THE VANISHING OF THE GENERALIZED WHITEHEAD PRODUCTS AND T-SPACES

HONG-CHAN SON

Dept. of Mathematics, Chonbuk National University, Chonju 560-756, Korea.

1. Introduction

The original Whitehead product is a pairing $\pi_p(X) \times \pi_q(X) \longrightarrow \pi_{p+q-1}(X)$ and the generalized Whitehead product (written GWP) is a pairing $\pi(\Sigma A, X) \times \pi(\Sigma B, X) \longrightarrow \pi(\Sigma(A \wedge B), X)$ ([3],[5],[8]). In case A and B are spheres, the GWP is essentially the Whitehead product.

In [3], the author established some properties of the GWP and investigated spaces in which all GWPs vanish, and he remarked that such spaces are not necessarily H-spaces. J.Aguadé ([2]) introduced and studied a T-space, which is a space X having the property that the space of free loops on X is equivalent in some sense to the product of X by the space of based loops on X. It is known that ([2],[7]) an H-space is a T-space but the converse is not true.

In this paper, we show that all the GWPs vanish in T-space by using the notion of cyclic maps. And as a corollary to this fact we obtain that every T-space is a W-space.

Throughout this paper, space means a space of homotopy type of connected locally finite CW-complex. We also assume that spaces have non-degenerate base point. All maps shall mean continuous functions and all homotopies and maps are to respect base points (except for the case of the mapping space X^A). The base point and constant map at base point will be denoted by * and 0 respectively. For simplicity, sometimes we use the same symbol for a map and its homotopy class. We denote $\pi(X,Y)$ the set of homotopy classes of pointed maps $X \longrightarrow Y$. Let ΣA denote the reduced suspension of A and ΩB the loop space of B. And let $A \wedge B$ be the smash product.

Received April 27, 1994. Revised Jun 24, 1994.

Research supported by TGRC-Kosef (TGRC Post Doc. Program) in 1993.

2. The generalized Whitehead product

A map $f:A\longrightarrow X$ is called cyclic, if there exists a map $m:A\times X\longrightarrow X$ such that $mj\simeq \nabla(f\vee 1)$, where $j:A\vee X\longrightarrow A\times X$ is the inclusion and $\nabla:X\vee X\longrightarrow X$ is the folding map defined by $\nabla(x,*)=x=\nabla(*,x)$. The Gottlieb set G(A,X) is the set of all homotopy classes of cyclic maps from A to X.

Proposition 2.1 ([10],[11]).

- (1) If A is a co H-group, then G(A, X) is contained in the center of $\pi(A, X)$
- (2) X is an H- space if and only if $G(A,X)=\pi(A,X)$ for any space A

Let $\alpha = [f] \in \pi(\Sigma A, X)$ and $\beta = [g] \in \pi(\Sigma B, X)$ and let $f' = f \circ \Sigma p_A : \Sigma(A \times B) \longrightarrow X$ and $g' = g \circ \Sigma p_B : \Sigma(A \times B) \longrightarrow X$ where $p_A : A \times B \longrightarrow A$ and $p_B : A \times B \longrightarrow B$ are projections. We define the commutator

$$k = (f'^{-1} \cdot g'^{-1}) \cdot (f' \cdot g') : \Sigma(A \times B) \longrightarrow X$$

where the products and inverses come from the suspension structure of $\Sigma(A \times B)$. Since $k|\Sigma(A \times *) \simeq 0$ and $k|\Sigma(* \times B) \simeq 0$, we have $k|\Sigma(A \vee B) \simeq 0\Pi$. Now consider a cofibration Π

$$\Sigma(A \vee B) \xrightarrow{\Sigma j} \Sigma(A \times B) \xrightarrow{\Sigma q} \Sigma(A \wedge B)$$

where $j: A \vee B \longrightarrow A \times B$ is the inclusion and $q: A \times B \longrightarrow A \wedge B$ is the quotient map. Then we have the Puppe exact sequence

$$\pi(\Sigma(A \wedge B), X) \xrightarrow{(\Sigma q)^*} \pi(\Sigma(A \times B), X) \xrightarrow{(\Sigma j)^*} \pi(\Sigma(A \vee B), X)$$

 $k|\Sigma(A \vee B) \simeq 0$ means that $(\Sigma j)^*(k) = 0$, thus there exists $\tilde{k} \in \pi(\Sigma(A \wedge B), X)$ such that $(\Sigma q)^*(\tilde{k}) = k$, i.e., $\tilde{k}\Sigma q = k$.

And we know that the homotopy class of \tilde{k} does not depend on the choice of the map k([3]).

