CONTINUOUS EXTENSIONS OF TOPOLOGICAL MODULE ENDOMORPHISMS

Geon H. Choe

In this short article, we study the extensions of continuous endomorphisms of a topological module that are given by scalar multiplication by a ring element. First, let us briefly check the details in the case of the circle, which gives the motivation for the generalization. Let S^{1} be the unit circle $\{z \in \mathbb{C}:|z|=1\}$ that is identified with a topological abelian group $X=\mathbb{R} / \mathbb{Z}$. It is also identified with the half-open interval $[0,1)$. The continuous group-homomorphisms of S^{1} into itself are given by the formula $h: z \mapsto z^{m}$ for some integer m, where the integer m is the winding number of h and $|m|$ is the number of elements in the kernel of h if $m \neq 0$. There are several ways to prove this fact and the following argument is not easily found elsewhere: We lift the \mathbb{Z}-module endomorphism $h: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to a continuous \mathbb{Z}-module endomorphism $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by the formula $h(z)=\exp (2 \pi i \phi(x))$ for $z=e^{2 \pi i x} \in \mathbb{R} / \mathbb{Z}$. Then we may assume that $\phi(0)=0$ and $\phi(x+1)=\phi(x)+m$ for some integer m. Now we prove that $h(z)=z^{m}$. Since the map $z \mapsto z^{m}$ is a homomorphism of the circle, we see that $g(z)=h(z) z^{-m}$ is also a continuous homomorphism. Hence it suffices to show that g is the identity map. Note that $g\left(e^{2 \pi i x}\right)=\exp (2 \pi i \psi(x))$ where $\psi(x)=\phi(x)-m x$ and $\psi(x+1)=\psi(x)$ for every $x \in \mathbb{R}$. From the fact that h is a homomorphism, we observe that $\psi(x+y)=\psi(x)+\psi(y)+d(x, y)$ where $d(x, y)$ is an integer depending on x, y. Since ψ is a continuous function on \mathbb{R}, we conclude that d is an integer-valued function which is continuous with respect to x and y, thus it is constant. By substituting $x=0$ and $y=0$ we have $\psi(x+y)=\psi(x)+\psi(y)$, i.e., $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is an additive group homomorphism. Suppose that there exists $x_{0} \in \mathbb{R}$ for which $\psi\left(x_{0}\right) \neq 0$. Then $\left\{\psi\left(n x_{0}\right): n \in \mathbb{Z}\right\}$ is an unbounded set in \mathbb{R}, which

[^0]contradicts the boundedness of the periodic function ψ. Therefore $\psi \equiv 0$ and $\phi(x)=m x$.

Now we look at the same fact from the point of linear algebra. If we regard S^{1} as a \mathbb{Z}-module, the group-homomorphism $h: S^{1} \rightarrow S^{1}$ becomes a \mathbb{Z}-module homomorphism $h: X \rightarrow X$. Hence the problem is to show that there exists an integer m satisfying $h(x)=m x, x \in X$. If X were a one dimensional module over the ring \mathbb{Z}, then there would exist a 1×1 matrix m associated with a \mathbb{Z}-linear module homomorphism as in the case of vector space linear transformations. But X is infinitely generated and a straightforward application of linear algebraic idea would not work. We approximate X by submodules which are finitely generated. Consider the submodule $X_{d}=\left\{0, \frac{1}{d}, \frac{2}{d}, \ldots, \frac{d-1}{d}\right\}$ which is generated by one element $\frac{1}{d}$. If d is sufficiently large, then X_{d} approximates X in a sense. Note that $d \cdot h\left(\frac{1}{d}\right)=h(0)=0$ implies that $h\left(\frac{1}{d}\right)=\frac{k}{d}$ for some k, hence $h\left(X_{d}\right) \subset X_{d}$. Thus we may define $h_{d}: X_{d} \rightarrow X_{d}$ as the restriction of h. We expect that h_{d} would approximate the continuous mapping h if d is sufficiently large. For a trivial endomorphism h, there is nothing to prove. So we assume that h is nontrivial. Since $\frac{1}{d}$ generates X_{d}, the discrete mapping h_{d} is determined by the formula $h_{d}\left(\frac{1}{d}\right)=n \cdot \frac{1}{d}$ for some $n, 0<n<d$. Similarly, we define $X_{2 d}$ and $h_{2 d}$. Then $h_{2 d}$ is determined by the formula $h_{2 d}\left(\frac{1}{2 d}\right)=m \cdot \frac{1}{2 d}$ for some $m, 0<m<2 d$. Note that the restriction of $h_{2 d}$ on X_{d} is h_{d}, hence $2 \cdot h_{2 d}\left(\frac{1}{2 d}\right)=h_{2 d}\left(\frac{1}{d}\right)=h_{d}\left(\frac{1}{d}\right)$, $2 \cdot \frac{m}{2 d}=\frac{n}{d}, d \mid m-n$ and hence $m=n+k d$ for some integer k. Thus we may conclude that either $m=n$ or $m=n+d$. The latter corresponds to the case when the winding number of h is negative. Replacing h by $-h$ if necessary, we may assume that $m=n$. Continuing the argument indefinitely, we see that h is nothing but the multiplication by the 1×1 matrix n on the dense submodule consisting of the elements $k / 2^{j}, j \in \mathbb{N}$, $0 \leq k<2^{k}$. Since h is continuous, it is represented by the same matrix on the whole module \mathbb{R} / \mathbb{Z}. This is a roundabout way of seeing things but it answers the question.

