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ON THE GROWTH OF MEROMORPHIC FUNCTIONS

KI-Ho KWON AND KyU BUM HWANG

1. Introduction

Let fez) be meromorphic in the complex plane and denote by n(r,J)
the number of poles of fin Izi ~ r. Then the Nevanlinna characteristic
is defined as T(r, J) = mer, J) + N(r, J), where mer, J) is the L 1 norm
of log+ If(rei9 )1 and

N(r, J) = r net, J) - nCO, J) dt +nCO, J) logr
10 t

(for this and other standard terminology, see [3]).
In this paper we compare the growth of T(r, J) with that of

An upper bound for m2(r, J) in terms of the Nevanlinna characteristic
was obtained by J. Miles and D. Shea in

THEOREM A [6]. Let f be meromorphic in Izi ::; R, witb f(O) = 1.
Tben

(1) m2(r,J) ~ {I + AIVlog(Rlr)}T(R,J),

wbere 0 < r < R and A = 8y1og2.

The following two theorems improve Theorem A when T(R, J)IT(r, J)
is big.
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THEOREM 1. Let fez) be meromorpmc in Izi :5 ar (1 < a :5 2, r >
0), with f(O) = 1. Then, for 0 < c :5 1/2, we have

(2)

where
6y'S

B(a,c) = y'i(a-1)~+e'

We do not know if the exponent l +c on T(ar, f) in the inequality (2)
is precise. In [4, Theorem 3.2], we showed that if in (2) we consider pairs
of exponents on T(r,f) and T(ar,f) with sum 1, then the exponent on
T(ar, f) must be at least 1/4.

In addition, we can get a similar result as Theorem 1 which does not
contain the term c.

THEOREM 2. Under the same assumptions as in Theorem 1, we have

(3)
20

m2(r, f) :5 a _ 1 [T(r, f)T(ar, f){2 + logT(ar, f)}]1/2

Let S(r) be a real nonnegative function, then the order of the function
S(r) is defined as

-Ii logS(r)
m .

r-+oo logr

The order of a meromorphic function f is defined as the order of T(r, f).
We now seek an upper bound for m2(r, f)/T(r, f) as a function of r.

COROLLARY. Let fez) be meromorpmc in the plane of order A, 0 <
A < 00. Then for any e > 0 there exists a positive real number r(e) such
that

(4)

The inequality (4) shows that m2(r,f)/T(r,f) has order at most >../2.
We do not know if the inequality (4) is sharp. But the exponent on r in
(4) must be greater than or equal to A/4 by [4, Theorem 3.2].

The corollary follows immediately from Theorem 2. In fact, without
loss of generality we may assume that If(O)1 = 1. Then we have, by
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r -t 00.

(3) with a = 2 and the fact that T(R, f) is an increasing function of R
[3, p8],

";2(~'f/ ~ 20[T(2r, f){2 + log T(2r,j)}p/2.

Since
T(2r, f) = O(r~+e), r -t 00,

we have
m2(r, f) < O( t+e)
T(r,f) - r ,

We next consider the opposite direction of the inequality (1). If f is
a meromorphic function in the plane, then it is in general not true for
any fixed constants A and B that for all r > 0,

(consider the function fez) = (z + l)/(z - 1)).
In case f is entire, it is easy to see that

(5)

Hence T(r,J) and m2(r, f) have the same order for entire f by (1) and
(5).

Let fez) be meromorphic of finite order -\, and let q = [-\]. Assume
for convenience that f(O) = 1 and define {am} by

00

logf(z) = L amzm

m=l

for z near O. Write

where z", :j:. w"" p(z) = aqzq+... + alz and

E(x, q) = (1- x)exp(x + x 2 /2 +... + x q /q).
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Let crn(r, f) be the m-th Fourier coefficient of log If(rei8)1:

Then
00

m2(r,f? = L Icm (r,f)12
•

m=-oo

Edrei and Fuchs [2] had shown that

(6)

for m ~ 1 and, for m ~ q + 1; also

Obviously, cm(r,f) =c-m(r,f) for m ~ -1 and

(7) co(r,f) = N(r, 11f) - N(r,f) ~ T(r, f).

