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On Linear Discriminant Procedures
Based On Projection Pursuit Method
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ABSTRACT

Projection pursuit(PP) is a computer-intensive method which seeks
out interesting linear projections of multivariate data onto a lower dimen-
sion space by machine. By working with lower dimensional projections,
projection pursuit avoids the sparseness of high dimensional data. We
show through simulation that two projection pursuit discriminant meth-
ods proposed by Chen(1989) and Huber(1985) do not improve very much
the error rate than the existing methods and compare several classifica-
tion procedures.

1. INTRODUCTION

The problem of discriminant analysis arises when an investigator makes a
number of measurements on an individual and wishes to assign the individual
to one of several predetermined classes on the basis of these measurements.
From a statistical point of view, the objective of discriminant analysis is to
make inferences about the unknown class membership. In addition to the so-
called feature vector of measurements, x, from an individual, the probability
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distribution, Pr(x | Ck) for each class C¢, k = 1,2,...,n, is crucial in develop-
ing inference procedures. Generally, statistical discriminant analysis involves
the selection of distribution models for each class investigated as well as the
construction of related inference procedures. In practice, the probability dis-
tribution, Pr(x | C) for any class C, is unknown, but it may be inferred and/or
estimated from other individuals in the same set of classes studied. These in-
dividuals form the so- called training sample. Based on the training sample, a
statistic, optimal in some sense, can be derived for the inference procedure.

Suppose that our population consists of two classes, C; and C,. In con-
structing an optimal statistic, Fisher(1936) developed a method which uses a
linear combination of the training sample, and chooses the coeflicients of linear
combination so taht the ratio of between-class variation to within-class varia-
tion is maximized. This method is known now as Fisher’s Linear Discriminant
Function(LDF) method. In his related work, Welch(1939) suggested mini-
mizing the average probability of misclassification(error rate) on the basis of
the training sample drawn from the multivariate normal population, or more
specifically, minimizing the bad effects of misclassification on the average. It
can be shown that Fisher’s LDF is optimal asymptotically in the sense of er-
ror rates if the underlying distributions of two classes are multivariate normal
with a common covariance matrix (Anderson, 1984). Lachenbruch(1982) in-
dicated that "the criteria for comparing discriminant functions for allocation
procedures have usually been on the error rates.” Here we use the actual error
rate which holds for the sample discriminant rule under consideration when it
is used to classify all possible future samples. Details of their derivations can
be found in Anderson(1984) and Lachenbruch(1975).

Projection pursuit(PP) is a computer-intensive method which seeks out
interesting linear projections of multivariate data onto a lower-dimension space
by machine. By working with lower dimensional projections, projection pursuit
avoids the sparseness of high dimensional data. The most exciting feature of
PP is that it is one of the very few multivariate methods able to by pass the
curse of dimensionality. In fact, Fisher’s LDF was developed on the basis of
PP. However, it is quite sensitive to outliers or nonnormality. Huber(1985)
has given a through review of these areas. Huber(1985), also, conjectured
his PP index should lead to better results. We will investigate it through
simulation under some situations. In fact, it turns out that his method does
not improve very much. Chen(1989) introduced the new linear discriminant
procedure based on PP, along with the cutoff point called adaptive cutoff
point. Furthermore, he showed his method was the best. However, we will
show under the same simulation conditions he is wrong. Furthermore, in this
paper we compare several classification procedures.

This paper is organized as follows. Section 2 discusses discriminant proce-
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dures proposed by Chen and Huber. Those procedures were developed based
on projection pursuit methods. Simulation results are given in Section 3.

2. PROPOSED DISCRIMINANT PROCEDURES

Here, we consider linear procedures in 2-sample continuous situation. Sup-
pose that the m-dimensional training samples of our two classes are given as
follows:

Xim = (X11,X12, - -+, Xy ) in C4
and
Xam, = (Xa21,X22, .+ ., X2n,) in Cy
Any new individual x = (z;,z3,...,Zx) is known to come from one of the

two distinct classes C; and C,, whose locations are assumed to be different.
The observation x will be classified into one of these two classes according to
a discriminant function defined in terms of X, ,, and X, ,, as well as a cutoff
value. For example, Fisher’s LDF can be expressed as Dp(x) = Apx, where
Ar = S;1(%; — Xa2), with S, being the usual pooled sample covariance matrix
and X; (k = 1,2) being the sample mean vectors. Fisher’s LDF method s
simply Dp(x) with the cutoff ¢ = 2(%; + )'(2)'5;1(5(1 — X2).

Our study of projection pursuit linear discriminant procedures consists of
two parts: the construction of a linear discriminant function and the derivation
of a cutoff point.

