TAIL EVENTS FOR RANDOM WALKS WITH TIME STATIONARY RANDOM DISTRIBUTION FUNCTION

Dug Hun Hong

1. Introduction

Let \mathcal{F} be a set of distributions on \Re^1 with the topology of weak convergence, and let A be the σ -field generated by the open sets. We denote by \mathcal{F}_1^{∞} the space consisting of all infinite sequence $(F_1, F_2, \dots), F_n \in \mathcal{F}$, for all $n \geq 1$ and \Re_1^{∞} the space consisting of all infinite sequences (x_1, x_2, \dots) of real numbers. Take the σ -field \mathcal{A}_1^{∞} to be the smallest σ -field of subsets of \mathcal{F}_1^{∞} containing all finite-dimensional rectangles and take \mathcal{B}_1^{∞} to be the Borel σ -field of \Re_1^{∞} . Let $\omega = (F_1^{\omega}, F_2^{\omega}, \dots)$ be the coordinate process in \mathcal{F}_1^{∞} and ν its distribution on \mathcal{A}_1^{∞} . Let θ be the coordinate shift: $\theta^k(\omega) =$ ω' with $F_n^{\omega'} = F_{n+k}^{\omega}, k = 1, 2, \ldots$ On $(\Re_1^{\infty}, \mathcal{B}_1^{\infty})$ we also define the shift transformation $\sigma: \Re_1^{\infty} \to \Re_1^{\infty}$ by $\sigma(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$. ν is called stationary if for every $A \in \mathcal{A}_1^{\infty}$, $\nu(\theta^{-1}(A)) = \nu(A)$ and let π be its marginal distribution. Let $\mathcal J$ be the σ -field of invariant sets in \mathcal{B}_1^{∞} , that is, $\mathcal{J} = \{B | \sigma^{-1}(B) = B, B \in \mathcal{B}_1^{\infty}\}$. For each ω define a probability measure P_{ω} on $(\Re_1^{\infty}, \mathcal{B}_1^{\infty})$ so that $P_{\omega} = \prod_{i=1}^{\infty} \mathcal{F}_i^{\omega}$. Define the process $\{X_n\}$ on $(\Re_1^{\infty}, \mathcal{B}_1^{\infty})$ such that $X_n(x_1, x_2, \dots) = x_n$ and set $S_n =$ $X_1 + X_2 + \cdots + X_n$. By the definition of P_{ω} , $\{X_n\}$ are independent with respect to P_{ω} and we also note that $\{X_n\}$ is a sequence of independent and identically distributed random variables when \mathcal{F} has just one element.

Consider a sequence $\{h_n(x)\}\$ of real valued measurable functions satisfying the system of equations

(1) $h_n(x) = \int_{-\infty}^{\infty} h_{n+1}(x+y) dF_{n+1}^{\omega}(y), n = 1, 2, \dots$

We shall consider only positive bounded solutions, i.e., we impose

 $(2) 0 \leq \inf_{n,x} h_n(x), \sup_{n,x} h_n(x) < \infty.$

We also impose the requirement of continuity, that is,

Received July 19, 1993. Revised November 15, 1993.

This work was supported by Hyosung Women's University Research Grant for 1993

(3) $h_n(x)$ is continuous, $n = 1, 2, \ldots$

The set of all sequences $h(h = \{h_n(x)\})$ satisfying (1),(2) and (3) we denote by \mathcal{H}^{ω} . A sequence of functions $\{h_n(x)\}$ is trivial if there exists a constant c such that $h_n(x) = c$ for all n and all x; \mathcal{H}^{ω} is trivial if all $h \in \mathcal{H}^{\omega}$ are trivial. In the identically distributed case, $F_1^{\omega} = F_2^{\omega} = \cdots$, it is well known that if F_1^{ω} does not have a jump of 1 only two cases can occur; (i) \mathcal{H}^{ω} is trivial, (ii) \mathcal{H}^{ω} is not trivial but for some $d > 0, h_n(x) = h_n(x - d)$ for all n and x for each $h \in \mathcal{H}^{\omega}$ (arithmetic case); only if for some number $x_0, F_1^{\omega}(x) = 0$ for $x < x_0, F_1^{\omega}(x) = 1$ for $x > x_0$ will one have (iii) non-periodic h present in \mathcal{H}^{ω} (degenerate case). Our concern is to extend the above to our model.

In 1966, Orey [3] wrote a paper with this topic for the non-identically distributed case. This paper is based on that paper.

2. Bounded Case

In this section we take our distribution functions to be uniformly bounded. We shall use the condition

(A)
$$\int_{-N}^{N} dF(x) = 1 \text{ for all } F \in \mathcal{F},$$

where N is a real number.

