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TAIL EVENTS FOR RANDOM WALKS WITH TIME

STATIONARY RANDOM DISTRIBUTION FUNCTION

DUG HUN HONG

1. Introduction

Let F be a set of distributions on ~l with the topology of weak conver­
gence, and let A be the O'-field generated by the open sets. We denote by
F1 the space consisting of all infinite sequence (F}, F2, ... ), Fn E F, for
all n ;::: 1 and R~ the space consisting of all infinite sequences (Xl, X2, ... )
ofreal numbers. Take the O'-field Ar' to be the smallest O'-field of subsets
ofFi containing all finite-dimensional rectangles and take 8~ to be the
Borel O'-field of R~. Let w = (F1,F/f, ... ) be the coordinate process in
F 1 and v its distribution on A~. Let 8 be the coordinate shift: 8"(w) =
w' with F':' = F:+", k = 1,2,.... On (R~,8~) we also define the
shift transformation 0': ~~ -+ ~~ by O'(X}'X2' ... ) = (X2,X3, ... ). v
is called stationary if for every A E A~, v(8- I (A» = v(A) and let 7r

be its marginal distribution. Let:J be the O'-field of invariant sets in
8~, that is, :J = {BIO'-I(B) = B,B E 8~}. For each w define a prob­
ability measure Pw on (R~,B~) so that Pw = II~ljf. Define the pro­
cess {Xn} on (~~,B~) such that X n(XI,X2, ... ) = Xn and set 8 n =
Xl + X 2 + ... + X n . By the definition of Pw , {Xn } are independent
with respect to Pw and we also note that {Xn } is a sequence of indepen­
dent and identically distributed random variables when F has just one
element.

Consider a sequence {hn (x)} of real valued measurable functions sat-
isfying the system of equations

(1) hn(x) = J.:o hn+l(x + y)dF':+I(Y)' n = 1,2, ....
We shall consider only positive bounded solutions, i.e., we impose
(2) 0 $ infn,x hn(x),suPn,x hn(x) < 00.

We also impose the requirement of continuity, that is,
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(A)

(3) hn(x) is continuous, n = 1,2, ....
The set of all sequences h(h = {hn(x)}) satisfying (1),(2) and (3)

we denote by 1{w. A sequence of functions {hn(x)} is trivial if there
exists a constant c such that hn (x) = c for all n and all x ; 1{w is
trivial if all h E 1{w are trivial. In the identically distributed case,
Fi = Ff = ... , it is well known that ifFi does not have a jump of 1 only
two cases can occur; (i) 1{w is trivial, (ii) 1i.w is not trivial but for some
d > 0, hn(x) = hn(x - d) for all n and x for each h E 1{W(arithmetic
case) ; only if for some number xo,Ff(x) = 0 for x < xo,Ff(x) = 1
for x > Xo will one have (iii) non-periodic h present in 1i.w (degenerate
case). Our concern is to extend the above to our model.

In 1966, Orey [3] wrote a paper with this topic for the non-identically
distributed case. This paper is based on that paper.

2. Bounded Case

In this section we take our distribution functions to be uniformly
bounded. We shall use the condition

J~ dF(x) = 1 for all FE:F,

where N is a real number.
A sequence of real numbers {bn } is a likely sequence if for every € >

0, inf P[lXn - bnl < €] > o.
LEMMA 1. (A) implies the existence of a likely sequence.

Proof. See Lemma 2.1 [3].
We also use the following condition.

(B) 1 dF(x) > 0 for all F E:F, for every € > o.
( -E,E)

We introduce the following notation:

00

r W = {xl LP",{IXk - xl < e} = 00 for every e > OJ,
k=l

H = {Yljr f dF(x)1r(dF) > 0 for every e > OJ,
J B(YIE)
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where B(y, e) = (y - e, y + e).
Let A* denote the closure of the group generated by A. r: and H*,

being closed subgroups of the reals, ~, must either be ~, consist of 0
only, or be generated by some positive number respectively. :F is trivial
if 7r{FIF is degenerate} = l.

