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A FUNCTIONAL CENTRAL LIMIT THEOREM

FOR STRONGLY MIXING RANDOM MEASURES

TAE-SUNG KIM AND HYE-YOUNG SEQ

1. Introduction
Let Bd denote the collection of Borel subsets of d-dimensional Eu­

clidean space Rd. The space M of all nonnegative measures defined on
(Rd , Bd ) and finite on bounded sets will be equipped with the small­
est u -field M containing basic sets of the form {p EM: p(A) $ r}
for A E Bd

, °$ r < 00. A random measure X is a measurable map
from a probability space (O,.r, P) into (M,M). The induced measure
Px = Po X-Ion (M,M) is the distribution of X. If X is a random
measure and B is a Borel subset of Rd then X(B) represents the random
mass of the set B, i.e., a random variable. We refer the reader to Kallen­
berg(1983) for details. For the stationary random measure X define the
K -renormaJization of X to be the signed random measure X K as

(1.1) XK(B) = X(KB) - ~X(KB)
uK7J

where u 2 is a constant which will be specified later(see (1.4) below) and
let XK(t) = XK(tl, ... , td) be defined by

(1.2) XK(t) = XK«O, tl] x ... x (0, tdD for t E [0,00 )d.

Let {XK} be a sequence of random measures on Rd. {XK(B): KEN}
satisfies the central limit theorem if for any bounded B E Bd XK(B)
converges in distribution to N(O, IB/) as K --+ 00 where XK(B) is defined
in (1.1) and IBI denotes the Lebesgue measure of B, and {XK(t) : K E
N} fulfills a functional central limit theorem if XK converge weakly to
the d-dimensional Wiener measure W. An important problem in the
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theory of random measures is to consider the limiting behaviors of the
set functions in (1.1) and (1.2) as K -+ 00. Deo(1975) extended the
concept of mixing random variables to random fields and proved a finite
summability

(1.3) o< L ICov(Xo, Xj)1 < 00

jEZtI.

under the appropriate mixing condition and Newman(1980) proved a
central limit theorem for a stationary associated random field satisfying
(1.3). Burton and Waymire(1985) extended this notion the random mea­
sure and proved the central limit theorem for associated random measure
satisfying a simple summability condition

(1.4) 0< u2 = L ICov(X(lt),X(II:»1 < 00,

kEZtI.

where II: = (k - 1, k] and obtained a scaling limit for a Poisson cluster
random measure.

The main purpose of this paper is to investigate a central limit the­
orem and a functional central limit theorem for a sequence of strongly
mixing random measures satisfying condition (1.4) by a tightness crite­
rion of Bickel and Wichura(1971) and uniform integrability.

In Section 2, we define strongly mixing for the random measure and
we also introduce some relationships among various limit theorems in
Section 3. A functional central limit theorem for strongly mixing random
measures is derived in Section 4 and finally this is applied to Poisson
center cluster random measure in Section 5.

2. Preliminaries and notations
Denote by IAI the Lebesgue measure of A E Bd. For x = (XI, ... , Xd)

E Jld, Y = (Yb ... ,Yd) E Rd
, we let p(x,y) = maxl<i<dlxi -Yil. Let T

be the closed interval [0, T] and Td the d-fold Cart~~an product of T.
Let Cd be the space of all continuous functions on T d with the uniform
metric and, as in Bickel and Wichura(1971), let us denote by Dd the
Skorokhod function space on Td. All properties of Dd that we need can
be found in Bickel and Wichura(1971) (See, for example, [1] for details on
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the d-dimensional Skorokhod topology). A block in T d is defined to be
a set of the form B = lIf=1 (Si, til, 0 :5 Si :5 ti :5 T, i = 1, ... , d. Disjoint
blocks B = lIf=1 (Si, til and C = lIf=1 (8~, t~] are neighbors if they abut
and have some pEl, ... , n, IIi#p(Si, til = ni#p(8~, t~](for example, when
d = 3 the blocks (S},tl] x (S2,t2 ] x (83,t3]and (tl,t~] x (82,t2] x (83,t3]
are neighbors (81 < tl < tD). For each i, 1 :5 i :5 d, let

be real numbers. A collection of blocks in T d is said to be strongly
separated if it is of the form {lIf=l(a1i), b~\ 1:5 k :5 m,l :5 i :5 d},
or if it is a subfamily of such a family of blocks. Let W(t) be the d­
dimensional Wiener measure on Td. W on T d is characterized by

(a) P[W E Cd] = 1,
(b) IT B 1 , B 2 , ••• , Bk are pairwise disjoint blocks in T d , then the in­

crements W(B1 ), W(B2 ), ••• , W(Bk) are independent normal random
variables with means zero and variances IB1 1, ... , IBkl, respectively. IT
B = lIf=I(Si,ti], then

W(B)= L ... L (-l)d- EEiW(SI +€1(t1- 8I), ... , Sd+€d(td-Sd)).
E1 =0,1 Ed=O,1

A random measure X is stationary if for all bounded B 1 , B 2 , ••• ,Bk E
Bd the distribution of X«B1 + a), ... ,X(Bk + a)) is independent of
a E Rd. All random measures discussed hence forth will be assumed to
be stationary.