In particular, if p(z) = 0 and largzlIl ~ w, 111" - arg W II I ~ w with 0 ~
w ~ (11" - c)/2q, c > 0, then M. Ozawa indicated in [7] for meromorphic
functions of positive genus that

T(r, f) ~ C(q,w)m2(r, f)

for some constant C(q, w) depending only on q and w. We can generalize
Ozawa's result in
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THEOREM 3. Let q ~ 1 and let

93

where largzvl ~ w, 11l' - argwvl ~ w with 0 ~ w ~ f - c, c > O. Then
we have for r > 0,

1 + cosw
T(r, I) ~ 2 m2(r, I).

cosw

REMARKS.

1) We deduce from Theorem A and Theorem 3 that for any mero
morphic function satisfying the hypotheses in theorem 3, T( r, f)
and m2(r, f) have the same order.

2) Theorem 3 shows that if w = 0, i.e., f has its zeros and poles
in the positive and negative real axis respectively, T(r, I) <
m2(r, I).

2. Proof of Theorem 1
For m ~ 1 and f3 > 1, (6) gives

Hence we obtain, for m ~ 1 and f3 > 1,

1
lem(r, 1)1 $ ,8-mlcm(,8r, 1)1 + 2m (1 - f3-2m )n(f3r),

where nCR) = nCR, 1/1) + nCR, f). Using nCR) log f3 ~ N(I3R) and

(8) Icm(R, 1)1 ~ ;1l'121r

Iloglf(Rei8)lId6 ~ 2T(R,J),
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we get, for m ;::: 1 and {3 > 1,

For any 0 < c ~ 1/2, (7) gives

and, for m ;::: 1,

Thus we have

00
(10) m2(r, f)2 = Ico(r, fW + 2 L Icm(r,iW

m=1

where
00 ( 1) 1+2e

D(j3, c) = L j3-m + 2mlo j3
m=1 g

We observe that, by the Minkowski inequality,

(11)

{
00 } 1.f:2< {OO } 1.f:2<

D({3, c) d2< ~ ~ /3-m(I+2e) + ~ 1
:::1 :::1 (2m log {3)I+2e

(
1 )rir. 1 (1 +2c)rir.

~ j3I+2e -1 + 2logj3 2€ .



On the growth of meromorphic functions 95

Since aP+ bP :::; (a + b)P :::; 2p(aP+ bP) for a> 0, b> 0, and p > 1, and
since 1 < {j :::; ..j2 implies log,82 ~ ({j2 - 1)/2, we obtain from (11) for
o< e: :::; 1/2 and 1 < {j :::; ..j2 that

(12)

D({j,e:) < 2I+2e { 1 +1+2e:( 1 )1+2e}
- {jI+2e - 1 2e: 2 log {j

< { {jI+2e + 1 1 2 I+2e}
- 4 (j2(1+2e) -1 + e({j2 -1)

{
3 4} 4(4 +3e:)

:::; 4 (,82 _ 1)I+2e + e:({j2 _ 1)I+2e = e:({j2 - 1)I+2e "

Taking a = (j2, we deduce from (10) and (12) that for 1 < a $ 2,
o< e: :::; 1/2 and r > 0,

m2( r, f) :::; B(a, e: )T(r, f) t-eT(ar, f) t+e
,

where

_ { 32(4 + 3e:) }t < 6.;5
B(a,e:)- 1+ e:(a-1)I+2e - .J£(a-1)1/2+e"

