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SPECTRAL INCLUSIONS

JAE-CHUL RHO AND JONG-KWANG YOO

1. Introduction

In this paper, X is an abstract Banach space over complex numbers
C and £(X) denotes the Banach algebra of all bounded linear operators
defined on a Banach space X. Given an operator T € L(X), let Lat(T)
stand for the collection of all closed linear subspaces of X which are
invariant under T. T* denotes the dual operator of T' € £(X).

An operator T € £(X) is said to have the Bishop’s property () if for
every open subset U of C and for every sequence of analytic functions
fn : U = X for which (T — A)f.()\) converges uniformly in norm to
zero on each compact subset of U, it follows that f,(A) — 0 as n — oo,
uniformly on each compact subset of U. Clearly, property (8) implies
that T has the single-valued eztension property (abbrev. SVEP) which
means that for every open subset U of C, the only analytic solution
f:U — X of the equation (T'— A)f(A) = 0 for all A € U is the constant
f=o. '

An operator T € L£(X) is said to have the decomposition property (6)
if given an arbitrary open covering {U;,Uz} of C, every z € X has a
decomposition T = uy + uy, where u;,uz € X satisfy u; = (T — A)f;())
for all on C\U; and some analytic function f; : C\U; —» X forj =1, 2.
An operator T € £(X) is called decomposable if for every open cover
{Uy,U;} of the complex plane C there exist Y1,Y2 € Lat(T) such that
Y: +Y; = X and o(T|Y;) C Uj for j =1,2.

For various examples and characterizations of decompasable opera-
tors, see [3], [5].

If T has the SVEP, we define the local resolvent set of T at = € X,
denoted by pr(z), as the set of all A € C for which there exist an open
neighborhood U of A in C and an analytic function f : U — X with

Received July 12, 1993. Revised August 30, 1993.



118 Jae-Chul Rho and Jong-Kwang Yoo

(T —w)f(p) =z for all u € U. The set or(z) := C\ pr(z) is called the
local spectrum of T at the ooint z € X.

Given an operator T' € £(X) and a subset A of C, let X7(4) := {z €
X |or(z) C A}. For each closed F C C, let X7(F') denote the space of
all z € X for which there exists an analytic function f: C\ F — X with
(T—pDf(p)=zforall pe C\F.

It is clear that if T has the SVEP, then X1(F) = Xr(F) for every
closed subset F' of C. In general, Xp(F) is not necessarily closed linear
subspace of X even if F is closed in C, see [3].

An operator T' € L£(X) is said to have the Dunford’s property (C) if
Xr(F) is closed in norm for each closed subset F' of C.

We recall that, by [1], [14],
Bishop’s property () => Dunford’s property (C) => SVEP.

T € L(X) property (8) < T* € L(X*) property ().
T € £L(X) decomposable <> T € L(X) properties (8), (6).

2. Properties preserved under asymptotic similarity

The spectrum of a linear operator T' can be divided into subsets in
many different ways, depending on the purpose of the inquiry. In [10],
K.B. Laursen introduced the concept of a analytic residuum and then
used this concept to study decomposability and single-valued extension
property. It is shown in [3] that spectrum, local spectrum, analytic spec-
tral subspace and single-valued extension property are preserved under
quasi-nilpotent equivalent. In this paper, motivated by [3] we shall ob-
tain theorems of this type for considerably more general classes.

Let 0,(T), 04ur(T) and 0,,(T) denote the point spectrum, surjective
spectrum and approzimate point spectrum of T € L(X). Thus 0,,,.(T)
consists of all A € C for which T — X is not surjective. What happens
here is actually typical of the way in which the holes are filled in when we
pass from 0,4,(T) to o(T). Thus, if 6,,,(T) and o(T) are different then
o(T) is obtained from o,4,,(T) by filling in the bounded components of
the complement of 044(T) in o(T). To see this we need to introduce
the analytic residuum.



Spectral inclusions 119

DEFINITION 2.1. Let T be a bounded linear operator on a Banach
space X. We define the analytic residuum, denoted by S(T'), as the
set of all A € C for which for every neighborhood Ny of A there is a
neighborhood U C N, and a non-zero analytic function f : U — X

satisfying (T'— p)f(p) =0on U.
Note that T has the SVEP if and only if S(T') = ¢.

THEOREM 2.2 [10]. If T is a bounded linear operator on a Banach
space X then o(T) = S(T)Josur(T).

