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ON DIFFERENTIABLE SEMIGROUPS

YOUNKI CHAE AND KEUNBAE CHOI

1. Preliminaries

The notion of a semigroup with differentiable multiplication based
on an ordinary differentiable manifold was studied in [3], [4]. This con
ception eliminates many interesting cases. For example, the Heisenberg
group G of the form

G~n
such that x, y, z are real. This group may be identified with ]R3 (as a
manifold). Let S be the subsemigroup of G defined by x, y ;:::: 0 and
o ~ z ~ xy. When identified with a subset of ]R3, S is the region in
the first octant below the graph of z = xy. Thus S has a cusp at the
identity. This example illustrates the need' to allow corners, cusps, and
possible other irregularities in the boundary. Thus we need a generalized
differentiable manifold.

The following definitions in this paper are due to Graham in [1]. A
subset A of a topological space X is said to be admissible set if A has
dense interior in X. Let A ~ E be an admissible set of a Banach space
E, F be a Banach space and let f : A -t F be a function. A linear map
T E L(E, F), the Banach space of continuous linear maps from E to F,
is a strong derivative of f at a E A if for each e > 0, there is a ~ > 0 such
that if each of x and y is within Ii of a then If(y) - f(x) - T(y - x)1 <
ely - xl. We denote T by df(a). As usual, f is C1 if df(x) exists for
each x E A. Inductively, f is C: if f is C~ and df is C:-1. Finally, f is
Cc;o if f is C: for all positive integers k. If f is C:, then the ph strong
derivative of f (j ~ k) is the map dif = d(di - 1 ): A -t Li(E,F), the
Banach space of continuous j-multilinear maps Ei to F.
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Let E be a Banach space. An E-manifold (with generalized boundary)
is a regular topological space M such that for each p E M there is an
open set U C M about p and a homeomorphism <p from U onto an
admissible subset of E. An C: atlas for an E-manifold M is a collection
A of functions satisfying (i) each <p E A is a homeomorphism from an
open subset dorn<p of M onto an admissible subset im<p of E, (ii) M =
Udorn<p(If' E A) and (iii) 'l/J 0 <p-1 is a C: map for each "p, <p E A. A
C: manifold is a pair (M, V) where M is an E-manifold and V is a
maximal C: atlas. Let M be a C: E- manifold and let N be a C:
F-manifold. For each chart <p on M and "p on N, define <p x 'l/J by
(<p X 'l/J)(p,q) = (<p(p),,,p(q)) E E x F. Then dorn(<p x "p) is open in
M x N with the product topology and im(<p x "p) is an admissible subset
of E x F. It follows that the collection of all such maps c.p x t/J is C: atlas
for M x N(E x F-manifold). The C: differentiable structure generated
by this atlas is called the product structure for M x N. In similar way,
one may show that any finite Cartesian product of C: manifolds is a C:
manifold.

Let M be a C: E-manifold and let p E M. H If' and t/J are charts
at p (<p,,,p E V) and if V,w E E, then (<p,v) is p-equivalent to (t/J,w) if
d(t/J 0 <p-1)(<p(p))V = w. Clearly, this gives an equivalence relation on
A x E. Let TpAI denote the set of equivalence classes [(<p, v)]p where <p
is a chart at p and vEE. The tangent space of M at p is the set TpM
with the unique vector space structure such that cj;p : E -+ TpM defined
by cj;p(v) = [(<p, v)]p is isomorphism for each chart <p at p. Let M and N
be C: manifolds and let f : M -+ N be a C: map. IT p EM, then the
(strong) derivative of f at p is the map df(p) : TpM -+ Tf(p)N defined
by df(p) = .,p f(p) 0 d( t/J 0 f 0 <p-1)(<p(p)) 0 (cj;p )-1, where <p is a chart at
p and 'l/J is a chart at f(p). The definition of df(p) is independent of the
choice of charts <p and t/J. Let TM = {(p,v)lp E M,v E TpM}. For each
chart c.p : U C M -+ ACE, define T<p from TU = {(p, v)\p E U, v E
TpM} onto A x E by T<p(p, v) = (<p(p), d<p(p)v) = (<p(p), (cj;p )-1 v). The
collection of sets of the form (T<p)-l(W), where <p is a chart on M and
W is an open subset of E x E, is a base for a topology on TM. With
this topology, the collection of all maps T<p is a C:-1 atlas for TM as an
E x E-manifold. The tangent bundle of M is the C: map 1r : TM -+ M
defined by 1r(p, v) = p. A vector field on M is a section of 1r, that is, a
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map X : M -+ T M such that 1r 0 X = 1M. Given a vector field X on M,
we denote X p by the image X(p) for each p EM.

