Comm. Korean Math. Soc. 9 (1994), No. 1, pp. 89-102

ON THE GROWTH OF MEROMORPHIC FUNCTIONS

Ki-Ho Kwon and Kyu Bum Hwang

1. Introduction

Let $f(z)$ be meromorphic in the complex plane and denote by $n(r, f)$ the number of poles of f in $|z| \leq r$. Then the Nevanlinna characteristic is defined as $T(r, f)=m(r, f)+N(r, f)$, where $m(r, f)$ is the L_{1} norm of $\log ^{+}\left|f\left(r e^{i \theta}\right)\right|$ and

$$
N(r, f)=\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r
$$

(for this and other standard terminology, see [3]).
In this paper we compare the growth of $T(r, f)$ with that of

$$
m_{2}(r, f)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f\left(r e^{i \theta}\right)\right|\right)^{2} d \theta\right\}^{\frac{1}{2}}
$$

An upper bound for $m_{2}(r, f)$ in terms of the Nevanlinna characteristic was obtained by J. Miles and D. Shea in

Theorem A [6]. Let f be meromorphic in $|z| \leq R$, with $f(0)=1$. Then

$$
\begin{equation*}
m_{2}(r, f) \leq\{1+A / \sqrt{\log (R / r)}\} T(R, f) \tag{1}
\end{equation*}
$$

where $0<r<R$ and $A=8 \sqrt{\log 2}$.
The following two theorems improve Theorem A when $T(R, f) / T(r, f)$ is big.

[^0]Theorem 1. Let $f(z)$ be meromorphic in $|z| \leq \alpha r(1<\alpha \leq 2, r>$ 0), with $f(0)=1$. Then, for $0<\varepsilon \leq 1 / 2$, we have

$$
\begin{equation*}
m_{2}(r, f) \leq B(\alpha, \varepsilon) T(r, f)^{\frac{1}{2}-\varepsilon} T(\alpha r, f)^{\frac{1}{2}+\varepsilon} \tag{2}
\end{equation*}
$$

where

$$
B(\alpha, \varepsilon)=\frac{6 \sqrt{5}}{\sqrt{\varepsilon}(\alpha-1)^{\frac{1}{2}+\varepsilon}}
$$

We do not know if the exponent $\frac{1}{2}+\varepsilon$ on $T(\alpha r, f)$ in the inequality (2) is precise. In [4, Theorem 3.2], we showed that if in (2) we consider pairs of exponents on $T(r, f)$ and $T(\alpha r, f)$ with sum 1, then the exponent on $T(\alpha r, f)$ must be at least $1 / 4$.

In addition, we can get a similar result as Theorem 1 which does not contain the term ε.

Theorem 2. Under the same assumptions as in Theorem 1, we have

$$
\begin{equation*}
m_{2}(r, f) \leq \frac{20}{\alpha-1}[T(r, f) T(\alpha r, f)\{2+\log T(\alpha r, f)\}]^{1 / 2} \tag{3}
\end{equation*}
$$

Let $S(r)$ be a real nonnegative function, then the order of the function $S(r)$ is defined as

$$
\varlimsup_{r \rightarrow \infty} \frac{\log S(r)}{\log r}
$$

The order of a meromorphic function f is defined as the order of $T(r, f)$.
We now seek an upper bound for $m_{2}(r, f) / T(r, f)$ as a function of r.
Corollary. Let $f(z)$ be meromorphic in the plane of order $\lambda, 0<$ $\lambda<\infty$. Then for any $\varepsilon>0$ there exists a positive real number $r(\varepsilon)$ such that

$$
\begin{equation*}
m_{2}(r, f) \leq r^{\frac{\lambda}{2}+\varepsilon} T(r, f), \quad r>r(\varepsilon) \tag{4}
\end{equation*}
$$

The inequality (4) shows that $m_{2}(r, f) / T(r, f)$ has order at most $\lambda / 2$. We do not know if the inequality (4) is sharp. But the exponent on r in (4) must be greater than or equal to $\lambda / 4$ by [4, Theorem 3.2].