LEMMA 2. Let:F be not trivial, then under (A) and (B) H* i= {OJ.

Proof. Suppose H* = {O}, then H should be {OJ. Then for every
x(i=O), there exist e(x) depending on x such that JIB(z,f(z» dF(x)7r(dF)
= O. Since for every 6 > 0, [-N,N] - B(0,6) is compact, we have

Jrf dF(y )7l"(dF) = O.
J[-N,NJ-B(O,6)

Since 6 is arbitrary, we have

J~ f dF(x)7r(dF) = 0, that is, 7r{FI f dF(x) = 1} = 1.
J[-N,NJ-{O} J{O}

This contradicts that :F is not trivial. This proved lemma.

THEOREM 1. Suppose:F is not trivial and v is stationary ergodic.
Then under (A) and (B), there exist two possibilities :

(i) H* = ~,

(ii) H* = {ndln = 0,±1, ... } for some d > O.

Condition (i) implies

v{wl1{c.J is trivial } = 1.

Condition (ii) implies

v{wI every h E 1{c.J has period d} = 1 and

7l"{Fll dF(x) = 1} = l.
{nd In=O,±l, ... }

Proof. By Lemma 2, H* is either R or {nd In = 0, ±1, ... } for some
d > 0. Now suppose H* = ~. Then there exists countable subset D C H
such that D* =~. H xED, then by the ergodic theorem

(4) ! t f dFk'(x) -+ Jr f dF(x)7l"(dF) > 0,
n k=l JB(Z,f) JB(Z,f)
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for every f > 0, V - a.e. w. Then x E I'"", v-a.e. w, and hence D c r ""v­
a.e., w since D is countable. So R = D* c r: c R i.e., r: = R, v-a.e.,
w. Dy Theorem 3.1 [3] rt"" is trivial v-a.e., w.

Next suppose H* = {nd In = 0, ±1, ... } for some d > o. Using the
same argument as in Lemma 2, we have

(5) 1r{FI f dF(x) = I} = l.
J{nd In=O,±I,... }

And using (4) we can easily prove that

v{wlI': = {ndl n = 0, ±1, ... }} = 1.

Clearly 2:::1 X n mod d = 0 with respect to P"" v-a.e. w by (5). Hence
by Theorem 3.1 [3] v{wl every hE rt"" has period d} = 1, for some d.
This completes proof.

It is noted that the absence of non-trivial solutions of (1) and (2) is
equivalent to the zero-one law for the {Sn} process (i.e., the tail a-field
of {Sn} contains only sets of probability one or zero), and hence we have
the following result immediately.

COROLLARY 1. Suppose every F E :F is distribution function on Z,
the set of integers. Then under (A) and (D), we have

v{wIP",,(A) E {a, I}} = 1 v - a.e. w

where A is any tail event of {Sn}.

3. Countable Case
In this section we shall use the following condition

(C) :F = {Fnln = 1,2, ... }, 1r{Fn } > 0 for n = 1,2, ....

We introduce the following notation :

Supp(F) = {yl f dF(x) > 0, for every f > OJ,
JB(y,E)

HF = {Yl f dF(x) > 0, for every f > OJ,
lB(y,E)-y'

where y' is some fixed element in Supp(F).
Note that H'F is independent of choice of y' since HF C Supp(F)­

Supp(F) c H'F. Now we use the following definition.
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DEFINITIO~ 1.

if H'F =~,

if H'F={ndld=O,±l, ... },

if H'F = {O} .

We note that if w = (Ff, F2', ... ), F~ = F for all n ~ 1, every h E 1iw

has period dF. For this see the first part of the proof of Theorem 3.1
[3].

LEMMA 3. Suppose v is stationary ergodic, then under (C)

v{wl every hE 1iw has period d} = 1,

where d = dF for all F E F.