2. C: semigroup and its Lie algebra

A semigroup 8 with multiplication m is a C: semigroup if 8 itself is
a C: manifold and m is a C: map from 8 x 8 to 8, where 8 x 8 carries
the product structure. A C: semigroup 8 is locally compact (compact)
if 8 is locally compact (compact) topological space. A vector field X
on a C: semigroup 8 is right-invariant if dpb(a)(Xa) = Xab for each
a, b E 8. The collection of right-invariant vector fields of 8 is denoted by
L(8). Let 8 be a C: semigroup with identity (C: monoid). Then L(8)
is linearly isomorphic to the tangent space TI 8. Since TI 8 can be given
the structure of a Banach space, L(8) may be given the structure of a
Banach space. IT k 2:: 3, then L(8) is a Lie algebra under Lie bracket of
vector fields [1].

Remark. For a locally compact C~ monoid 8, let W(8) = {X E
L(8)IXI = a'(O) for some one-parameter submonoid of 8}. Define exp:
W(8) -+ 8 by exp(X) = a(1) where a'(O) = Xl' Then W(8) is a closed
wedge in L(8) and exp is a C~ diffeomorphism into 8 on a neighborhood
of 0 (II. Corollary 6.4. from [1D.

Let G be a Lie group with its Lie algebra L(G). Then there is a one
ta-one correspondence between L(G) and the set of all one-parameter
subgroups of G. For C~ monoids, we may have the following result
similar with Lie group. Throughout we will denote with R.+ the set of
non-negative reals.

THEOREM 1. Let 8 be a locally compact C~ monoid. Then there
is one-ta-one correspondence between the set W(8) and the set of all
one-parameter submonoids of 8.

Proof. For each X E W(8), there is a one-parameter submonoid a
such that a'(O) = Xl' IT {3 is any other one-parameter submonoid of
8 such that (3' (0) = Xl, then a, (3 are integral curve of X satisfying
a(O) = (3(0). Thus a = (3. For X, Y E W(8), if exp(tX) = exp(tY) for
all t E R.+, then Xl = Yi and so X = Y since L(8) is isomorphic to
TI 8 under X 1-+ Xl. IT a is a one-parameter submonoid of 8, then a is
a C~ map ([1], II. Corollary 6.2). Hence a'(O) = da(0)(1) E TI 8 and
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there is a unique X E L(S) such that Xl = 0.'(0). Thus X E W(5) and
aCt) = exp(tX) for all t E R+.

Note. Let 5 = {(x,y)lx > O,y E (0,x2 )) together with (0,0). Then
S is a C~ submonoid of the additive plane and L(S) = (R.2 , +). Note
that the only one-parameter submonoid of S is the trivial one. Hence
W(S) = {OJ.

If L is a finite dimensional Lie algebra, then all norms on L which
make addition continuous are equivalent and in this case there is a norm
such that I[X, Y]I $ IXIIYI for all X, Y E L.

Let B be an open c-ball around °with respect to this norm such that
(i) (X, Y) ~ X *Y = X +Y + ![X, Y] +... is defined and continuous on
B X B, where * is the multiplication given by the absolutely convergent
Campbell-Hausdorff series, and (ii) all triple products are defined and
associative. Such neighborhood always exists. We assume that B is
fixed in this section. We say that 5 ~ B is a local semigroup with
respect to B if 0 E S and (S * S) n B ~ S. For a local semigroups, we
set 1.(S) = {X E LIR+X n B ~ S n B}. Let L be a Lie algebra. A
subset K ~ L is called a Lie wedge if there exists a local semigroup S
with respect to some open e-ball B such that K = 1.(S) and a Lie wedge
K is called a Lie semialgebra if K n B is a local semigroup with respect
to some open e-ball B.

Remark. Let S be a locally compact C~ monoid. Then there is a local
Lie group embedding of S ( Theorem 6.1 from [1] ). Let I: U C 5 ~ G
be a local Lie group embedding of S, let L(f) : L(5) ~ L(G) be an
isomorphism of Lie algebras induced by I, and let B be a small open
neighborhood in L(G) such that the multiplication * is defined on B x B
and exponential mapping restricted to B is a diffeomorphism into G.
Then 10 exps = eXPa oL(f) on L(f)-I(B) in W(S).