(1) Construct the linear discriminant functions by:

choosing a projection index, and using numerical projection
pursuit algorithms implemented on a computer
(2) Derive the cutoff point by:

projecting the training samples onto a projection axis found in
Part (1), and calculating a cutoff point
Having found a discriminant coefficient vector A and a cutoff point ¢, the
linear discriminant procedure is as follows:

(a) classify x into Cy if A'x > ¢,

(a) classify x into Cy if A'x < &.
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2.1 Chen’s and Huber’s Projection Indices

As noted by Huber (1985) , "Projection pursuit emerges as the most pow-
erful method yet invented to lift 1-dimensional statistical techniques to higher
dimensions. To give a simple example: if we take the 2-sample t-statistic as our
projection index, then projection pursuit searches for the best discriminanting
hyperplane in the classical, Fisherian sense. If we replace the t-statistic by
a robust 2-sample test statistic, we obtain a robust version of discriminant
analysis.” Here, we implement his suggestion and propose the first (robust)
projection index as follows:

LA X1my) = LA Xany)|

IX( X =
X (X5 X1 ny, X2m,) Sy N X1y A X )

where L(-)’s are (robust) location estimators, S,(:,-) is a (robust) pooled scale
estimator, and X' Xy, (k = 1,2) are the projected training samples in the
given axis A. L(-) could be average or median. The denominator can be mod-
ified by replacing standard deviation by the median absolute deviation(mad).
For example,

med{a'Xy,,} — med{aXan,}
mad{a'(Xin, U Xapm,)}

However, he did not advocate using this expression. He conjectured that a
modified denominator, for example

mad{(a’ X1, — med(a'Xyn,)) | (@Xsn, — med(aXsz,))},

should lead to better results. We will investigate through simulation. On
the other hand, to get a robust version, there are many ways to robustify the
location/scale estimates.

The most widely accepted criterion for assessing the performance of discrim-
inant rules is the total (weighted) error rate. With this in mind, the second
type of projection index we consider is the apparent error rate estimator; that
is, with the indicator function I(:),

ny ne
TIX(X; ¢, X nys Xomy ) = Z I >63(m5) + Z Liry;<3(725)
=1 =1

where T¢; = AXgj, k= 1,2, L(XimA) < L(X2n,A) is assumed without loss
of generality, and ¢ is a chosen cutoff value. This index was proposed by
Chen(1989).

2.2 Cutoff Points
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The most popular cutoff point is in terms of a weighted sum of location
estimates; that is, ¢(A, X1, Xon,) = 03 L(A X1 0,) + v2L(A' X3,,,) Where 0 <
v1,v2 < 1 with v; + v2 = 1. The above weights depend on the relative costs
of misclassification from each class and also on the prior probabilities of x
coming from each class. They are usually taken as equal if such information
is not available. In a further related work, Broffitt et al (1976) proposed
a rank procedure and Randles et al (1978a) applied the same procedure in
discriminant analysis for choosing an alternative rank cutoff. In additicn,
Chen(1989) proposed an adaptive cutoff point which minimizes the error rates
in classifying the training samples; in other words, which minimizes the so-
called apparent error rates. See Chen(1989) for details. He showed through
simulation study that his discriminant procedure using the second type of
PP index and an adaptive cutoff point was best in the sense of minimizing
the actual error rate. In this paper we will investigate it under the same
simulation condition. Other methods for choosing cutoff points can be found

in Anderson(1984) and Gnanadesikan(1988).
3. MONTE CARLO STUDY

In order to compare the performance and robustness of proposed linear
discriminant procedures with the linear procedures of Randles et al (1978b), a
Monte Carlo study was designed and the results are presented in this section.

3.1 Simulation Conditions

(1) Bivariate normal (nor), Cauchy (cau), lognormal (log), and contami-
nated normal (con) distributions are included in this study We used the same
set of uniform variates to construct all training (testing) samples. Firstly, a
set of pseudo-random uniform variates are generated. These were then trans-
formed into the respective pseudo-random normal, Cauchy, lognormal, and
contaminated normal variates under study using the tranforming procedures
in Johnson and Ramberg(1977) and Randles et al (1978b).

(2) In each of the contaminated situations, the second distribution list is
the ten percent contaminant of a bivariate normal distribution. In each of 7-
numbered situations, the covariance matrices of C;, C, are equal; while in the
eighth situation, they are unequal.

(3) The correlation coefficient, p, within each class is equal to 0.5. Tke
respective class is distributed with mean vector v = (u;, p2) and covariance

matrix )
| (22 po10
b l2 2 ]

po1oy O
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Table 0.1: Distributional Situations

Population 1 population 2
Situation | C7  p11 p12 ou o012 | Co por a2 091 Op
1 nor 0 0 1 1| nor 1.00 1.00 1 1
2 nor O 0 1 1|{nor 1.78 1.78 2 3
3 cau 0 0 1 1{cau 1.00 1.00 1 1
4 cau 0 0 1 1jcau 1.78 1.78 2 3
5 log 0 0 1 1| log 1.00 1.00 1 1
6 log 0 0 1 1| log 1.78 1.78 2 3
7 con 0 0 1 1|con 1.00 1.00 1 1
0 0 10 10 1.00 1.00 10 10
8 con 0 0 1 1jcon 1.78 1.78 2 3
0 0 10 10 1.78 1.78 20 20

Furthermore, the Mahalanobis distance between the two classes is:
A2 = (1/1 - 1/2)12_1(1/1 e llg) =1.33

where v;, k = 1,2 are the two class mean vectors and covariance matrices,
aud E = (21 + 22)/2

(4) The training sample size for each class is 50. Two blocks of 50 bivariate
variables were generated to provide the traing samples to be used in the various
C; and C; distributions.