The usual condition imposed on a stochastic process defined on Rl
in order to prove a central limit theorem is a mixing condition, which
ensures asymptotic independence of widely separated random variables.
In an analogous fashion, Ivanoff(1982) has introduced the concept of
strongly mixing for point process. Similarly, if X is a stationary ran­
dom measure a strongly mixing condition may be imposed on X(A) and
X(B), where p(A, B) = minxEA,yEBP(X, y) is large. Suppose that X is
a stationary random measure and that A is a set in Bd. Let:F(A) be
the u-field generated by the random variable X(A' ), A' ~ A, A' E Bd •

Denote the diameter of A by d(A), where d(A) = SUpx,yEAP(X, y).
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Define a(r, d) by

(2.1) a(r,d) = sup sup IP(UI n U2 ) - P(UdP(U2 )1.
p(Al,A2)~r UIE.1"(Al)

d(Al)~d,d(A2)$dU2E.1"(A2)

Then X is said to be strongly mixing if a(Kr,Kd) -+ °as K -+ 00.

3. A classical scaliDg limit

THEOREM 3.1. Let X be a stationary random measure and define
XK(t) as in (1.2). Assume

(3.1) 0<(72 = L ICov(X(Id,X(h))1 < 00

kEZ<l

where I k = (k - 1, k], k E Zd. H {XK(t)} fulfills the functional central
limit theorem, for each t, then X K (·) satisfies the central limit theorem.

Proof. First we consider the special case that A E Bd is bounded
and open. Then A = UrBi for countable collection {Bi}r of disjoint
blocks. From the assumption of a functional central limit theorem it

1)
follows that as K -+ 00, XK(UfBi) ---+ N(O, I Uf BiD for all n. But

as n -+ 00, N(O, IU7=1 Bil) ~ N(O,IAI) and from (3,1) it is easy to

see that as n -+ 00, XK(U~B i ) ~ XK(A) uniformly in K. (~
denotes convergence in probability.) Thus, according to Theorem 4.2 of

Billingsley [2] XK(A) ~ N(O, IAI) as K -+ 00.

For general bounded sets A E 8 d , the above argument may be re­
peated, approximating A with open sets.

DEFINITION 3.2. (Burton and Kim, (1988)) If X is a stationary ran­
dom measure we say that X satisfies a classical scaling limit if X lies
in the domain of attraction of Gaussian white noise for the scaling pa­
rameter Kf, i.e., for all disjoint rectangles (products of finite inter­
vals) BI,B2 , ••• ,Bn , (XK(Bd, ... ,XK(Bn )) converges in distribution
(as K -+ 00 ) to a multivariate normal with mean vector 0 and diagonal
covariance matrix whose diagonal terms are IBll, ... , IBn I where IBi I is
the Lebesgue measure of B i .
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THEOREM 3.3. Let X be a stationary random measure and define
XK(t) as in (1.2). Assume that the random measure X satisfies (3.1)
and {XK(t)} fulfills the functional central limit theorem, for each t.
Then X satisfies the classical scaling limit.

Proof. From Theorem 3.1, it follows that for A E Bd , A bounded,

XK(A)~ N(O, IAI). It remains to be proven that for B}, ... , B j E Bd,

B i bounded, i = 1, ... ,j, B i n B h = 0, i =1= h, (XK(BI)"",XK(Bj»
converges in distribution (as K -+ (0) to a multivariate normal with
mean vector °and diagonal covariance matrix whose diagonal terms are
IBII, ... , IBjl, where IBil is the Lebesgue measure of Bi. This statement
is proven using techniques similar to those used to prove Theorem 3.l.
The sets {Bi}{ may be approximated by disjoint sets {Ai}{, each of
which is a finite union of disjoint blocks.

THEOREM 3.4. Let X be a stationary random measure satisfying
condition (3.1). Define XK(A) as in (1.1). Assume

(i) for any bounded A E 8 d, XK(A)~ N(O, IAI),
(ii) X is strongly mixing.