For submonoid T of S, define WeT) = {X E W(S)I exp(tX) E T for
all t ~ OJ.

LEMMA 2.1. Let S be a locally compact Cr;o monoid. Then exp :
W(S) ~ S is a continuous map.

Proal. Let U be an open set containing exp(X) and let B be an
open set in W(S) containing °which is diffeomorphism onto B s in S
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containing identity. Then there exists positive integer n such that ~X E

B and exp(~X) E B s • And since exp(~Xf = exp(X) E U, there
exists open subset V of S such that exp( ~X) € V and vn ~ U. Let
P = B s n V. Then P is open in B s containing exp(~X) and so there
exists open set Q in W(S) such that ~X E Q, Q is homeomorphic to P.
Thus X E nQ and exp(nQ) = exp(Q)n = p n ~ vn ~ U.

THEOREM 2. Let S be a locally compact C~ monoid with its Lie
algebra L(S). If W(S) is a Lie semialgebra, then WeT) is a Lie wedge
for every closed submonoid T of S.

Proof. Since W(S) is Lie semialgebra, W(S)nB' is a local semigroup
for some open c:'-ball B'. Let Bo be an open l5-ball around 0 contained
in L(f)-I(B) n B' and let K = eXPsl(T) n Bo• Then if x, y E K and
x*y E L(f)-I(B)nBo, then x,y E W(S)nB',x*y E B' and so x*y E
W(S) since W(S) n B' is local semigroup. Thus x * y E L(f)-I(B) n
W(S). Note that exps(x * y) = (1-1 ° eXPa oL(I»(x * y) = (1-1 °
eXPa)(L(I)(x)*L(f)(y» = f-l(expa(L(f)(x»exPa(L(f)(y») = (f-l o
expaoL(f»(x)(f-l °expaoL(I»(y) = exps(x)exps(Y) E T. Hence
x * y E K and so K is local semigroup with respect to Bo and closed in
B6 since exponential map is continuous (Lemma 2.1.). Now X E lL(K)
if and only if R+X n B o ~ K n Bo = K if and only if exp(tX) E T for
small positive t if and only if exp(tX) E T for all non-negative t if and
only if X E WeT). Thus we have WeT) = lL(K)

COROLLARY 2.1. Let S be a locally compact C~ monoid with its
Lie algebra L(S). If W(S) is a Lie semialgebra, then there is an open
neighborhood Q around 0 in L(S) such that * is defined on Q x Q and
that

(1) exp Iw(s)nQ is a C~ diffeomorphism into S.
(2) exp(x * y) = exp(x)exp(y) for x,y E W(S) n Q and x * y E Q.

Proof. In the proof of Theorem 2., let Q = B6.

COROLLARY 2.2. If S is a locally compact commutative Cr: monoid,
then WeT) is a Lie wedge for every closed submonoid T of S.
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COROLLARY 2.3. IfS is a locally compact 2-dimensional C~ monoid,
then WeT) is a Lie wedge for every closed submonoid T of S.

Proof. Note that any wedge in 2-dimensional Lie algebra is a Lie
semialgebra.

For a monoid S, let H(l) be the group of units of S. Then H(l) is
expressed by {x E Sil E xS n Sx}.

LEMMA 3.1. ([1, II. Proposition 2.2.]) Let G be a C: group and let
fJ : G -. G be the inversion map. Then fJ is a C: map.

THEOREM 3. Let S be a C~ monoid with its Lie algebra £(8). If
H(l) is a C~ group, then W(H(l)) = W(S) n -W(S).

Proof. Since H(l) s:;;; S, W(H(l)) s:;;; W(S). Suppose that X E
W(H(l)). Then exp(tX) E H(l) for all t E R+. Let aCt) = exp(tX)
for all t E a+ and let 8: H(l) -. H(l) be the inversion map. Define a
map f3: R+ -. H(l) by f3(t) = 8oa(t). Then f3 is well-defined, and con
tinuous homomorphism and so C~ map ([5, Theorem 2.]). Thus there
exists Y E W(S) such that f3(t) = exp(tY) for all t E R+. Now Yi =
f3'(O) = df3(O)(l) = d(fJ 0 a(t))(O)(l) = d8(1)(da(O)(1)) = -Xl' Thus
Y = -X and so -X E W(S) and we have W(H(l)) s:;;; W(S) n -W(S).
H X E W(S)n-W(S), then tX E W(S) for all t E R. Thus exp(tX) E S
for all t E R. So 1 = exp(tX)exp(-tX) = exp(-tX)exp(tX) for all
t ~ O. Hence we have exp(tX) E H(l) for all t ~ 0 and so X E W(H(l)).
Thus W(S) n -W(S) s:;;; W(H(l».

