TIME CHANGED STOCHASTIC INTEGRALS

Won Choi

1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space and $(\mathcal{F}_t)_{t\geq 0}$ be a reference family. We introduce the following notations;

 \mathcal{M}^2 = the family of all continuous locally square integrable martingales M(t) and M(0) = 0 a.s.

 A_1 = the family of all continuous adapted process A(t) and A(0) = 0, $t \mapsto A(t)$ is non-decreasing a.s.

 A_2 = the family of all continuous adapted process A(t) and A(0) = 0, $t \mapsto A(t)$ is of bounded variation on finite interval a.s.

 \mathcal{L}^2 = the family of all real predictable process $\Phi(t)$ such that there exists a sequence of stopping times σ_n such that $\sigma_n \uparrow \infty$ a.s. and

$$E\left[\int_0^{T\wedge\sigma_n}\Phi^2(t,\omega)d\langle M\rangle(t)\right]<\infty$$

for every T > 0, $n = 1, 2, \cdots$ where $\langle M \rangle(t)$ is a quadratic variation process of $M(t) \in \mathcal{M}^2$. ([2, II. Definition 2.1], [4, IV.26])

Q = the family of all continuous semimartingales X(t). ([2, III. Definition 1.1], [3])

By a time changed process we mean any process $\eta(t) \in \mathcal{A}_1$ such that, with probability 1, $t \mapsto \eta(t)$ is a stopping time and $\lim_{t \uparrow \infty} \eta(t) = \infty$.

In this note, we define the time changed reference family and represent the stochastic processes with respect to one reference family as the time changed stochastic integrals with respect to a process on the other reference family.

Received October 5, 1992.

228 Won Choi

2. The Main Results

We begin with:

LEMMA 1. Let $M(t) \in \mathcal{M}^2$ such that $\lim_{t \uparrow \infty} \langle M \rangle(t) = \infty$ a.s. If we set

$$\tau_t = \inf\{u : \langle M \rangle(u) > t\}$$

and $\widetilde{\mathcal{F}}_t = \mathcal{F}_{\tau_t}$, then the time changed process $B(t) = M(\tau_t)$ is an $(\widetilde{\mathcal{F}}_t)$ -Brownian motion.

Proof. See Ikeda and Watanabe [2, II.Theorem 7.2].

Let $M(t) \in \mathcal{M}^2$ be an (\mathcal{F}_t) -well measurable process and $\eta(t)$ a process of time change. Define the mapping

$$(T^{\eta}M)(t) = M(\tau_t).$$

Then the mapping T^{η} is an $(\widetilde{\mathcal{F}}_t)$ -well measurable process.

We are ready for Representation theorem:

THEOREM 2. Suppose that $\lim_{t\uparrow\infty} \langle M \rangle(t) = \infty$ a.s. Then $\eta(t) = \langle M \rangle(t)$ is a process of time change and there exists $\Phi(t) \in \mathcal{L}^2$ such that

(1)
$$M(t) = \int_0^{\tau_t} \Phi(s) dB(s)$$

where B(t) is an $(\widetilde{\mathcal{F}}_t)$ -Brownian motion.

In other words, every martingales with respect to (\mathcal{F}_t) can be represented as the time changed stochastic integrals with respect to Brownian motions on $(\widetilde{\mathcal{F}}_t)$.

Proof. Let $\tau_t = \inf\{u : \langle M \rangle(u) > t\}$. Then we have

$$\{\langle M \rangle(t) \leq u\} = \{t \leq \tau_u\} \in \widetilde{\mathcal{F}}_u$$

and

$$\{ au_t \leq u\} = \{t \leq \langle M \rangle(u)\} \in \mathcal{F}_u.$$

Hence, $\eta(t)$ is an $(\widetilde{\mathcal{F}}_t)$ -stopping time and τ_t is an (\mathcal{F}_t) -stopping time. From the definition of stochastic integral, there exists $\phi(t) \in \mathcal{L}^2$ such that

$$M(t) = \int_0^t \phi(s) dB_{\phi}(s)$$

where $B_{\phi}(t)$ is an (\mathcal{F}_t) -Brownian motions. Therefore, we have

$$(T^{\eta}M)(t) = \int_0^{\tau_t} \phi(s) dB_{\phi}(s)$$

and letting $\Phi(t) = \phi(\eta(t))$ and $B(t) = B_{\phi}(\eta(t))$, this result follows.

In the proof of Theorem 2, we know that every Brownian motion with respect to $(\tilde{\mathcal{F}}_t)$ can be represented as the time changed stochastic integrals with respect to basic martingales on (\mathcal{F}_t) .