There are more interesting ways to express Theorem 2.2, if T has the
SVEP, then T is invertible if and only if it is surjective.

The following properties of the surjective spectrum will be useful.

PROPOSITION 2.3 [10}. IfT is a bounded linear operator on a Banach
space X, then 04,.(T) is compact with 30(T) C 05,(T) C o(T) =
0p(T) | J0sur(T), where 8a(T) denotes the boundary of o(T). Also,

Osur(T) = U or(z), Osur(T)=04,p(T*) and o(T*) = 04p(T).
zeX

Finally, if T has the SVEP, then 0,,(T) = o(T) and if T* has the
single-valued extension property, then o(T') = 04,(T).

Let X and Y be complex Banach spaces, and let £(X,Y) denote
the space of all continuous linear operators from X to Y. For given
operators T € £(X) and S € L(Y), we introduce the operator C(S, T)
on the Banach space £(X,Y’) by

C(S,T)(A) := SA — AT

for A € L(X,Y). Also, for all n € N and all A € L(X,Y), we have
C(S,T)"A :=C(S,T)""YSA— AT) = Y 1o (D)(~1)FS"FAT*.

An operator T defined on a Hilbert space H is said to be quasi-
invertible if T has zero kernel and dense range. Operators S € L(H)
and T € L(H) are quasi-similar if there are quasi-invertible operators
A, B € L(H) which satisfy C(S,T)(A) =0 and C(T,S)(B) =0.

In [6], [11] Sz. Nagy, C. Foias and T.B. Hoover show that quasi-

similarity need not preserved the spectrum and compactness.
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DEFINITION 2.4. An operator A € L(X,Y) is said to intertwine S
and T asymptotically if lim,_.o ||C(S, T)*(A)||* = 0. Moreover, an op-
erators T € L(X) and S € L(Y) are called the asymptotically similar if
there exists A € L(X,Y') such that A intertwines S and T asymptotically
and its inverse A~ intertwines T and S asymptotically.

In particular, we say that T, S € £(X) are quasi-nilpotent equivalent
if limy oo ||C(S, T)™(D)|* = limp—oo ||C(T, $)*(I)||* = 0, and it is
denoted by T £ S.

THEOREM 2.5. If A € L(X,Y) intertwines S and T asymptotically,
then the analytic residuum of T is contained in the analytic residuum of

S.

Proof. Let u € S(T') and let N, be an arbitrary neighborhood of p.
Then there is a neighborhood U C N, and a non-zero analytic function
f : U — X satisfying (T — A)f()) = 0 on U. Consider a pair of
concentric closed discs E and U such that E C D C U withradii 0 < s <
r, and choose a constant M > 0 such that ||f(A)|| < M for all A € D.
Then for each A € E, we obtain from Cauchy’s integral formula that

l'f‘"’(A)

” - ”57_'; aD(Z —NTHG) dz" S_ Mr(r— )"},

for all n = 0,1,2,.... By the assumption, for ¢ := (r — 3)/2 there

exists some constant 0 < L such that ||C(S,T)"(4)|| £ Le" for all
n=0,1,2,.... An obvious combination of these estimates yields

(2) ||0(s, T)"(A)L':!(’—\l" < MLr(r —s)~127",

forall A € F and n =0,1,2,... . Now, consider the infinite series

g(A) = i(—l)”C(s, T)"(A)f (’:,(A) for all A €.

n=0

It is clear from (1) and (2) that the infinite series defining g()) con-
verges uniformly on E and hence uniformly on each compact subset
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of U. From (T — A)f(A) = 0 for all A € U, we obtain by induction
that (T — A)f™(A) = nf(®"(X) for all A € U and n € N. Since
SC(S,TY"(A) = C(S,T)"*(A)+ C(S, T)(A)T for alln = 0,1,2,...,

we have

(5 —A)g(})

=3 (“1)"(S = N)C(S, T)"(4)

n=0

F™)
ol

= (=)
= S (0 T + ot T AT - )

n=0

(n—1)
= ):( -1 (e, ryi4) 2 (A) + O, T)n(A)f(n = 1(5\'))

n=1

+ C(S, T)(A)f(A) + AT - /\)f(/\)-

Hence (S — A)g(A) = A(T — A)f(A) =0, and so p € S(S).
The following result is an immediate consequence of Theorem 2.5.