Now we apply the same idea for general cases. For the various definitions of algebraic structures we refer to [1]. Let M be a module over a commutative ring R with identity and h an R-module endomorphism of M, that is, $h\left(x_{1}+x_{2}\right)=h\left(x_{1}\right)+h\left(x_{2}\right)$ for $x_{1}, x_{2} \in M$ and $h(r x)=r h(x)$ for $r \in R, x \in M$. If M is generated by finitely many
elements $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ in M, then every element $x \in M$ is expressed as a sum $x=r_{1} v_{1}+\cdots+r_{d} v_{d}=\sum_{j=1}^{d} r_{j} v_{j}, r_{j} \in R$. The coefficients r_{i} 's are not unique in general if M is not torsion-free, that is, $n x \neq 0$ for $n \neq 0,0 \neq x \in M$. Note that $h\left(v_{j}\right)=\sum_{i=1}^{d} a_{i j} v_{i}$ for some $a_{i j} \in R$, hence $h(x)=\sum_{j=1}^{d} \sum_{i=1}^{d} a_{i j} r_{j} v_{j}$ and we say that h is represented by a matrix ($a_{i j}$). If M is generated by one element, then h is represented by 1×1 matrix $a \in R$, in other words, $h(x)=a x$ for every $x \in M$. For infinitely generated modules there is no representation of endomorphisms as above.

Recall that a ring R is said to be a topological ring if it is a topological space and all the ring operations are continuous. A module M is called a topological module over a topological ring R if all the module operations are continuous. If a topological module M is compact, then it might not be torsion-free hence it would be usually impossible to find a unique matrix representation even if M is finitely generated. A metric ρ on M is said to be translation-invariant if $\rho(u+x, u+y)=\rho(x, y)$ for every $u, x, y \in M$. Now we have the following

Proposition. Let M_{1} be a dense submodule of a topological module M over a topological ring R with identity and let ρ be a translationinvariant metric on M. If a continuous R-module homomorphism h : $M_{1} \rightarrow M_{1}$ is represented by a scalar multiplication, i.e., there exists $a \in R$ such that $h(x)=a x$ for every $x \in M_{1}$, then h can be extended onto M uniquely as a continuous R-module homomorphism and is also represented by the same a, that is, $h(x)=a x$ for every $x \in M$.

Proof. Note that the translation-invariance implies the uniform continuity of h on the metric space M_{1}. Hence it has a unique continuous extension g onto its closure M. Take an arbitrary element $x \in M$. Then there exists a sequence $x_{n} \in M_{1}$ that converges to x. Since the module operations are continuous, we have that $g(x)=\lim _{n \rightarrow \infty} h\left(x_{n}\right)=$ $\lim _{n \rightarrow \infty} a x_{n}=a \lim _{n \rightarrow \infty} x_{n}=a x$.

REMARK. A typical application of the above result is to approximate an infinitely generated topological module M by an increasing sequence of finitely generated submodules $M_{1} \leq M_{2} \leq \cdots \leq M_{k} \leq \cdots \leq M$ satisfying the conditions that (i) $h\left(M_{k}\right) \leq M_{k}$ for every k, (ii) h restricted on M_{k} is given by the same ring element a for every k and (iii) $\cup_{k} M_{k}$ is
dense in M.

References

1. T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.

Department of Mathematics
Korea Advanced Institute of Science and Technology Taejon 305-701, Korea

[^0]: Received August 18, 1993.