The corollary follows immediately from Theorem 2. In fact, without loss of generality we may assume that $|f(0)|=1$. Then we have, by
(3) with $\alpha=2$ and the fact that $T(R, f)$ is an increasing function of R [3, p8],

$$
\frac{m_{2}(r, f)}{T(r, f)} \leq 20[T(2 r, f)\{2+\log T(2 r, f)\}]^{1 / 2}
$$

Since

$$
T(2 r, f)=O\left(r^{\lambda+\varepsilon}\right), \quad r \rightarrow \infty,
$$

we have

$$
\frac{m_{2}(r, f)}{T(r, f)} \leq O\left(r^{\frac{\lambda}{2}+\varepsilon}\right), \quad r \rightarrow \infty
$$

We next consider the opposite direction of the inequality (1). If f is a meromorphic function in the plane, then it is in general not true for any fixed constants A and B that for all $r>0$,

$$
T(r, f) \leq A m_{2}(B r, f)
$$

(consider the function $f(z)=(z+1) /(z-1)$).
In case f is entire, it is easy to see that

$$
\begin{equation*}
T(r, f) \leq m_{2}(r, f) \tag{5}
\end{equation*}
$$

Hence $T(r, f)$ and $m_{2}(r, f)$ have the same order for entire f by (1) and (5).

Let $f(z)$ be meromorphic of finite order λ, and let $q=[\lambda]$. Assume for convenience that $f(0)=1$ and define $\left\{\alpha_{m}\right\}$ by

$$
\log f(z)=\sum_{m=1}^{\infty} \alpha_{m} z^{m}
$$

for z near 0 . Write

$$
f(z)=e^{p(z)} \prod E\left(\frac{z}{z_{\nu}}, q\right) / \prod E\left(\frac{z}{w_{\nu}}, q\right)
$$

where $z_{\nu} \neq w_{\nu}, p(z)=\alpha_{q} z^{q}+\cdots+\alpha_{1} z$ and

$$
E(x, q)=(1-x) \exp \left(x+x^{2} / 2+\cdots+x^{q} / q\right) .
$$

Let $c_{m}(r, f)$ be the m-th Fourier coefficient of $\log \left|f\left(r e^{i \theta}\right)\right|$:

$$
c_{m}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f\left(r e^{i \theta}\right)\right|\right) e^{-i m \theta} d \theta .
$$

Then

$$
m_{2}(r, f)^{2}=\sum_{m=-\infty}^{\infty}\left|c_{m}(r, f)\right|^{2}
$$

Edrei and Fuchs [2] had shown that

$$
\begin{gather*}
c_{m}(r, f)=\frac{1}{2} \alpha_{m} r^{m}+\frac{1}{2 m} \sum_{\left|z_{\nu}\right| \leq r}\left\{\left(\frac{r}{z_{\nu}}\right)^{m}-\left(\frac{\overline{z_{\nu}}}{r}\right)^{m}\right\} \tag{6}\\
-\frac{1}{2 m} \sum_{\left|w_{\nu}\right| \leq r}\left\{\left(\frac{r}{w_{\nu}}\right)^{m}-\left(\frac{w_{\nu}}{r}\right)^{m}\right\}
\end{gather*}
$$

for $m \geq 1$ and, for $m \geq q+1$; also

$$
\begin{aligned}
& c_{m}(r, f)=-\frac{1}{2 m}\left\{\sum_{\left|z_{\nu}\right|>r}\left(\frac{r}{z_{\nu}}\right)^{m}-\sum_{\left|w_{\nu}\right|>r}\left(\frac{r}{w_{\nu}}\right)^{m}\right. \\
&\left.+\sum_{\left|z_{\nu}\right| \leq r}\left(\frac{\overline{z_{\nu}}}{r}\right)^{m}-\sum_{\left|w_{\nu}\right| \leq r}\left(\frac{\overline{w_{\nu}}}{r}\right)^{m}\right\} .
\end{aligned}
$$