DEFINITION 2.2. The GWP of $\alpha = [f] \in \pi(\Sigma A, X)$ and $\beta = [g] \in \pi(\Sigma B, X)$ is defined to be $[\alpha, \beta] = [\tilde{k}] \in \pi(\Sigma (A \wedge B), X)$.

Consider two maps $f:(CA,A) \longrightarrow (X,*)$ and $g:(CB,B) \longrightarrow (X,*)$ where $CA = A \times I/A \times 1 \cup * \times I$ is the reduced cone on A. And consider

the subspace $Q = CA \times B \cup A \times CB$ of $CA \times CB$ and define $h: Q \longrightarrow X$ by

$$h((a,t),b) = f(a,t)$$
$$h(a,(b,u)) = g(b,u)$$

where $a \in A$, $b \in B$ and $t, u \in I$.

Now there is a homeomorphism $\nu: A*B \longrightarrow Q$ defined by

$$\nu(a,b,t) = \begin{cases} (a,(b,1-2t)), & \text{for } 0 \le t \le \frac{1}{2} \\ ((a,2t-1),b), & \text{for } \frac{1}{2} \le t \le 1. \end{cases}$$

where A * B is the join of A and B.

Let P be the subspace of A*B consisting of all points (a,*,t) and all points (*,b,u). Then P is contractible and A*B/P is $\Sigma(A \wedge B)$ and so the projection $\mu':A*B\longrightarrow \Sigma(A \wedge B)$ is a homotopy equivalence. Let $\mu:\Sigma(A \wedge B)\longrightarrow A*B$ denote the homotopy inverse of μ' . Thus the map gives rise to a map $h\nu\mu:\Sigma(A \wedge B)\longrightarrow X$ and it is easily seen that the homotopy class of $h\nu\mu$ does not depend on the representatives f and g of α and β .

PROPOSITION 2.3 ([3]). The GWP $[\alpha, \beta]$ of $\alpha \in \pi(\Sigma A, X)$ and $\beta \in \pi(\Sigma B, X)$ is equal to $[h\nu\mu]$.

Suppose that X is an H-space, then the group $\pi(\Sigma(A \times B), X)$ is abelian and so $k = f'^{-1} \cdot g'^{-1} \cdot f' \cdot g' \simeq 0$. Therefore, all GWPs vanish in X if X is an H-space.

Let $j_0: \Sigma A \vee \Sigma B \longrightarrow \Sigma A \times \Sigma B$ be the inclusion map and $\tilde{k_0}: \Sigma (A \wedge B) \longrightarrow \Sigma A \vee \Sigma B$ the map of Definition 2.2 which represents the GWP of the class of the inclusion maps $i_1: \Sigma A \longrightarrow \Sigma A \vee \Sigma B$ and $i_2: \Sigma B \longrightarrow \Sigma A \vee \Sigma B$. $\tilde{k_0}$ is called the GWP map.

PROPOSITION 2.4 ([3]). If $p: \Sigma A \times \Sigma B \longrightarrow \Sigma A \wedge \Sigma B$ is the projection, then for any space X, the following sequence of pointed set is exact

$$\pi(\Sigma A \wedge \Sigma B, X) \xrightarrow{p^*} \pi(\Sigma A \times \Sigma B, X) \xrightarrow{j_0^*} \pi(\Sigma A \vee \Sigma B, X) \xrightarrow{\tilde{k_0}^*} \pi(\Sigma (A \wedge B), X)$$

THEOREM 2.5. For $\alpha = [f] \in \pi(\Sigma A, X)$ and $\beta = [g] \in \pi(\Sigma B, X)$, $[\alpha, \beta] = 0$ if and only if there is a map $m : \Sigma A \times \Sigma B \longrightarrow X$ such that $mj_0 \simeq \nabla (f \vee g)$.

Proof. Define $l: \Sigma A \vee \Sigma B \longrightarrow X$ by l((a,t),*) = f(a,t) and l(*,(b,u)) = g(b,u) for $a \in A, b \in B$ and $t, u \in I$.

Let $h_0: Q \longrightarrow \Sigma A \vee \Sigma B$ be the map given by $h_0((a,t),b) = i_1(a,t)$ and $h_0(a,(b,u)) = i_2(b,u)$, and let h, ν, μ be the maps of Proposition 2.3, where $Q = CA \times B \cup A \times CB$. Then $lh_0 = h$ and $l\tilde{k_0} = lh_0\nu\mu = h\nu\mu$. This means that $[l\tilde{k_0}] = [\alpha,\beta]$. By Proposition 2.4 $l\tilde{k_0} \simeq 0$ if and only if there exists $m: \Sigma A \times \Sigma B \longrightarrow X$ with $j_0^*m = l$. But $l = \nabla (f \vee g)$. This gives $mj_0 \simeq \nabla (f \vee g)$.