COROLLARY 3.1. Let S be a locally compact commutative C~

monoid (or locally compact 2-dimensional C~ monoid) with its Lie al
gebra £(S). If H(l) is a C~ group, then W(H(l») is a subalgebra of
£(S).

It is well known that if S is a divisible and compact monoid, then H (1 )
is connected. The following theorem shows that necessary and sufficient
condition for H(l) to be connected in a compact C~ monoid is H(l) is
contained in the subsemigroup of S which is generated by exp W(S).

THEOREM 4. Let S be a compact C~ monoid. Then H(l) S:;;;<
exp W(S) > if and only if H(l) is connected.
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Proof. Let 9 E H(l). Then 9 = exp(XI)exp(X2 )·· ·exp(Xn ) for
some X},X2"",Xn E W(S) and exp(Xi) E H(l) since S is com
pact monoid for i = 1,2,··· , n. Now for i = 1,2,···, n, exp((l 
t)Xi)exp(tXi) = exp(Xi) E H(l) for all teO $ t $ 1). Thus exp(tXi) E
H(l) for all teO $ t $ 1). So we have for each i = 1,2,··· , n,exp(tXi) E
H(l) for all t E ]R+. Hence X I ,X2 ,'" ,Xn E W(H(l)),H(l) =<
exp W(H(l)) > and so H(l) is connected. Conversely, H(l) is a com
pact connected topological group with no small subgroup and therefore
is connected Lie group.

In [1], George E. Graham suggested an open problem relating to ho
momorphism of C~ semigroup.

PROBLEM. Let S and T be C~ monoids and let f : S -+ T be a
continuous homomorphism. Must f be a C': differentiable on a neigh
borhood of 1 (identity of S)?

The following theorem is a partial solution for the problem.
If S is a C: semigroup, then the tangent space T(sl,s2,'" ,Sn)S x S x

... x S may be identified with TSl S x TS2 S X ... X Tsn S

LEMMA 5.1. Let S be a C: monoid. Define a map m n : S x S x ... x
S -+ S by m n(8}, 82,' .. , Sn) = 8182' .. Sn, then dmn(l, 1, ... , 1)(V}, V2,
... ,vn) = VI+V2+"'+Vn forall(vI,v2,'" ,vn) E TISxTISx···xTIS.

Proof. For n = 2, dm(l, 1)(v},v2) = dPI(1)(VI)+dAI(1)(V2) = VI +V2
by product rule [1]. Suppose that the assertion is true for n - 1. Note
that m n = m 0 (Is x mn-d, where m is multiplication on S and mn-I :

S x ... x S -+ S by m n -I(82,'" , sn) = S2'" Sn' Hence

dmn(l, 1, ... ,1) = dm(l, 1) 0 d(1 s x m n-d(l, 1, ,1)

= dm(l, 1) 0 (dIs x dmn-I)(l, 1, ,1).

Thus we have

dmn (1, 1, ... ,1)(v}, V2, ... , vn )

=dm(1,1)(v},dmn_I(1,1, ... ,1)(v2,'" ,vn))

=VI +dmn-I(l,l, ... ,1)(V2,'" ,vn)

= VI + V2 + ... + vn.

for all (VllV2, ... ,vn) E TIS x· .. X TIS.
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LEMMA 5.2. (Inverse Function Theorem [1, Theorem 4.1]). Let M
and N be C: manifolds, let I : M --+ N be a C: map and let p EM. H
dl(p) is an isomorphism onto Tf(p)N, then there is an open set U about
p such that Ilu is a diffeomorphism onto the admissible subset I(U) of
N, (fIU)-I is a C: map.

THEOREM 5. Let S be a locally compact C~ monoid with L(S) =<
W(S) > as a vector space and T be a C~ monoid. Then eve.zy con
tinuous homomorphism I : S --+ T is a C~ map on a neighborhood
(admissible subset of S) of the identity of S.