Obviously, $c_{m}(r, f)=\overline{c_{-m}(r, f)}$ for $m \leq-1$ and

$$
\begin{equation*}
c_{0}(r, f)=N(r, 1 / f)-N(r, f) \leq T(r, f) . \tag{7}
\end{equation*}
$$

In particular, if $p(z)=0$ and $\left|\arg z_{\nu}\right| \leq \omega,\left|\pi-\arg w_{\nu}\right| \leq \omega$ with $0 \leq$ $\omega \leq(\pi-\varepsilon) / 2 q, \varepsilon>0$, then M. Ozawa indicated in [7] for meromorphic functions of positive genus that

$$
T(r, f) \leq C(q, \omega) m_{2}(r, f)
$$

for some constant $C(q, \omega)$ depending only on q and ω. We can generalize Ozawa's result in

Theorem 3. Let $q \geq 1$ and let

$$
f(z)=\prod E\left(\frac{z}{z_{\nu}}, q\right) / \prod E\left(\frac{z}{w_{\nu}}, q\right)
$$

where $\left|\arg z_{\nu}\right| \leq \omega,\left|\pi-\arg w_{\nu}\right| \leq \omega$ with $0 \leq \omega \leq \frac{\pi}{2}-\varepsilon, \varepsilon>0$. Then we have for $r>0$,

$$
T(r, f) \leq \frac{1+\cos \omega}{2 \cos \omega} m_{2}(r, f) .
$$

Remarks.

1) We deduce from Theorem A and Theorem 3 that for any meromorphic function satisfying the hypotheses in theorem $3, T(r, f)$ and $m_{2}(r, f)$ have the same order.
2) Theorem 3 shows that if $\omega=0$, i.e., f has its zeros and poles in the positive and negative real axis respectively, $T(r, f) \leq$ $m_{2}(r, f)$.

2. Proof of Theorem 1

For $m \geq 1$ and $\beta>1$, (6) gives

$$
\begin{aligned}
& \quad c_{m}(r, f)-\beta^{-m} c_{m}(\beta r, f) \\
& =-\frac{1}{2 m} \sum_{r<\left|z_{\nu}\right| \leq \beta r}\left\{\left(\frac{r}{z_{\nu}}\right)^{m}-\left(\frac{\overline{z_{\nu}}}{\beta^{2} r}\right)^{m}\right\}-\frac{1}{2 m} \sum_{\left|z_{\nu}\right| \leq r}\left(\frac{\overline{z_{\nu}}}{r}\right)^{m}\left(1-\beta^{-2 m}\right) \\
& \quad+\frac{1}{2 m} \sum_{r<\left|w_{\nu}\right| \leq \beta r}\left\{\left(\frac{r}{w_{\nu}}\right)^{m}-\left(\frac{\overline{w_{\nu}}}{\beta^{2} r}\right)^{m}\right\}+\frac{1}{2 m} \sum_{\left|w_{\nu}\right| \leq r}\left(\frac{\overline{w_{\nu}}}{r}\right)^{m}\left(1-\beta^{-2 m}\right) .
\end{aligned}
$$

Hence we obtain, for $m \geq 1$ and $\beta>1$,

$$
\left|c_{m}(r, f)\right| \leq \beta^{-m}\left|c_{m}(\beta r, f)\right|+\frac{1}{2 m}\left(1-\beta^{-2 m}\right) n(\beta r)
$$

where $n(R)=n(R, 1 / f)+n(R, f)$. Using $n(R) \log \beta \leq N(\beta R)$ and

$$
\begin{equation*}
\left|c_{m}(R, f)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|\log | f\left(R e^{i \theta}\right)| | d \theta \leq 2 T(R, f) \tag{8}
\end{equation*}
$$

we get, for $m \geq 1$ and $\beta>1$,

$$
\begin{equation*}
\left|c_{m}(r, f)\right| \leq 2 T\left(\beta^{2} r, f\right)\left(\beta^{-m}+\frac{1}{2 m \log \beta}\right) \tag{9}
\end{equation*}
$$