A sequence of real numbers $\{b_n\}$ is a likely sequence if for every $\epsilon > 0$, inf $P[|X_n - b_n| < \epsilon] > 0$.

LEMMA 1. (A) implies the existence of a likely sequence.

Proof. See Lemma 2.1 [3].

We also use the following condition.

(B)
$$\int_{(-\epsilon,\epsilon)} dF(x) > 0 \text{ for all } F \in \mathcal{F}, \text{ for every } \epsilon > 0.$$

We introduce the following notation:

$$\Gamma_{\omega} = \{x | \sum_{k=1}^{\infty} P_{\omega}\{|X_k - x| < \epsilon\} = \infty \text{ for every } \epsilon > 0\},$$
 $H = \{y | \iint_{B(y,\epsilon)} dF(x)\pi(dF) > 0 \text{ for every } \epsilon > 0\},$

where $B(y, \epsilon) = (y - \epsilon, y + \epsilon)$.

Let A^* denote the closure of the group generated by A. Γ_{ω}^* and H^* , being closed subgroups of the reals, \Re , must either be \Re , consist of 0 only, or be generated by some positive number respectively. \mathcal{F} is trivial if $\pi\{F|F \text{ is degenerate}\}=1$.

LEMMA 2. Let \mathcal{F} be not trivial, then under (A) and (B) $H^* \neq \{0\}$.

Proof. Suppose $H^* = \{0\}$, then H should be $\{0\}$. Then for every $x(\neq 0)$, there exist $\epsilon(x)$ depending on x such that $\iint_{B(x,\epsilon(x))} dF(x)\pi(dF)$ = 0. Since for every $\delta > 0$, $[-N,N] - B(0,\delta)$ is compact, we have

$$\iint_{[-N,N]-B(0,\delta)} dF(y)\pi(dF) = 0.$$

Since δ is arbitrary, we have

$$\iint_{[-N,N]-\{0\}} dF(x)\pi(dF) = 0, \text{ that is, } \pi\{F|\int_{\{0\}} dF(x) = 1\} = 1.$$

This contradicts that \mathcal{F} is not trivial. This proved lemma.

THEOREM 1. Suppose \mathcal{F} is not trivial and ν is stationary ergodic. Then under (A) and (B), there exist two possibilities:

- (i) $H^* = \Re$,
- (ii) $H^* = \{nd \mid n = 0, \pm 1, ...\}$ for some d > 0.

Condition (i) implies

$$\nu\{\omega|\mathcal{H}^{\omega} \text{ is trivial }\}=1.$$

Condition (ii) implies

 $\nu\{\omega | \text{ every } h \in \mathcal{H}^{\omega} \text{ has period } d\} = 1 \text{ and }$

$$\pi\{F|\int_{\{nd\mid n=0,\pm1,\dots\}}dF(x)=1\}=1.$$

Proof. By Lemma 2, H^* is either \Re or $\{nd \mid n=0,\pm 1,\ldots\}$ for some d>0. Now suppose $H^*=\Re$. Then there exists countable subset $D\subset H$ such that $D^*=\Re$. If $x\in D$, then by the ergodic theorem

$$(4) \qquad \frac{1}{n}\sum_{k=1}^{n}\int_{B(x,\epsilon)}dF_{k}^{\omega}(x)\rightarrow\iint_{B(x,\epsilon)}dF(x)\pi(dF)>0,$$

for every $\epsilon > 0$, $\nu -$ a.e. ω . Then $x \in \Gamma_{\omega}$, ν -a.e. ω , and hence $D \subset \Gamma_{\omega}\nu$ -a.e., ω since D is countable. So $\Re = D^* \subset \Gamma_{\omega}^* \subset \Re$ i.e., $\Gamma_{\omega}^* = \Re$, ν -a.e., ω . By Theorem 3.1 [3] \mathcal{H}^{ω} is trivial ν -a.e., ω .

Next suppose $H^* = \{nd \mid n = 0, \pm 1, ...\}$ for some d > 0. Using the same argument as in Lemma 2, we have

(5)
$$\pi\{F | \int_{\{nd \mid n=0,\pm 1,\dots\}} dF(x) = 1\} = 1.$$

And using (4) we can easily prove that

$$u\{\omega|\Gamma_{\omega}^* = \{nd \,|\, n=0,\pm 1,\dots\}\} = 1.$$

Clearly $\sum_{n=1}^{\infty} X_n \mod d = 0$ with respect to $P_{\omega} \nu$ -a.e. ω by (5). Hence by Theorem 3.1 [3] $\nu\{\omega | \text{ every } h \in \mathcal{H}^{\omega} \text{ has period } d\} = 1$, for some d. This completes proof.