3. Proof of Theorem 2

It follows from (9) that

where

<Xl

A = 2 I: lem(r, f)IT({j2 r, f){j-m,
m=l
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N 1
B = ~ Icm(r, f)IT(,82 r , f)m log p

and

Since 1 < P S; v'2 implies 10gp ;::::: (,8 -1)/2, we then have, by (8) and
(9),

(14)
p-1

AS; 4T(r, f)T(,82 r, f) 1 _ p-1

4
= P-1 T(r,f)T(,82r,f),

2 N 1
B S; 10 ,8T(r,f)T(,82r,f) L m

g m=1

4
S; ,8 -1 T(r,f)T(,82r,f)(1 +logN)

and

C::; 10: pT(P2r, j)2 =~+1 ~ (p-m +2m~p)
4 {1 ,8-N-l 1 00 1}

S; ,8 - 1T(,82r, f)2 N +1.1-,8-1 + f3 _ 1L m2
m=N+l

S; (f3 ~ 1)2 T(f32r, f)2 {N ~ 1 + ~ } .

Now choosing N = [T(f32r, f)] + 1, we have

(15)
4

B S; f3 -1 T(r, f)T(p2 r, f){2 +logT(f32r,f)},

8 2
C S; (f3 _ 1)2 T(f3 r, f).
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Hence we deduce from (7), (13), (14) and (15) that
00

m2(r, 1)2 = Ico(r,!W + 2 L Icm(r, 1)12
m=l

16
~ T(r, 1)2 + 2 (,8 _ 1)2 T(r, I)T(,82 r, f){2 + log T(,82 r, fn

~ (,82
2
:°1)2 T(r, I)T(,82r, f){2 + log T(,82 r, fn.

Taking a = ,82, we conclude that

20 1

m2(r, I) ~ a-I [T(r, I)T(ar, f){2 + log T(ar, 1)]2.

4. Proof of Theorem 3

Let q ~ 1 and let

97

where largzvl ~ w, 11r - argwvl ~ w with ° ~ w ~ I - c, c > 0. Then
we have, by (6),

( ) 1 '" {r Zv } 1 '" {r W
v

}Cl r,J = - L..J - - - - - L..J - - - .
2 Zv r 2 W v r

Iz"l$r Iw"l$r

Hence

(16) RecI(r, I) ~ ~ '" {-.!- _Izvl + _r_ _ Iwvl} cosw
2 L..J Izvl r Iwvl r

Iz"l$r

= cosw [r (~ _ !) dn(t),
2 10 t r

where net) = net, I) + net, 1/1). Integration by parts applied twice to
(16) yields

Rect(r,1) ~N(r,I)+N(r,.!)+~r N(r,I)+N(r, 1/1) {~-!}dt
cosw f 210 t t r

1
~ N(r, I) + N(r, 7)'
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Thus we get

(17) m2(r,1) ~ ICl(r,1)1 ~ Recl(r, 1) ~ {N(r,f) + N(r, 7)} cosw.

It is clear that
1

(18) m2(r, I) ~ m(r, I) +m(r, 7).
Therefore we deduce from (17) and (18) that

(1 + cosw)m2(r, I) ~ { T(r, I) +T(r, 7)} cosw

=2coswT(r,f).

Hence we conclude that
1 + cosw

T(r, 1):5 2 m2(r, I).
cosw

5. An upper bound for m2(r,f)/T(r,f) on a set of r with
positive lower logarithmic density

In the remaining part of the present paper, we seek upper estimates
for m2(r, I) in terms of T(r, I), now however permitting exceptional sets
ofr.

For E C [1. (0), define the logarithmic measure of E by

mt(E) = f dt.JE t
The upper and lower logarithmic density of E are defined by

. mt(E n [1, rD
log dens E =lim sup ,

r .....oo log r

I d E li
·nfmt(E n [1, rD

og ens = ml I .
r .....oo ogr

We denote the Ahlfors-Shimizu characteristic by

To(r, I) = r A(t, J) dt,
Jo t

where A(t, I) is the average number of solutions of f(z) = a in Izi :5 t
as a varies over the Riemann sphere.