PROPOSITION 2.6. If $\alpha, \beta \in \pi(\Sigma A, X)$ and $d : A \longrightarrow A \land A$ is the composition of diagonal map $\Delta : A \longrightarrow A \times A$ and projection $q : A \times A \longrightarrow A \land A$. Then $(\Sigma d)^*[\alpha, \beta] = (\alpha, \beta)$, the commutator of α and β .

Proof. For $\alpha = [f]$, $\beta = [g] \in \pi(\Sigma A, X)$, let $k = f'^{-1} \cdot g'^{-1} \cdot f' \cdot g' : \Sigma(A \times A) \longrightarrow X$ and \tilde{k} be such that $k = \tilde{k}\Sigma q$ as in the definition of the GWP. Note that $(\Sigma d)^*[\alpha, \beta] = [\tilde{k}\Sigma d]$ and $\Sigma d = \Sigma q\Sigma \Delta$. So $\tilde{k}\Sigma d = \tilde{k}\Sigma q\Sigma \Delta = k\Sigma \Delta$. But it can be checked that $k\Sigma \Delta(a,t) = (f^{-1} \cdot g^{-1} \cdot f \cdot g)(a,t)$. Thus we obtain that $(\Sigma d)^*[\alpha, \beta] = (\alpha, \beta)$.

3. The vanishing of the GWPs and T-spaces

In this section, we investigate the situation that the GWPs vanish. For the natural isomorphism $\tau: \pi(\Sigma X, Y) \longrightarrow \pi(X, \Omega Y)$, we denote e by

$$\tau^{-1}(1_{\Omega X}): \Sigma \Omega X \longrightarrow X.$$

PROPOSITION 3.1 ([3]). All GWPs vanish in X if and only if $\pi(\Sigma P, X)$ is abelian for all space P.

Proof. For any space P, and any $\alpha, \beta \in \pi(\Sigma P, X)$, $[\alpha, \beta] = 0$ implies $(\alpha, \beta) = 0$ by Proposition 2.6. Thus $\pi(\Sigma P, X)$ is abelian.

Conversely, if $\pi(\Sigma P, X)$ is abelian for all P, then, in particular, $\pi(\Sigma(A \times B), X)$ is abelian. So the commutator

$$k = f'^{-1} \cdot g'^{-1} \cdot f' \cdot g' : \Sigma(A \times B) \longrightarrow X$$

is nullhomotopic. And so that $[\tilde{k}] = [\alpha, \beta] = 0$.

The notion $nil\ \Omega X \leq 1$ is the assertion that the commutator map $\Omega X \times \Omega X \longrightarrow \Omega X$ is nullhomotopic. Then we can see $nil\ \Omega X \leq 1$ implies $\pi(P,\Omega X)(\approx \pi(\Sigma P,X))$ is abelian for all P and so all GWPs vanish in X by the preceding proposition. Berstein and Ganea ([4]) showed that there is a space with $nil\ \Omega X \leq 1$ which is not an H-space.

Let us consider the fibration

$$\Omega X \longrightarrow X^{S^1} \stackrel{p}{\longrightarrow} X$$

where X^{S^1} is the free loop space of X and p is the evaluation at 1.

DEFINITION 3.2. A space X is a T-space if the fibration

$$\Omega X \longrightarrow X^{S^1} \longrightarrow X$$

is fibre homotopy equivalent to the trivial fibration

$$\Omega X \longrightarrow X \times \Omega X \longrightarrow X.$$

PROPOSITION 3.3 ([2]). If X is a T-space if and only if the map $\nabla(e \vee 1) : \Sigma \Omega X \vee X \longrightarrow X$ can be extended up to homotopy to a map $F : \Sigma \Omega X \times X \longrightarrow X$.

Note that the fact $\nabla(e \vee 1) : \Sigma \Omega X \vee X \longrightarrow X$ has a homotopy extension to $F : \Sigma \Omega X \times X \longrightarrow X$ means that $e : \Sigma \Omega X \longrightarrow X$ is cyclic.

THEOREM 3.4. X is a T-space if and only if $G(\Sigma A, X) = \pi(\Sigma A, X)$ for any space A.

Proof. Let $f: \Sigma A \longrightarrow X$ be any map. If X is a T-space, then by the preceding theorem, there is a map $F: \Sigma \Omega X \times X \longrightarrow X$ such that $\nabla (e \vee 1) \simeq Fj$. Note that $f = e \circ \Sigma \tau(f)$. Define $H: \Sigma A \times X \longrightarrow X$ by $H = F \circ (\Sigma \tau(f) \times 1)$. It can be checked that $Hj \simeq \nabla (f \vee 1)$, where $j: \Sigma A \vee X \longrightarrow \Sigma A \times X$ is the inclusion. This means that $f: \Sigma A \longrightarrow X$ is cyclic, so that $[f] \in G(\Sigma A, X)$.