It is noted that the absence of non-trivial solutions of (1) and (2) is equivalent to the zero-one law for the $\{S_n\}$ process (i.e., the tail σ -field of $\{S_n\}$ contains only sets of probability one or zero), and hence we have the following result immediately.

COROLLARY 1. Suppose every $F \in \mathcal{F}$ is distribution function on Z, the set of integers. Then under (A) and (B), we have

$$\nu\{\omega|P_{\omega}(A)\in\{0,1\}\}=1 \ \nu-\text{a.e.} \ \omega$$

where A is any tail event of $\{S_n\}$.

3. Countable Case

In this section we shall use the following condition

(C)
$$\mathcal{F} = \{F_n | n = 1, 2, ...\}, \quad \pi\{F_n\} > 0 \text{ for } n = 1, 2,$$

We introduce the following notation:

$$\operatorname{Supp}(F) = \{y | \int_{B(y,\epsilon)} dF(x) > 0, ext{ for every } \epsilon > 0\},$$
 $H_F = \{y | \int_{B(y,\epsilon)-y'} dF(x) > 0, ext{ for every } \epsilon > 0\},$

where y' is some fixed element in Supp(F).

Note that H_F^* is independent of choice of y' since $H_F \subset \text{Supp}(F) - \text{Supp}(F) \subset H_F^*$. Now we use the following definition.

DEFINITION 1.

$$dF = \left\{ egin{array}{ll} 0 & ext{if} & H_F^* = \Re, \ d & ext{if} & H_F^* = \{nd \, | \, d = 0, \pm 1, \dots\}, \ \infty & ext{if} & H_F^* = \{0\} \end{array}
ight..$$

We note that if $\omega = (F_1^{\omega}, F_2^{\omega}, \dots), F_n^{\omega} = F$ for all $n \geq 1$, every $h \in \mathcal{H}^{\omega}$ has period dF. For this see the first part of the proof of Theorem 3.1 [3].

LEMMA 3. Suppose ν is stationary ergodic, then under (C)

$$\nu\{\omega \mid \text{ every } h \in \mathcal{H}^{\omega} \text{ has period } d\} = 1,$$

where d = dF for all $F \in \mathcal{F}$.

Proof. By ergodic theorem, we have

$$\frac{1}{n} \sum_{k=1}^{n} 1_{\{F\} \times \mathcal{F} \times \mathcal{F} \times \dots} \theta^{k}(\omega) \to \pi\{F\} > 0 \quad \nu - \text{a.e.} \quad \omega.$$

This means $\nu\{\omega|F_n^\omega=F\ \text{ i.o. }\}=1\ \text{for all }F\in\mathcal{F},\ \text{and Corollary 1 [3]}$ applies.

THEOREM 2. Suppose ν is stationary ergodic and \mathcal{F} is not trivial. Then under (C), there are two possibilities

- (i) $(\bigcup_{n=1}^{\infty} H_{F_n}^*)^* = \Re,$
- (ii) $(\bigcup_{n=1}^{\infty} H_{F_n}^*)^* = \{md|m=0,\pm 1,\ldots\}$ for some d>0.

Condition (i) implies

$$\nu\{\omega|\mathcal{H}^{\omega} \text{ is trivial }\}=1.$$

Condition (ii) implies

$$\nu\{\omega | \text{ every } h \in \mathcal{H}^{\omega} \text{ has period } d\} = 1.$$

Proof. Suppose \mathcal{F} is not trivial, so $(\bigcup_{n=1}^{\infty} H_{F_n}^*)^* \neq \{0\}$. Hence $(\bigcup_{n=1}^{\infty} H_{F_n}^*)^*$ is either \Re or $\{nd \mid n=0,\pm 1,\ldots\}$ for some d>0. First suppose

 $(\bigcup_{n=1}^{\infty} H_{F_n}^*)^* = \Re$. Then for every $\epsilon > 0$, there exist dF_{n1}, \ldots, dF_{nk} and m_1, \ldots, m_k such that $|m_1 dF_{n1} + \cdots + m_k dF_{nk}| < \epsilon$ where $m_i \in Z$ $i = 1, 2, \ldots, k$. We know that by Lemma 3 that $\nu\{\omega \mid \text{every } h \in \mathcal{H}^{\omega} \text{ has period } dF_{ni} \ i = 1, 2, \ldots, k\} = 1$ and hence

 $\nu\{\omega | \text{ every } h \in \mathcal{H}^{\omega} \text{ has period } |m_1 dF_{n1} + \dots + m_k dF_{nk}| (<\epsilon)\} = 1.$

Since ϵ is arbitrary, we have

$$\nu\{\omega|\mathcal{H}^{\omega} \text{ is trivial}\}=1.$$

Next suppose $(\bigcup_{n=1}^{\infty} H_{F_n}^*)^* = \{nd \mid n = 0, \pm 1, \pm 2, \dots\}$ for some d > 0.