In 1969, Petrenko [8] proved Paley's conjecture:
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liminflogM(r,j) < { Si:;A'
r--+oo T(r, j) - 11">.,

THEOREM B. For any meromorphic function f of order>' < 00, we
have

>.<1
- 2

>'>!2

We now obtain a theorem for m2(r, j) analogous to Theorem B.

THEOREM 4. Let fez) be meromorphic in the plane of order >., 0 <
>. < 00. Then there exists a set E C [1,(0) with positive lower logarith
mic density such that

. m2(r,j)
limsup T( f) ~ cA,

r--+oo,rEE r,

where CA is a constant depending only on >. and

CA = O( v'X), as >. -+ 00.

Proof. To prove the theorem, we need the following results from [5].

LEMMA C. Let fez) be meromorphic in the plane of order >., 0 <
>. < 00. For K > 1, let

E1(K) = {r > 1 : A(r,f)/To(r,f) > K>.}.

Then we have

(a) log dens E1(K) ~ 11K

and
(b) ife > 0, there exists c(e) > 0 and a set E2(e) C [1,00) with

log dens E2 (e) ~ C(e)

such that for all r E E 2 (e),

To(reh,f) < h(e+e)A(r,f),
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where h = To(r, f)/A(r, f).

We may first assume f(O) = 1 for convenience. By Theorem A with
R = re h , we have

(19) m2(r,f) ~ {I + Sy'log2y'A(r,f)/To(r, f)}T(re h ,J).

By Lemma C (b), there exist a number c(e) > 0 and a set E2(e) C [1,00)
with

(20)

such that if r E E2(e),

(21)

log densE2(e) ~ c(e) > 0,

If we choose a number Ko so large that

(22) l/Ko < c(e),

then by Lemma C (a) there exists a set E 1(Ko) with

(23) log densE1(Ko) ~ l/Ko

such that for r E [1,00) - E1(Ko),

(24) A(r,f) < K o>".
To(r,f) -

Setting E = ~(e) - E 1(Ko), we then have by (20), (22), and (23) that

log densE ~ c(e) -l/Ko > 0,

and we conclude from (19), (21), and (24) that for sufficiently large
r E E,

m2(r, f) ~ (1 + Sy'log2y'Ko>")(2eT(r, f),

since T(R,f) = To(R,f) + 0(1) as R -+ 00. Hence

limsup 7n(r'h) ~ 2e(1 +Sy'log2y'Ko>") = O(V1), >.. -+ 00.
r-+CXl,rEE r,

This proves Theorem 4.
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6. Examples

In Theorem 4 our estimate for c,\ is certainly not best possible, but
at least we need

1r-/>.
c, >-

A - 2 '

as is shown by the following example. For 0 < a < 1, we set

00 n

Ea(z) = ~ r(1: an)'

Then Ea(z), called Mittag-Leffler's function, is an entire function of
order 1/a and has the following property [1, p50]: IT

·8o< a < 1, z = rei, r ~ 2,

we have that, as r -+ 00,

{
1. exp(zl/a) + 0(1),

EO/(z) = 0/

0(1),

Hence we get

161 $ fa7l"
otherwise.

(25)
!a'lr

T(r,Ea ) = 2
1 14

log+ Iexp{r-:-ei(~)}ld6 + 0(1)
1r -!a'lr

1 IT 1 6= - r a cos -d6 + 0(1)
271" -T a
a .!.= -r o + 0(1), r -+ 00,
71"

and if mt(r, f) is the £2 norm of log+ If(rei8 )1 then

+ 1 1O
2
'' [ 1 .( B ) ] 2(26) m 2 (r, Eo? ~ (1 - 0(1))21r _~ log+ Iexp{rael a}1 d6
2

1 102
" 1 6= (1- 0(1))- (r a cos _)2df)

271" _¥ a
a ..a.

= (1- 0(1)) 4 r o , r -+ 00.
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Setting ..\ = l/n, we conclude from (25) and (26) for the entire function
Ea(z) of order ..\ that

This proves our assertion since m2(r, f) = mt(r, f) +mt(r, 1/f).
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