of
the biases of the MLE and AMLE and the variance of the AMLE (based on
3000 Monte Carlo runs).

2. APPROXIMATE MAXIMUM LIKELTHOOD ESTIMATOR
AND ASYMPTOTIC PROPERTIES

Consider the Weibull distribution with probability density function (pdf)

f(z;8,0) = G%xﬂ_le_(”/e)ﬂ, z>0,6>0 8>0 (2.1)
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and cumulative distribution function (cdf)

F(z;8,6) = 1 - exp{—(/6)"}, (2.2)

where f is known.

The Weibull distribution is widely used in engineering practice due to its
versatility. It provides a close approximation to the distribution of the item.
Suppose some initial observations are censored and some final observations
are also censored. Then let

Xr+l:n S Xr+2:n S e < Xn—s:n (23:’

be the available Type-II censored sample from the Weibull distribution with
pdf (2.1), where the first r and last s observations are censored. Based on
the censored sample in (2.3), we shall derive the AMLE of 6 in this section.

The likelihood function based on the censored sample in (2.3) is given
by

L —n—!G_A{F(ZrH:n)}r{l ~F(Zn_s:n)}° ﬁ H(Zi:n) (2:4)

Tpls! .
i=r+1

where A = n—r —s is the size of the censored sample in (2.3), Z;., = X;.n /6,
and f(z) = Bz#~1e=*" and F(z) = 1 — exp(—2#). From equation (2.4), we
differentiate the logarithm of the likelihood function for 8 as follows;

dlnL — 1 f(Zr+1:n)
=g At I
f(Zn—s:n) — f’(Zi:n)
- Zn—s:n Zi!n
s 1= F(Znwm) © ZZ_;I F(Zin) J
=0. (2.5)

Equation (2.5) does not admit an explicit solution for 0, so we will ex-
pand the functions f(Zri1:0)/F(Zr41.0), f(Zn—s:n)/{1 - F(Zp,-5:n)} and
f'(Zi:n)/ f(Zi:n) appearing in (2.5) to Taylor series around the points
F7 (pr41) = (=In ¢r4)'/?, F~(pn_,) = (~In g._,)'/#, and Fl(p:) =
(—In ¢;)'/#, respectively, and then approximate them by
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f(Zr+l:n) ~
m -~ a—éZT_H._n, (26)
H(Zn—sn) ~ K+ndp_s 2.7
A= F(Zuogm)y = "1 1ommsm @7
and F1(Zen)
m o~ I/g‘+7g‘Z,‘;n, (28)

where p,=:¢/(n+1), ¢ =1 - p;,
a :IB(("IHQr-f-I)l/ﬂ)ﬂ—IQT+1/pr+l
— (~Ing,41)*/% [(ﬂ(ﬁ - 1)((“lnqr+1)l/ﬂ)ﬂ—zqr+1

— 5 ((—lnqr+1 )1/ﬂ>2ﬁ—241r+1)/pr+1

= B ((~tngrs 1)) a2 B, (2.9)

§ =p" ((_ln(hﬂ)1/ﬂ)2ﬁ‘2§3+1/l’£+1 B (5(5 - 1)((—lnqr+1)l/ﬁ)ﬂ_2
- ,32 ((—IDQT+1)1/0)2ﬂ—2)QT+1/pr+17 (210)
K = ﬂ((—lnqn_s)l/ﬂ)ﬂ—l ~(~Ingn-s)""PB(8~1)((~lngn—,)"/*)" %, (2.11)
n= B8~ 1)((~Ingn_s)"/8)" %, (2.12)

vi =((8 - 1(~1ng)) ™/ ~ B((~Ing:)/#)" ™)
— (~Ing))!/*[(8 = 1)(8 — 2)(~Ingi)~*/*
— 38(8 — 1)((~1ng:)/#)" ™" + B ((~lng)"/#)*~*
— (8~ 1)(~Ingi)™1/5 — ﬂ((—lnqi)l/ﬁ)ﬂ_l>2J, (2.13)
and
% = (8= 1)(8 - 2)(~Ing)) /" — 38(8 — 1)((~Ing:)!?)" "
+ 5*((~lngs)!/#) " |

~ (8- 1)(~1ngs) ™% ﬂ((—lnqi)”")ﬂ"l)z. (2.14)



Approximate MLE for the Scale Parameter 23

The special case with B = 2 is known as the Rayleigh distribution. From
(2.6), (2.7) and (2.8), we may approximate the equation (2.5) by

dinL  dInL* 1
20 ~ a0 = — 5[A+7"Zr+l:n(a_6zr+liﬂ)

— SZn—s:n(K + nZn—s:n) + Z (Vi + 7iZi:n)Zi:n
i=r+1
=0 (2.15)
Upon solving equation (2.15) for 6, we derive the AMLE of 4 as follows;

{—B +(B? + 44C)'/?}

b 2.16
2A 9 ( )
where
n—s
B = raXr+1:n - SKXn—s:n + Z ViXi:na
t+r+1
and

n-—38
C = r6X3+1m + snX,Z,_m — Z ’YiXi;n2-
i+r41

Since the AMLE is the solution of the approximate maximum likelihood
equation (2.15), it immediately follows that  is asymptotically normally
distributed with mean ¢ and variance 1/E(—d?*InL*/d6?) (See Kendall and
Stuart(1973)). From (2.15), we can derive

E( B d*InL*

= ) ~ D/6?, (2.17)

where

D =3<T6E(ZTZ'+1:n) + SnE(Zz—s:n) - rf 71E(Zz2n))
=741
— Z(TO[E(ZT+1;n) —SkE(Zp_s.0) + "Z_“’ I/,‘E(Zi;n)) —A.

i=r+1
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Therefore, the variance of AMLE § may be approximated from the preceding
expression (2.17) by using the following formulas;

B(Zin) = (= 1)7(!n T %) 2(_1)r (z - 1>/(n iyt

and

2y _ n! 2 i_l_ fr—1 n i 142/8
B <0+ P 2 () e mimre
(See Lieblein(1955)).