Then there exist dF_{n1}, \ldots, dF_{nk} and $(m_1, \ldots, m_k) \in \mathbb{Z}^k$ such that $m_1 dF_{n1} + \cdots + m_k dF_{nk} = d$. By similar argument as above, we have $\nu\{\omega | \text{ every } h \in \mathcal{H}^{\omega} \text{ has period } d\} = 1$.

LEMMA 4. Suppose $\bigcap_{n=1}^{\infty} \operatorname{Supp}(F_n) \neq \phi$ and suppose that ν is stationary ergodic and \mathcal{F} is not trivial. Then under the conditions of Theorem 2 condition (ii) in Theorem 2 implies $\pi\{F | \int_{\{nd+x|n=0,\pm 1,\dots\}} dF(y) = 1\} = 1$, for some $x \in \bigcap_{n=1}^{\infty} \operatorname{Supp}(F)$.

Proof. Take $x \in \bigcap_{n=1}^{\infty} \operatorname{Supp}(F_n)$ and note that $H_{F_n}^* + x = (\operatorname{Supp}(F_n))^*$. Since $H_{F_n}^* \subset \{nd \mid n = 0, \pm 1, \dots\}$ by Theorem 2 (ii), $\operatorname{Supp}(F_n) \subset \{nd + x \mid n = 0, \pm 1, \dots\}$ for $n = 1, 2, \dots$ This completes Lemma.

The following result is immediate from Theorem 2 and Lemma 4.

COROLLARY 2. Suppose all F_n is distribution function of Z and $\bigcap_{n=1}^{\infty} Supp F_n \neq \phi$. Then under the condition of Theorem 2, $\nu\{\omega|P_{\omega}(A) \in \{0,1\}\}=1$ where A is any tail event for $\{S_n\}$.

4. General Case

When the X_n are not uniformly bounded but there exist a likely sequence, it is still true that for every $y \in \Gamma_{\omega}^*$, each $h \in \mathcal{H}^{\omega}$ will have period d: this follows from the first part of the proof of Theorem 3.1 [3]. Using this fact we can prove the following results in a similarly way. So we give the results without proofs.

THEOREM 3. Suppose there exists x such that $\inf_{F \in \mathcal{F}} \int_{B(x,\epsilon)} dF(x) > 0$. Suppose ν is stationary ergodic and \mathcal{F} is not trivial. Then there exist two possibilities:

(i)
$$(H-x)^* = \Re$$
,

(ii)
$$(H-x)^* = \{nd \mid n = 0, \pm 1, ...\}$$
 for some $d > 0$.

Condition (i) implies

$$\nu\{\omega|\mathcal{H}^* \text{ is trivial }\}=1.$$

Condition (ii) implies

 $\nu\{\omega | \text{ every } h \in \mathcal{H}^* \text{ has period} d\} = 1 \text{ and } d$

$$\pi\{F|\int_{\{x+nd\,|\,n=0,\pm 1,\dots\}}dF(x)=1\}=1.$$

COROLLARY 3. Let \mathcal{F} be a set of distribution functions on Z. Then under the conditions of Theorem 3, we have $\nu\{\omega|P_{\omega}(A)\in\{0,1\}\}=1$ where A is any tail event of $\{S_n\}$.

The following theorem is immediate consequence of Corollary 1 [3] and the ergodic theorem.

THEOREM 4. Suppose there exist $F \in \mathcal{F}$ such that $\pi\{F\} > 0$ and $H_F^* = \Re$ and ν is stationary ergodic, then

$$\nu\{\omega|\mathcal{H}^{\omega} \text{ is trivial}\}=1.$$

References

- D. Blackwell and D. Freedman, The tail σ-field of a Markov chain and a theorem of Orey, Ann. Math. Stat. 35 (1964), 1291-1295.
- 2. D. H. Hong and J. S. Kwon, An LIL for random walks with time stationary random distribution function, Yokohama. Math. J. 40 (1993), 115-120.
- 3. S. Orey, Tail events for sums of independent random variables, J. Math. Mech. 15 (1966), 937-952.

Department of Statistics Hyosung Women's University Kyungbuk 713–702, Korea