Then X satisfies the classical scaling limit.

Proof. It is sufficient to show that if A}, ... , Aj E 8 d, Ai is bounded,
i,h = 1, ... ,j, Ai nAh = 0, i =1= h, then

where M(Ad, ... ,M(Aj) are independent and M(Ai ) '" N(O, IAil) i =
1, ... ,j. H this can be proven when At, ... ,Aj are disjoint blocks, the
proof of Theorem 3.3 shows that the desired result follows. Therefore,
assume that A b ... , Aj are disjoint blocks. Let (Alp, ... , A jp ) be blocks
such that Aip C Ai, IAi - Aipl < ~, p = 1,2, ... , p(Aip, Ahp) > 0,

i, h = 1, ... ,j, i =1= h. Let Tp = mini#hP(Aip, Ahp) and d = d(U1=t Ai).
Then by induction it follows easily that for Hi E 8 d , i = 1,2, ... ,j,

IP(XK(Alp ) EHI,···, XK(Ajp ) E H j ) - n!=l P(XK(Aip ) E Hi)1

< ja(KTp , Kd).
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Therefore, since a(Krp, Kd)-+O as K -+00 and XK(Aip) :!!..... N(O, IAipl)
1)

then (XK(Alp)"",XK(Ajp» -+ (M(AIP), ... ,M(Ajp» where
M(Alp ), ... ,M(Ajp) are independent random variables and M(Aip ) '"
N(O,IAipl). It is also easily seen that as p -+ 00 ,

where M(AI ), ... ,M(Aj ) are the independent normal random variables
with mean 0 and variances IAII, ... ,IAjl, II being the d-dimensional
Lebesgue measure on T d • In addition,

as p -+ 00, uniformly in K, since

P{p((XK(AIP)"" ,XK(Ajp», (XK(At}, ... , XK(Aj») > €}
j

:::; L P{XK(Ai - Aip) > €}
I

j 1:::; L 2 E [Xk(Ai - Aip )]
I €

j 1
= L 2 2KdVar[X(K(Ai - A ip»]

I U €

j 1
=L U2€2KdCov(X(K(Ai - Aip»,X(K(Ai - Aip»)

I

j 1
:::; L U2€2Kd L L ICov(Is,It) I

I sEA tEA .

:::; t mK;l~;;dAiPI L ICov(X(It},X(It»1
I tEZd

< mJ
- €2p
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according to (3.1), stationarity and boundedness of Ai where, if A is the
one that the total number of unit cubes is smallest among Urlr covering
KAj - KAjp , then there exists a positive number m such that the total
number of unit cubes in A is not larger than mKdlAj - Aipl. Therefore,
by Theorem 4.2 of Billingsley ([2]),

'D(XK(AI ), •.• ,XK(Aj ))~ (M(Ad, ... , M(A;)),

where M (Ad, ... , M(Aj) are independent normal random variables
with meap.s zero and variances IAII, ..., IAjl, II being the d-dimensional
Lebesgue measure on T d •

4. A functional central limit theorem

THEOREM 4.1. Let X be a stationary strongly mixing random mea­
sure and satisfy (3.1). Assume that for A E Bd , A bounded, IAI > 1,
there exist constants C < 00 and 6 > 0 such that

(4.1) E(IX(A) - EX(A)I2+6) $ C(0'2IAI)!.f!

Then {XK(t) : t E T d } fulfills the functional central limit theorem.

Proof. As defined in (1.1) for a block B C Td

(4.2) XK(B) = X(KB) - ~X(KB)
uK "2

and if B = TIf=1 (Sj, til, then KB = TIf=1 (Ks j ,Ktih Sj, ti E T. From
(4.1) and Schwarz inequality it follows that for neighboring blocks B
and F and h > 0

P[min(IXK(B)I, IXK(F)I) ;::: .\l
$ .\-(2+6)E(IXK (B)IIXK(F)\)!¥

$ .\-(2+6)(EIXK (B)12+6EIXK(F)I2+6)t

$ .\-(2+6)(0'2Kd)-(l+!)(C(0'2KdIB\)(H~)C(0'2 KdIFI)(l+~»)t

= .\-(2+6)C(IBIIF\)t+!
1+ 6

:5 .\-(2+6)C((IBI + IFI?)2 i

= .\-(2+6)CIB U FIl+!.
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Thus by Theorem 3 of Bickel and Wichura (1971) the sequence {XK }

is tight. It should be noted that Bickel and Wichura ([1]) assumed that
X K( .) vanishes along the lower boundary of Td