For any $0<\varepsilon \leq 1 / 2$, (7) gives

$$
\left|c_{0}(r, f)\right|^{2} \leq T(r, f)^{2} \leq T(r, f)^{1-2 \varepsilon} T\left(\beta^{2} r, f\right)^{1+2 \varepsilon}
$$

and, for $m \geq 1$,

$$
\begin{aligned}
\left|c_{m}(r, f)\right|^{2} & \leq\left|c_{m}(r, f)\right|^{1-2 \varepsilon}\left\{2 T\left(\beta^{2} r, f\right)\left(\beta^{-m}+\frac{1}{2 m \log \beta}\right)\right\}^{1+2 \varepsilon} \\
& \leq 4 T(r, f)^{1-2 \varepsilon} T\left(\beta^{2} r, f\right)^{1+2 \varepsilon}\left(\beta^{-m}+\frac{1}{2 m \log \beta}\right)^{1+2 \varepsilon}
\end{aligned}
$$

Thus we have

$$
\begin{align*}
m_{2}(r, f)^{2} & =\left|c_{0}(r, f)\right|^{2}+2 \sum_{m=1}^{\infty}\left|c_{m}(r, f)\right|^{2} \tag{10}\\
& \leq\{1+8 D(\beta, \varepsilon)\} T(r, f)^{1-2 \varepsilon} T\left(\beta^{2} r, f\right)^{1+2 \varepsilon}
\end{align*}
$$

where

$$
D(\beta, \varepsilon)=\sum_{m=1}^{\infty}\left(\beta^{-m}+\frac{1}{2 m \log \beta}\right)^{1+2 \varepsilon}
$$

We observe that, by the Minkowski inequality,

$$
\begin{align*}
D(\beta, \varepsilon)^{\frac{1}{1+2 \varepsilon}} & \leq\left\{\sum_{m=1}^{\infty} \beta^{-m(1+2 \varepsilon)}\right\}^{\frac{1}{1+2 \varepsilon}}+\left\{\sum_{m=1}^{\infty} \frac{1}{(2 m \log \beta)^{1+2 \varepsilon}}\right\}^{\frac{1}{1+2 \varepsilon}} \tag{11}\\
& \leq\left(\frac{1}{\beta^{1+2 \varepsilon}-1}\right)^{\frac{1}{1+2 \varepsilon}}+\frac{1}{2 \log \beta}\left(\frac{1+2 \varepsilon}{2 \varepsilon}\right)^{\frac{1}{1+2 e}}
\end{align*}
$$

Since $a^{p}+b^{p} \leq(a+b)^{p} \leq 2 p\left(a^{p}+b^{p}\right)$ for $a>0, b>0$, and $p>1$, and since $1<\beta \leq \sqrt{2}$ implies $\log \beta^{2} \geq\left(\beta^{2}-1\right) / 2$, we obtain from (11) for $0<\varepsilon \leq 1 / 2$ and $1<\beta \leq \sqrt{2}$ that

$$
\begin{align*}
D(\beta, \varepsilon) & \leq 2^{1+2 \varepsilon}\left\{\frac{1}{\beta^{1+2 \varepsilon}-1}+\frac{1+2 \varepsilon}{2 \varepsilon}\left(\frac{1}{2 \log \beta}\right)^{1+2 \varepsilon}\right\} \tag{12}\\
& \leq 4\left\{\frac{\beta^{1+2 \varepsilon}+1}{\beta^{2(1+2 \varepsilon)}-1}+\frac{1}{\varepsilon}\left(\frac{2}{\beta^{2}-1}\right)^{1+2 \varepsilon}\right\} \\
& \leq 4\left\{\frac{3}{\left(\beta^{2}-1\right)^{1+2 \varepsilon}}+\frac{4}{\varepsilon\left(\beta^{2}-1\right)^{1+2 \varepsilon}}\right\}=\frac{4(4+3 \varepsilon)}{\varepsilon\left(\beta^{2}-1\right)^{1+2 \varepsilon}} .
\end{align*}
$$