Let X(t), $Y(t) \in \mathcal{Q}$. That is, X(t) and Y(t) are decomposed in the Canonical form

$$X(t) = X(0) + M_X(t) + A_X(t), Y(t) = Y(0) + M_Y(t) + A_Y(t)$$

where X(0), Y(0) is \mathcal{F}_0 -measurable, and $M_X(t)$, $M_Y(t) \in \mathcal{M}^2$, and $A_X(t)$, $A_Y(t) \in \mathcal{A}_2$. ([2, III. Definition 1.1], [3], [4, IV.31]) Denote the quadratic covariation process of X(t) and Y(t) by $\langle X, Y \rangle(t)$.([2, II. Definition 2.1], [4, IV 26])

We define the symmetric Q- multiplication ([2, p.100])

$$Y \circ dX = Y \cdot dX + \frac{1}{2}d\langle M_X, M_Y \rangle \text{ for } X(t), Y(t) \in \mathcal{Q}$$

and Stratonovich integral or Fisk integral ([4, IV 46])

$$S_t = \int_0^t Y \circ dX = \int_0^t Y \cdot dX + \frac{1}{2} \langle X, Y \rangle.$$

We now meet:

THEOREM 3. Let X(t), $Y(t) \in Q$. Then there exist $\Phi(t)$, $\Psi(t) \in \mathcal{L}^2$ such that

$$\langle X,Y\rangle(t)=\int_0^{\tau_t}\Phi(s)\Psi(s)d\langle B_X,B_Y\rangle(s)$$

230 Won Choi

where $B_X(t)$ and $B_Y(t)$ are $(\tilde{\mathcal{F}}_t)$ -Brownian motions corresponding with X(t) and Y(t), respectively. Moreover,

$$E\left|\langle X,Y\rangle(t)\right|<\infty$$
 for all t

In other words, every quadratic covariation of semimartingales with respect to (\mathcal{F}_t) can be represented as the time changed stochastic integrals with respect to quadratic covariation of basic martingales on $(\widetilde{\mathcal{F}}_t)$.

Proof. Operating Itô and Stratonovich differential to S_t , respectively, we obtain

$$dS_t = Y \cdot dX + \frac{1}{2}d\langle X, Y \rangle$$

= $Y \circ dX = Y \cdot dX + \frac{1}{2}d\langle M_X, M_Y \rangle$.

Therefore, we have $d\langle X,Y\rangle=d\langle M_X,M_Y\rangle$ and operating the Itô differential, we obtain

$$\langle X, Y \rangle (t) = \langle M_X, M_Y \rangle (t).$$

From the Representation (1), we know that there exist $\Phi(t), \Psi(t) \in \mathcal{L}^2$ such that

$$\langle X,Y
angle(t) = \left\langle \int_0^{ au_t} \Phi(s) dB_X(s), \int_0^{ au_t} \Psi(s) dB_Y(s)
ight
angle$$

where $B_X = B_X(\langle M \rangle(t))$ and $B_Y = B_Y(\langle M \rangle(t))$ are $(\widetilde{\mathcal{F}}_t)$ -Brownian motions by Lemma 1.

Since

$$\begin{split} E\left[\left(\int_{\tau_s}^{\tau_t} \Phi(s) dB_X(s)\right) \left(\int_{\tau_s}^{\tau_t} \Psi(s) dB_Y(s)\right) \mid \widetilde{\mathcal{F}}_s\right] \\ E\left[\int_{\tau_s}^{\tau_t} \Phi(u) \Psi(u) d\langle B_X, B_Y \rangle(u) \mid \widetilde{\mathcal{F}}_s\right], \end{split}$$

it follows that there exist $\Phi(t), \ \Psi(t) \in \mathcal{L}^2$ such that

$$\langle X, Y \rangle(t) = \int_0^{\tau_t} \Phi(s) \Psi(s) d\langle B_X, B_Y \rangle(s).$$

^{*}The notation ∫ is a Itô integral

On the other hand, since we have the inequality

$$\int_0^{\tau_t} \Phi(s) \Psi(s) d |\langle B_X, B_Y \rangle| (s)$$

$$\leq \left\{ \int_0^{\tau_t} \Phi^2(s) d \langle B_X \rangle(s) \right\}^{\frac{1}{2}} \left\{ \int_0^{\tau_t} \Psi^2(s) d \langle B_Y \rangle(s) \right\}^{\frac{1}{2}},$$

if $\Phi(t) \in \mathcal{L}^2$, $\Psi(t) \in \mathcal{L}^2$, then

$$E\left|\langle X,Y\rangle(t)\right|<\infty \quad \text{for all} \quad t.$$

We conclude with:

COROLLARY 4. If $B_X(t) = B_Y(t)$ for all t, then Representation (2) becomes

$$\langle X,Y\rangle(t)=\int_0^{\tau_t}\Phi(s)\Psi(s)ds$$

Proof. Since the fact that continuous process B(t) is a Brownian motion is equivalent that both $t \mapsto B(t)$ and $t \mapsto B(t)^2 - t$ are martingales ([1, VII. Theorem 11.9]), we have

$$\langle B_X, B_Y \rangle (t) = t.$$

References

- 1. J. L. Doob, Stochastic processes., John Wiley and Sons, 1953.
- N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes., North-Holland publ, 1989.
- 3. K. M. Rao, Quasimartingales., Math. Scand, 24 (1969), 79-92.
- L. C. G. Rogers and D. W. Williams, Diffusions, Markov processes, and martingales., John Wiley and Sons, 1987.

Department of Mathematics Incheon University Incheon 402-749, Korea

^{*}The notation ∫ is a Riemann integral