Proof. By ergodic theorem, we have

1 n;; L 1{F}X.FX.Fx ...9k (w) -t 7l"{F} > 0 v - a.e. w.
k=l

This means v{wlF~ = F i.o. } = 1 for all F E F, and Corollary 1 [3]
applies.

THEOREM 2. Suppose v is stationary ergodic and F is not trivial.
Then under (C), there are two possibilities

(i) (U~=lH'Fn )* = ~,

(ii) (U~=lH'FJ* = {mdlm = 0, ±1, ... } for some d> O.

Condition (i) implies

v{wl1{W 18 trivial } = 1.

Condition (ii) implies

v{wI every h E 1{w has period d} = 1.

Proof. Suppose:F is not trivial, so (U~=lH'FJ* i= {O}. Hence (U~=l

H'FJ* is either ~ or {nd In = 0, ±1, ... } for some d> o. First suppose
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(U~=lHpJ* =~. Then for every f > 0, there exist dFnl, .. . ,dFnk and
m!, , mk such that Im1dFn1 + ... +mkdFnkl < f where mi E Z i =
1,2, ,k. We know that by Lemma 3 that v{wl every h E 1i"" has
period dFni i = 1,2, ... , k} = 1 and hence

Since f is arbitrary, we have

v{wl1i"" IS trivial} = 1.

Next suppose (U~=lHpJ* = {nd In = 0, ±1, ±2, ... } for some d> 0.
Then there exist dFnl , ... ,dFnk and (m!, ... ,mk) E Zk such that

m1dFn1 + ... + mkdFnk = d. By similar argument as above, we have
v{wl every hE 1i"" has period d} = 1.

LEMMA 4. Suppose n~=lSupp(Fn) =/: <p and suppose that v is station­
azy ergodic and F is not trivial. Then under the conditions of Theorem 2
condition (ii) in Theorem 2 implies 7I"{FI J{nd+xln=o,±l .... }dF(y) = I} =
1, for some x E n~=ISupp(F).

Proof. Take x E n~lSupp(Fn) and note that H Fn +x = (Supp(Fn))*.
Since H Pn C {nd In = 0, ±1, } by Theorem 2 (ii), Supp(Fn) C {nd +
xln = 0, ±1, ... } for n = 1,2, This completes Lemma.

The following result is immediate from Theorem 2 and Lemma 4.

COROLLARY 2. Suppose all Fn is distribution function of Z and
n~=lSuppFn =/: <p. Then under the condition ofTheorem 2, v{wIP",,(A) E
{O, I}} = 1 where A is any tail event for {Sn}.

4. General Case

When the X n are not uniformly bounded but there exist a likely
sequence, it is still true that for every y E r:, each h E 1i"" will have
period d : this follows from the first part of the proof of Theorem 3.1
[3]. Using this fact we can prove the following results in a similarly way.
So we give the results without proofs.
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THEOREM 3. Suppose tbere exists x such tbat infFEF IB(x,E) dF(x) >
O. Suppose v is stationary ergodic and:F is not trivial. Then there exist
two possibilities :

(i) (H - x)* =~,
(ii) (H-x)*={ndln=O,±l, ... } for some d>O.

Condition (i) implies

v{wl1-£* 18 trivial } = 1.

Condition (ii) implies

v{wl every h E 1-£*bas periodd} = 1 and .

7r{FI f dF(x) = 1} = l.
J{x+nd\ n=O,±1,... }

COROLLARY 3. Let:F be a set of distribution functions on Z. Then
under tbe conditions of Tbeorem 3, we bave v{wIPw(A) E {O, 1}} = 1
wbere A is any tail event of {Sn}.

The following theorem is immediate consequence of Corollary 1 [3]
and the ergodic theorem.

THEOREM 4. Suppose tbere exist F E :F such tbat 7r{F} > 0 and
H} =~ and v is stationary ergodic, then

v{wl1-£'"' is trivial} = 1.
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