(5) For every distributional situations, one additional block of 100 bivariate
corresponding variables was generated from each of the respective classes to
provide the testing samples to be classified.

(6) This total operation was repeated 1000 times. The misclassification
probabilities were computed from the 1000 replications.

3.2 Discriminant Procedures used in Simulation Study (a) Fisher’s

LDF method (b) The method using median cutoff point and adaptive cutoff
point for the following PP index

med{a’' Xy} — med{a' Xz, }
mad{a’' (X1, U a'Xon,)}

(c) The method using median cutoff point and adaptive cutoff point for the
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Table 0.2: Misclassification rate for equal covariance matrix

Median Adaptive
Method | 4 Cy | Sum | (4 Cy | Sum
(a) 0.288 0.288 | 0.576
Normal (b) 0.295 0.298 | 0.593 | 0.285 0.329 | 0.614
(c) 0.296 0.298 | 0.594 | 0.287 0.326 | 0.613
(d) 0.294 0.298 | 0.592 | 0.304 0.300 | 0.604
(a) 0.424 0.436 | 0.860
Cauchy (b) 0.323 0.324 | 0.647 | 0.316 0.347 | 0.663
(c) 0.320 0.321 | 0.641 | 0.313 0.341 | 0.654
(d) 0.338 0.342 | 0.680 | 0.343 0.347 | 0.690
(a) 0.254 0.303 | 0.557
Lognormal (b) 0.291 0.258 | 0.549 | 0.343 0.210 | 0.553
(c) 0.298 0.249 | 0.547 | 0.344 0.206 | 0.550
(d) 0.292 0.249 | 0.541 | 0.354 0.181 | 0.535
(a) 0.497 0.502 | 0.999
Con. Normal (b) 0.501 0.500 | 1.001 | 0.480 0.521 | 1.001
(c) 0.500 0.500 | 1.000 | 0.477 0.523 | 1.000
(d) 0.498 0.500 | 0.998 | 0.500 0.500 | 1.000

following PP index

med{a' X1,,,} — med{a' Xz, }

mad{(a' (X1, — med(a'X1,,)) U (a'(X2n, — med(a'X2,))}

(d) Chen’s method using median cutoff point and adaptive cutoff point.

3.3 Simulation Results

In Table 2 error rates are reported for the case of equal covariance. Here
total is the sum of total error rates for groups C; and Cs,. The error rates for

the case of unequal covariance matrix are shown in Table 3.

Generally speaking, Fisher’s LDF method performs best under normally
distributed situations with equal covariances, but it is not robust in heavy-
and long-tailed situations. However, Fisher’s LDF method seems robust in
the slightly skewed lognormal distribution. Robust discriminant procedures
are not sensitive to classifying the observations with outliers, gross errors, or

heavy-tailed distributions.
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Table 0.3: Misclassification rate for unequal covariance matrix

Median Adaptive
Method | C; Cy | Sum | Cy C; | Sum
(a) 0.169 0.332 | 0.501
Normal (b) 0.158 0.358 | 0.516 | 0.095 0.420 | 0.515
(c) 0.154 0.359 | 0.513 | 0.097 0.416 | 0.513
(d) 0.170 0.344 | 0.514 | 0.121 0.389 | 0.500
(a) 0.291 0.513 | 0.804
Cauchy (b) 0.222 0.371 | 0.593 [ 0.196 0.409 | 0.605
(c) 0.219 0.369 | 0.588 | 0.197 0.401 | 0.598
(d) 0.250 0.378 | 0.628 | 0.227 0.404 | 0.631
(a) 0.166 0.344 | 0.510
Lognormal (b) 0.188 0.359 | 0.547 | 0.135 0.421 | 0.556
(c) 0.185 0.359 | 0.544 | 0.133 0.418 | 0.551
(d) 0.192 0.338 | 0.530 | 0.149 0.383 | 0.532
(a) 0.302 0.515 | 0.817
Con. Normal | (b) | 0.292 0.429 | 0.721 | 0.247 0.473 | 0.720
(c) 0.288 0.431 | 0.719 | 0.252 0.467 | 0.719
(d) 0.312 0.430 { 0.742 | 0.280 0.456 | 0.736
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4. CONCLUSIONS

In order to compare and evaluate the robustness of various discriminant
procedures, we chose the normal distribution with a common covariance matrix
as our pivotal condition. In addition, Fisher’s LDF method performing in
this condition was chosen as the pivotal discriminant procedure since it is
asymptotically optimal in the sense of error rates. The simulation results are
in terms of empirical percentages of misclassification, which are the estimates
of actual error rates. In other words, we count the proportion of testing samples
misclassified by the corresponding discriminant procedures.

Table 2 and Table 3 are given which summarize the simulation results.
In general, median cutoff point works better than the adaptive cutoff point
proposed by Chen(1989). Thus this fact show that Chen is wrong. We also
can conclude that the linear discriminant procedure proposed by Huber(1985)
does not improve very much.
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