In Table 1, we simulate the absolute biases of the MLE and the AMLE
é (based on 3000 Monte Carlo runs) for complete samples. From Table
1, the absolute bias of the AMLE is smaller than the absolute bias of the
MLE. Hence, the AMLE is better than the MLE for complete samples in
the sence of bias. We also simulate the values of the bias and the variance
of the AMLE 8 (based on 3000 Monte Carlo runs) for n = 10, 20, 30 and
r,s = 0(1)4 when 8 = 3 and § = 0.5, and then use them to compute the
values of E(§—6)/6, Var(6)/6? in Table 2. The values of asymptotic variance
of the AMLE that are given in Table 2 are computed from (2.17) in the
asymptotic normality. From Table 2, we observe that asymptotic variances
of the AMLE is close to the variance of the AMLE. We also observe that
the bias of the AMLE decreases, for fixed r and s, as n increases. This is
to be expected, as the estimator 6 in (2.16) is approximate solution to the
likelihood equation (2.5).

Table 1. The absolute biases of the MLE and the AMLE of the scale

parameter in the Weibull distribution for complete sample (n = 10)

B=1 B=2 B=3

0 MLE AMLE MLE AMLE MLE AMLE

0.5 0.00044 0.00044 0.00589 0.00067 0.00522  0.00417
1.0 0.00089 0.00089 0.01178 0.00134 0.01044  0.00833
2.0 0.00178 0.00178 0.02357 0.00269 0.02089  0.01666
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Table 2. The relative hbiases, the relative variances and the asymptotic
variances of the AMLE 6 of the Weibull scale parameter from the Type-II
censored samples.

~

r s n E6-9)/6 VAR(6)/6? AVAR(6)/62

0 0 10 -0.00987 0.01134 0.01148
20 -0.00386 0.00539 0.00692
30 -0.00244 0.00357

0 1 10 -0.01105 0.01262 0.01269
20 -0.00408 0.00566 0.00727
30 -0.00224 0.00376

0 2 10 -0.01003 0.01421 0.01452
20 -0.00441 0.00606 0.00833
30 -0.00218 0.00389

0 3 10 -0.01115 0.01640 0.01628
20 -0.00400 0.00638 0.00846
30 -0.00207 0.00406

0 4 20 -0.00437 0.00673 0.00729
30 -0.00175 0.00424

1 0 10 0.00757 0.01183 0.01087
20 0.00041 0.00545 0.00681
30 -0.00059 0.00359

1 1 10 0.00822 0.01323 0.01197
20 0.00041 0.00571 0.00715
30 -0.00034 0.00377

1 2 10 0.01152 0.01494 0.01334
20 0.00032 0.00612 0.00816
30 -0.00021 0.00390

1 3 10 0.01335 0.01736 0.01510
20 0-00100 0.00644 0.00829
30 -0.00003 0.00408

1 4 2 0.00094 0.00681 0.00716
30 0.00037 0.00426

2 0 10 0.04337 0.01288 0.00983
20 0.00954 0.00557 0.00658
30 0.00342 0.00363

2 1 10 0.04782 0.01451 0.01071
20 0.00999 0.00585 0.00699
30 0.00381 0.00381

2 2 10 0.05586 0.01653 0.01180
20 0.01041 0.00627 0.00784
30 0.00408 0.00395

AVAR(8) = 1/E(—d?InL* /d6?)
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Table 2. (Continued)

ros n E(6—9)/6 VAR(6) /62 AVAR(6)/6*

2 3 10 0.06385 0.01942 0.01316
20 0.01167 0.00661 0.00796
30 0.00441 0.00413

2 4 20 0.01226 0.00700 0.00691
30 0.00498 0.00431

3 0 10 0.09799 0.01474 0.00860
20 0.02365 0.00576 0.00627
30 0.00969 0.00367

3 1 10 0.10825 0.01675 0.00927
20 0.02480 0.00606 0.00655
30 0.01029 0.00386

3 2 10 0.12362 0.01926 0.01017
20 0.02602 0.00651 0.00740
30 0.01078 0.00400

3 3 10 0.14128 0.02279 0.01104
20 0.02816 0.00688 - 0.00750
30 0.01136 0.00418

3 4 20 0.02976 0.00730 0.00657
30 0.01218 0.00437

4 0 20 0.04247 0.00605 0.00589
30 0.01810 0.00375

4 1 20 0.04456 0.00637 0.00614
30 0.01897 0.00395

4 2 20 0.04634 0.00685 0.00688
30 0.01977 0.00409

4 3 20 0.05017 0.00726 0.00697
30 0.02067 0.00428

4 4 20 0.05312 0.00773 0.00616
30 0.02184 0.00447
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