COROLLARY 2.6. Assume that A € L(X,Y) intertwines S and T
asymptotically. If S has the single-valued extension property, then so is
T.

COROLLARY 2.7. Analytic residuum is preserved under asymptotic
similarity. In particular, if T £ S, then S(T) = 8(S).

Proof. Assume that T and S are asymptotically similar and choose
a corresponding bijection A € £(X,Y") for the asymptotic intertwining
of (S,T) and (T,S). Then by Theorem 2.5, S(T') C S(S). Since A™!
intertwines T' and S asymptotically, it follows from Theorem 2.5 that
S(S) € S(T) and hence §(S) = S(T).

COROLLARY 2.8 [3]. LetT,S € L(X). FT has the SVEP and T < S,
then S has the SVEP.

Proof. By Corollary 2.7, $(S) = 8(T) =
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LEMMA 2.9. Assume that A € L(X,Y) intertwines S and T asymp-
totically, then AXp(F) C Ys(F) and AXr(F) C Ys(F) for all closed
subset F' of C.

Proof. Let ¢ € X and let u € pp(z). Then there exists an open
neighborhood U of g in C and an analytic function f : U — X on an
open subset U of C such that (T'— A\)f(A) =z for all A € U. It is easily
checked that the series

h(X) = f:(—l)"C(s, T)"(A)f(—'z,@ forall A€ U

n=0

converges uniformly on each compact subset of U, and hence defines
an analytic function h : U — Y such that (S — A)h(A) = Az for all
A € U. Thus p € ps(Az) and hence os(Az) C or(z). This implies that
AX71(F) C Ys(F). A similar argument ensures that AX7(F) C Vs(F)
for all closed subset F' of C.

COROLLARY 2.10. Assume that T and S are asymptotically similar.
Then AX1(F) = Ys(F) and AX7(F) = Ys(F') for all closed subset F of
C. Moreover, if T,S € £(X) are decomposable, then T L S if and only
if X7(F) = Xg(F) for every closed F C C.

COROLLARY 2.11. If o(T)()o(S) = ¢, then the zero operator is the
only operator A € L(X,Y) which intertwines S and T asymptotically.

' Proof. AX = AXr(o(T)) C Ys(o(T)) = Ys(a(T) N o(S)) = {0}

THEOREM 2.12. Dunford’s property (C), property (6), Bishop’s prop-
erty () and decomposability are preserved under asymptotic similarity.

Proof. Suppose that T and S are asymptotically similar and choose
a corresponding bijection A € L(X,Y) for the asymptotic intertwin-
ing of (S,T) and (T, S). By Corollary 2.10, we have AX7(F) = Ys(F)
and A~1Ys(F) = Xr(F) for all closed subsets F of C. This shows
that Dunford’s property (C) carries over from T to S. We also have
AX7(F) = Ys(F) and A~1Ys(F) = Xp(F) for all closed subsets F of
C, which implies that property (é) is preserved. Since property () is
preserved under asymptotic similarity and the properties (§) and (6)
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are dual to each other, property () is preserved by asymptotic similar-
ity. Since both properties (C) and (§) are preserved under asymptotic
similarity, decomposability is also preserved.

COROLLARY 2.13. Assume that A € L(X,Y) intertwines S and T
asymptotically. If A is onto, then 0,4.(S) C 0,4(T) and o(S) C o(T).

Proof. 1t follows from Proposition 2.3 and Lemma 2.9 that

0uur(S) = | os) = | o5(42) € | or(2) = o0ur(T)-

yeY z€X z€X

Finally, from Theorem 2.2 and Theorem 2.5, we conclude that

o(T) = S(T) | J 0our(T) € S(S)|J 02ur(S) = a(8).

THEOREM 2.14. Surjective spectrum, approximate point spectrum
and spectrum are preserved under asymptotic similarity. In particular,

TS, then 0,4 (T) = 04ur(S) and 6(T) = o(5).

Proof. Assume that T and S are asymptotically similar and choose
a corresponding bijection A € £(X,Y) for the asymptotic intertwining
of (5,T) and (T, S). By Corollary 2.13, 6,,.(S) C 0,,(T) and o(S) C
o(T). Since A™! € L(Y,X) intertwines T and S asymptotically and
or(A™1y) C o5(y) for any y € Y, we have, by Proposition 2.3

Osur(T) = U or(z) = U O'T(A_ly) - U os(y) = osur(S).

zeX y€Y y€Y

From Theorem 2.2 and Corollary 2.7, we obtain
o(T) = 8(T)|J 0sur(T) = 8(S) | J 05ur(S) = o(5).
Finally, since S* and T™ are asymptotically similar,

Oap(T) = Osur(T™) = 04ur(S*) = 04p(S).