Proof. Let X I ,X2 , .•• ,Xn E W(S) such that < Xt,X2, ... ,Xn >=
L(S) as a vector space. For each i, ai : lR+ --+ T by ai(t) = l(exp(tXi»)
is continuous homomorphism since exp map is continuous and so they
are C~ map [5,Theorem 2]. Thus there exist elements Yi, Y2 , ••• ,Yn E
W(T) such that exp(tYi) = ai(t) for i = 1,2, ... ,n. Define a map
F: (lR+)n --+ S by F(t}, ,tn) = exp(tIXt} ... exp(tnXn), then since
I 0 F(t}, . .. ,tn) = al (tt} an(tn), I 0 F is a C~ map. Now, F =
m 0 (131 X 132 X ••• x 13n) where 13i : lR+ --+ S by 13i(t) = exp(tXi) for
i = 1,2, ... ,n. Let ej denote the n-tuple with 1 in the j-th place and
O's otherwise. Then

dF(O)(ej) = d(m 0 131 X •• , X 13n)(O)(ej)

= dm(1, 1, ,1)«d13I(O) x ... x d13n(O))(ej))

= dm(1, 1, ,1)(0,0, ... ,0, d13j(0)(1), 0, ... ,0)

= d13j(O)(1) = 13j(O) = Xj(1).

Hence dF(O) maps an n-dimensional basis of lRn into the n-dimen
sional basis of TIS ~ L(S) and so it is linear isomorphism. Thus by
Lemma 5.2., there exists an open set U about 0 in (lR+)n such that Flu
is a diffeomorphism onto the admissible subset F(U) of s, Flil is a C~
map. Thus I = (f 0 F) 0 Fli/ on F(U) and so I is a C~ map in a
neighborhood (admissible subset) of the identity of S.

Remark. Let S and T be C: monoids and let I : S --+ T be a C:
local homomorphism. Define L(f) : L(S) --+ L(T) by L(f)(X)p =
dpp(1)(dl(1)(Xt}). Then L(J) is a Lie algebra homomorphism if k > 2.
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COROLLARY 5.1. Let 8 be a locally compact C~ monoid with L(8)
=< W(8) > as a vector space and T be a Cr: monoid. Suppose that
I : 8 -+ T be a continuous homomorphism. Then I induces Lie algebra
homomorphism L(f) and if A = Ker I, then W(A) n -W(A) is a Lie
subalgebra of L(8).

Proof. Note that A is a closed subset of 8. H X E W(A) n -W(A),
then exp(tX) E A for all t E R if and only if l(exp(tX» = IT for
all t E R. Let o:(t) = 10 fi(t) where pet) = exp(tX) for all t E R.
Then 0: is a one-parameter submonoid of T and 0:'(0) = do:(O)(I) =
dl(I)(dP(t)(O)(I» = dl(I)(P'(O)(I» = dl(I)(Xd =dPl(1)(dl(I)(Xd) =
L(J)(Xh. It follows that L(J)(X) E WeT) and o:(t) = exp(L(J)(tX»
for all t E R. So we have l(exp(tX» = IT for all t E IR if and only if
exp(tL(J)(X» = IT for all t E R if and only if L(f)(X) = O. Thus
W(A) n - W(A) = Ker L(f).

A ray semigroup is a Cr: monoid 8 such that 8 is generated by the
set of all elements of 8 of the form o:(t), where 0: is a C~ one-parameter
submonoid of 8 and t ~ O.

COROLLARY 5.2. Let 8 be a locally compact commutative ray semi
group and let T be a C~ monoid. Then every continuous homomorphism
I : 8 -+ T is a Cr: map on a neighborhood (admissible subset) of the
identity of 8.

Proof. Since 8 is a finite dimensional ray semigroup, W(8) gener
ates L(8) as a Lie algebra ([1], II. Corollary 6.3.). And since 8 is a
commutative (L(8) is commutative), W(8) - W(8) = L(8).

COROLLARY 5.3. Let 8 be a 2-dimensional ray semigroup and let T
be a C~ monoid. Then every continuous homomorphism f : 8 -+ T is
a local C~ map on a neighborhood (admissible subset) of the identity
of 8.

Proof. Since 8 is a ray semigroup, 8 =< exp W(8) >. H the dimen
sion of W(8) is 1, then for all Y E W(8), Y = tX for some t E R+
and fixed X E W(8). Thus 8 =< exp W(8) >= {exp(tX)lt ~ O} and
contradict to 2-dimensional ray semigroup. Hence L(8) =< W( 8) > as
a vector space.
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