Conversely, suppose $G(\Sigma A, X) = \pi(\Sigma A, X)$ for all space A. If we take $A = \Omega X$, then $G(\Sigma \Omega X, X) = \pi(\Sigma \Omega X, X)$. Thus we have $e : \Sigma \Omega X \longrightarrow X$ is cyclic, so X is a T-space.

For all space A, ΣA is a co-H-group. Thus from Proposition 2.1 (1), Proposition 3.1 and Theorem 3.4, we obtain the following

THEOREM 3.5. If X is a T-space then all GWPs vanish in X.

It is proven ([1]) that only S^1, S^3 and S^7 are T-spaces. In fact H-spaces, T-spaces and G-spaces are equivalent in the category of spheres ([12]). Thus we have the following

COROLLARY 3.6. All GWPs vanish in S^1, S^3 and S^7 .

In case A is a sphere S^n , the Gottlieb set G(A, X) reduced to the Gottlieb group([6]) $G_n(X) = G(S^n, X)$. And $G_n(X)$ is an abelian subgroup of the homotopy group $\pi_n(X)$ by Proposition 2.1 (1). Let $P_n(X)([6])$ be the set of elements [f] in $\pi_n(X)$ whose Whitehead product with all elements of all homotopy groups is zero. It turns out ([6] or Theorem 2.5 of [11]) that $P_n(X)$ form a subgroup of $\pi_n(X)$.

DEFINITION 3.7.

- (1) X is a G-space if $G_n(X) = \pi_n(X)$ for all n
- (2) X is a W-space if $P_n(X) = \pi_n(X)$ for all n

THEOREM 3.8.

- (1) An H-space is a T-space
- (2) A T-space is a G-space
- (3) A G-space is a W-space

Proof.

(1) By Proposition 2.1,(2) and Theorem 3.4. (2) Note that ΣS^n is homeomorphic to S^{n+1} and use Theorem 3.4. (3) It suffices to show that $G_n(X) \subset P_n(X)$. Suppose that $f: S^n \longrightarrow X$ is cyclic. Then there exists $m: S^n \times X \longrightarrow X$ such that $mj \simeq \nabla (f \vee 1)$, where $j: S^n \vee X \longrightarrow S^n \times X$ is the inclusion and $\nabla: X \vee X \longrightarrow X$ is the folding map. Let $g: S^m \longrightarrow X$ be any map. Then it can be shown that $m(1 \times g): S^n \times S^m \longrightarrow X$ satisfies $m(1 \times g)j \simeq \nabla (f \vee g)$. By Theorem 2.5, the Whitehead product of the classes of f and g is zero. That is, the class of f is in $P_n(X)$.

It is known([2],[7]) that there exist T-spaces which are not H-spaces. And it is also known([6],[7]) that the converses of (2) and (3) are not true either.

References

- 1. J.Aguadé, On the space of free loops of an odd sphere, Publ.Mat.UAB 25 (1981), 87-90.
- J.Aguadé, Decomposable free loops spaces, Canad. J. Math. 39 (1987), 938-955.
- 3. M. Arkowitz, The generalized Whitehead product, Pacific J.Math. 12 (1962), 7-23.
- 4. I.Berstein and T.Ganea, Homotopical nilpotency, Ill.Jour. Math. 5 (1961), 99-130.
- 5. D.E.Cohen, Products and carrier theory, Proc. Lond. Soc.(3) 7 (1957), 219-248.
- 6. D.H.Gottlieb, Evaluation subgroups of homotopy groups, Amer.J. Math. 91 (1969), 729-756.

- 7. H.B.Haslam, G-spaces and H-spaces, Ph.D. dissertation, University of California, Irvine, 1969.
- 8. P.J.Hilton, *Homotopy Theory and Duality*, Gordon and Breach Science Publishers, Inc., 1965.
- 9. K.L.Lim, On cyclic maps, J.Aust.Math. Soc.(Series A) 32 (1982), 349-357.
- 10. _____, On evaluation subgroups of generalized homotopy groups, Canad. Math.Bull. 27 (1984), 78-86.
- 11. N.Oda, The homotopy set of the axes of pairings, Canad. J. Math. 52 (1990), 856-868.
- 12. M.H.Woo and Y.S.Yoon, T-spaces by Gottlieb groups and its duality, to appear in J.Austral. Math.Soc.(Series A).