It is well known that if X is a Banach space and T € £(X), then the
boundary of o(T) is contained in 04,(T).
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COROLLARY 2.15. Suppose that T € L(X) and S € L(Y') are asymp-
totically similar, then 0 44(T) [\ 00p(S) # ¢. In particular, if T A S, then
Osur(T) (1 0ap(S) # ¢

Proof. Suppose that 04ur(T)[)0ap(S)=¢. Then 04,(5) CC\0sur(T)
= C\ 05ur(S) and 50 0,44r(S)(V0ap(S) = ¢. It follows from Proposi-
tion 2.3 that 90(S) C 05ur(S)[)0ep(S) = ¢, and so 9o(S) = ¢. This
contradiction shows that o4ur(T)[)04,(S) # ¢.

COROLLARY 2.16. Assume that A € L(X,Y) intertwines S and T
asymptotically. If A has dense range and S has the Dunford’s property
(C), then O'(S) = Usur(s) - Usur(T)-

Proof. Since 044,(T) is compact and X = X7(0sur(T)), we have Y =
AX = AXp(0sur(T)) C Ys(0sur(T)) = Ys(0s5ur(T)), which says that
Osur(S) = 0(8) = 0(S|Ys(0eur(T))) € 0ur(T).

PROPOSITION 2.17. Suppose that A € L(X,Y) intertwines S € L(Y")
and T € L(X) asymptotically, then o,(T) C 04,(S) () 04p(T).

Proof. Clearly, 0,(T) C 04p(T). f A € 0,(T), then there exists a
z(# 0) € X such that (T — A)x = 0. Suppose that A € 04,(S)[Voap(T).
Then there exists a constant m > 0 such that m|ly|| < ||(S— A)y]| for all
y €Y. Since (T'— A)"z =0foralln € N,

C(S,T)"(A)z = C(S — A\, T — \)*(A)z
=¥ (Z)(_nk(s ~ AR AT - Nz

k=0
= (S - \)"Az.

Therefore m||Az||* < ||C(S,T)"(A)z||* for all n € N. Since A in-
tertwines S and T asymptotically and since Az # 0 by the injectiv-
ity of A, we conclude that m = 0. This contradiction shows that

UP(T) - Uap(s) ﬂaap(T)-

We recall, by [9] that the operator T has finite ascent if for every
A € C there is an n € N such that Ker(T — A\)* = Ker(T — X)™*1.
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PROPOSITION 2.18. Point spectrum and finite ascent are preserved
under quasi-similarity.

Proof. Assume that S € L(X) and T € L(X) are quasi-similar.
Then there exists quasi-invertible operators A, B € L£(X) such that
C(S,T)A) = 0 and C(T,5)(B) = 0. If z € X is an eigenvector for
the eigenvalue A of T, then (S — M)Az = A(T — A)z = 0 and hence
A € 0p(S) by the injectivity of A. Thus 0,(T) C 0p(S). By the same
reasoning, we conclude that 6,(S) C a,(T).

Assume that Ker(S — A\)® = Ker(S — A\)"*! for some n € N. If
z € Ker(T — \)"*1, then (S — A"t Az = A(T — )™z = 0, and so
Az € Ker(S-X)"*! = Ker(S—\)". Thus 0 = (S—\)"Az = A(T- )"z
and hence (T — A)"z = 0 by the injectivity of A. Hence T has finite
ascent.

COROLLARY 2.19. Assume that A € £(X) has dense range and in-
tertwines S and T in the sense that SA = AT. If T* has finite ascent,

then S5* has finite ascent.

Proof. Since A has dense range and SA = AT, A* is injective and
T*A* = A*S*. Whence the Proposition 2.18 is applied.

An operator T on a Banach space X is said to be totally paranormal
if |(T = X)z||?2 < (T — A)2z|j||z]| for all z € X and for every A € C. -

As noted in [9)], the totally paranormal operators form a proper sub-
class of paranormal operators. It is easily check that every totally para-
normal operator T has finite ascent.

COROLLARY 2.20. Let T € L(X) be a totally paranormal and let F
be a closed subset of C. If T € L(X) and S € L(Y) are asymptotically
similar, then X g(F) is closed.