UI:5p:5d [O, T] x ... x [0, T] x {OJ x [0, T] x ... x [0, T],

(0 is in the pth position). But by (4.1), P(X(A) = 0) = 1 if IAI = 0, so
a version of X K exists which is zero along the lower boundary. Suppose
X is the limit in distribution of a subsequence. It remains to show that
X must be distributed as W. X must be continuous with probability
one, since X K (-) has jumps of at most size (uKd /2)-I. From (4.2) and a
condition (3.1) it is easily seen that EXK(t) = 0 and E{Xl(t)} -+ Itl,
where ItI= (tl x ." X td). By condition (4.1), for K large enough,

(4.3) E(IXK(t)12+6) ~ (lTK~)-(2+6)C(lT2Kdltl)I+! = C(ltl)l+!.

and so {Xl(t)} and {XK(t)} are uniformly integrable. This implies that
E(X(t)) = 0 and E(X2(t)) = ItI according to Theorem 5.4 of Billingsley
([2]).

Finally let BI ,B2 , ••• ,Bm c T d be strongly separat~d blocks and let
r = minl:5i~j:5mP(Bi,Bj). Because BI, ... ,Bm are strongly separated,
r > 0, and let d = d(U::I B i ). It follows trivially that p(KBi,KBj) ;:::
Kr for i "#j. Also, if Ie {l, ... ,m}, d(UiEIKBi) ~ Kd. Thus, for all
K and i "# j, by the strong mixing condition it follows that if HI, ... ,H m

are arbitrary linear Borel sets, if i "# j

(4.4) IP(XK(Bi) E Hi, XK(Bj) E Hj)-P(XK(Bi)E Hi)P(XK(Bj) EHjl

~ a(Kr, Kd).

By induction, it is easily seen that

45 IP(XK(Bd E HI,.·' ,XK(Bm ) E Hm ) - rr~IP(XK(Bi) E Hi)1
( . ) ~ ma(Kr,Kd) -+ 0 as K -+ 00.

Thus, X must have independent increments and so every subsequence
{XK'} of {XK} has a further subsequence {XK"} which converges weakly
to the Wiener measure W on T d • Therefore {XK } fulfills the functional
central limit theorem.
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5. Poisson cluster random measures

We apply Theorems 3.4 and 4.1 to Poisson center cluster random
measures. These cluster random measures have been used as models
of infinite divisibility and self-similarity ([5],[12]) as well as models of
natural phenomena such as storm systems and galaxies ([11]). These
are constructed as follows. Let U be a stationary Poisson point process
with parameter p. Let V = {Vzlx E Rd} be a collection of i.i.d. random
measures with E[Vz(Rd )] = e< 00 . Then we say that X is a cluster
random measure with centers U and members V if

(5.1) X(B) = L Vz(B - x)
x:U(x»O

for each bounded Borel set B. We denote X by [U, V].

LEMMA 5.1. Let X = [U, V] as above with V an ii.d. random mea­
sure such that E[V(Rd)2] = TJ < 00. Then

(5.2) L ICov(X(lt),X(h))1 = PrJ < 00.

kEZd

where lk = (k - 1, k].

Proof. See the proof of Theorem 5.3 of Burtion and Wayimire([4]).

LEMMA 5.2. Let X = [U, V] as above. Let B be a rectangular box
in Rd and 0 ~ 6 ~ 2. H E[(Vx ( Rd))2+6] < 00 then

Proof. See the proof of Theorem 3.1 of Burton and Kim([3]).

THEOREM 5.3. Let X = [U, V] as above with V an iid. random
measure such that E[Vx (Rd)2] = TJ < 00. H X is strongly mixing then
X satisfies a classical limit with parameter PTJ.

Proof. According to (5.2) and Theorem 3.4 the proof of Theorem 5.3
is complete.
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THEOREM 5.4. Let X = [U, V] as above. Assume
(i) X is strongly mixing,
(ii) E[(Vx (Rd))2+6] < 00 for 0 < h ~ 2.

Then {XK} :fu1H11s the functional central limit theorem.

Proof. According to (5.2), (5.3) and Theorem 4.1 the proof of Theo­
rem 5.4 is complete.

REMARK. (1) Ivanoff ([8]) has shown that if the V was a point process
with factorial moment density functions up to order 4 then a stationary
Poisson cluster process satisfies the functional central limit theorem.

(2) Burton and Kim ([3]) have shown that ifE[(Vx (Rd))2+6] < 00 then
the stationary Poisson cluster random measure X fulfills the functional
central limit theorem by the fact that Poisson cluster random measure
X is associated.
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