Proof. Tt follows from ([9], Proposition 4.14) that X¢(F) is closed.
Hence X s(F) is closed.

COROLLARY 2.21. Let T € L(H) be a totally paranormal operator
on the Hilbert space H with 0,(T) = ¢ and let F C C be closed. If

T LS, then Hs(F) = 5gp(T — \)H.

Proof. 1t is clear from Theorem 2.14 and (][9], Theorem 4.15) that
Hg(F) = Hp(F) = ﬂng(T — A)H.
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Let X; and Y; be complex Banach spaces, and let £(X; ®X>,Y: ®Y2)
denote the space of all continuous linear operators from X; @ X, to
Y: @ Y32. Given operators T; € L£(X;) and S; € L(Y;), we introduce
the operator C(S; @ Sz, Ty ® T2) on the space L(X; & X,,Y: @ Y2) by
C(Sl D Sz, T1 &) Tz)(A &) B) = (Sl ® Sz)(A & B) — (A. & B)(T] (5] T2) for
A®Be L(X, DX, Y10Y2).

LEMMA 2.22. Let T; € L(X;), Si € L(Y;) and A; € L(X,Y;). If
Al & Ag € [:(Xl ) Xg,}’l &) }’2) are intertwines Sl ] 52 and Tl &) T2
asymptotically, then A; are intertwines T; and S; asymptotically for
1 =1,2.

Proof. For every n =1,2,..., we have

C(5105:,Th @T2)" (A1 6 Az)

=3 (") (=151 @ S2)™ (41 & 42)(Ty & Tp)*
> (1) vrs o @ an

n n _ n n .
= (k)(—-l)ksl DY (k>("1)k52 * AT
k=0 k=0
= C(Sy,T) A1 © C(Ss, Tp)" As.
Since
IC(S1 @S2, Ty © T)"(A1 @ A2)||* = ||C(S1, Th)" A1||* + [|IC(S2, T2)" 42|

for every n € N, we obtain
Lim [[C(Si, T All* < lim [[C(S1 @ 52, T © To)™(41 © 42)]|F =0.

Hence A; are intertwines T; and S; asymptotically for : = 1, 2.

COROLLARY 2.23. Assume that 19Ty € L(X; D X3) and S1 DSz €
L(Y: ® Y>) are asymptotically similar. If T\ and T, are decomposable
operators, then S; and S; are decomposable. Consequently, S; @ Ss is
decomposable.

Proof. By Lemma 2.22, T; and S; are asymptotically similar. Since
decomposability is preserved under asymptotically similar, S; and S»
are decomposable.



Spectral inclusions 127

PROPOSITION 2.24. Let T; € L(X;) (i = 1,2). Then S(T} & T3) =
S(Ty) U S(Tz).

Proof. Let yu € S(Ty ®T,) and N, be an arbitrary neighborhood of .
Then there is a neighborhood U C N, and a non-zero analytic function
f:U — X; @ X, satisfying (T1 @ T> — A)f(A) =0 on U. Consider the

map
fi(A) = Pj o f(),

where P; : X; ® X2 — X (j = 1,2) is the j** projection operator.
Then either f; or f; is a non-zero analytic function and f = f; @ f,. Since
(Ty = N AA) & (Ta = M) fa(X) =0, we have (T; — V) f;(A) =0, j =1,2,
and so p € S(T1)JS(T2). Hence S(Ty & T) C S(T1) | S(T3). To obtain
the opposite inclusion, let 4 € S(T}) | JS(T2), and let N, be an arbitrary
neighborhood of p. Then either there exist a neighborhood U C N, and
a non-zero analytic function g : U — X satisfying (T3 —A)g(A) =00n U
or there exist a neighborhood V C N, and a non-zero analytic function
h 1V — X, satisfying (T — A)R(A) = 0 on U. We may assume that
there exist a neighborhood W C N, and a non-zero analytic function
f: W — X; @& X, satisfying (T & T> — A)f(A) = 0 on W. Thus
H € S(Tl <5} T2) Hence S(T1 %) T2) = S(Tl) US(Tg)

COROLLARY 2.25. T:=T, @ T, € L(X; ® X;) has the single valued
extension property if and only if T and T, have this property. In this
case, or(z1 @ 22) = ory (z1) U o, (22).

Proof. Since S(T) & T;) = §(T1) |US(T2) = ¢, one has the result.
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