Taking $\alpha=\beta^{2}$, we deduce from (10) and (12) that for $1<\alpha \leq 2$, $0<\varepsilon \leq 1 / 2$ and $r>0$,

$$
m_{2}(r, f) \leq B(\alpha, \varepsilon) T(r, f)^{\frac{1}{2}-\varepsilon} T(\alpha r, f)^{\frac{1}{2}+\varepsilon},
$$

where

$$
B(\alpha, \varepsilon)=\left\{1+\frac{32(4+3 \varepsilon)}{\varepsilon(\alpha-1)^{1+2 \varepsilon}}\right\}^{\frac{1}{2}} \leq \frac{6 \sqrt{5}}{\sqrt{\varepsilon}(\alpha-1)^{1 / 2+\varepsilon}}
$$

3. Proof of Theorem 2

It follows from (9) that

$$
\begin{align*}
\sum_{m=1}^{\infty}\left|c_{m}(r, f)\right|^{2} & \leq 2 \sum_{m=1}^{\infty}\left|c_{m}(r, f)\right| T\left(\beta^{2} r, f\right)\left(\beta^{-m}+\frac{1}{2 m \log \beta}\right) \tag{13}\\
& =A+B+C
\end{align*}
$$

where

$$
A=2 \sum_{m=1}^{\infty}\left|c_{m}(r, f)\right| T\left(\beta^{2} r, f\right) \beta^{-m},
$$

$$
B=\sum_{m=1}^{N}\left|c_{m}(r, f)\right| T\left(\beta^{2} r, f\right) \frac{1}{m \log \beta}
$$

and

$$
C=\sum_{m=N+1}^{\infty}\left|c_{m}(r, f)\right| T\left(\beta^{2} r, f\right) \frac{1}{m \log \beta}
$$

Since $1<\beta \leq \sqrt{2}$ implies $\log \beta \geq(\beta-1) / 2$, we then have, by (8) and (9),

$$
\begin{align*}
A & \leq 4 T(r, f) T\left(\beta^{2} r, f\right) \frac{\beta^{-1}}{1-\beta^{-1}} \tag{14}\\
& =\frac{4}{\beta-1} T(r, f) T\left(\beta^{2} r, f\right), \\
B & \leq \frac{2}{\log \beta} T(r, f) T\left(\beta^{2} r, f\right) \sum_{m=1}^{N} \frac{1}{m} \\
& \leq \frac{4}{\beta-1} T(r, f) T\left(\beta^{2} r, f\right)(1+\log N)
\end{align*}
$$

and

$$
\begin{aligned}
C & \leq \frac{2}{\log \beta} T\left(\beta^{2} r, f\right)^{2} \sum_{m=N+1}^{\infty} \frac{1}{m}\left(\beta^{-m}+\frac{1}{2 m \log \beta}\right) \\
& \leq \frac{4}{\beta-1} T\left(\beta^{2} r, f\right)^{2}\left\{\frac{1}{N+1} \cdot \frac{\beta^{-N-1}}{1-\beta^{-1}}+\frac{1}{\beta-1} \sum_{m=N+1}^{\infty} \frac{1}{m^{2}}\right\} \\
& \leq \frac{4}{(\beta-1)^{2}} T\left(\beta^{2} r, f\right)^{2}\left\{\frac{1}{N+1}+\frac{1}{N}\right\} .
\end{aligned}
$$

Now choosing $N=\left[T\left(\beta^{2} r, f\right)\right]+1$, we have

$$
\begin{align*}
& B \leq \frac{4}{\beta-1} T(r, f) T\left(\beta^{2} r, f\right)\left\{2+\log T\left(\beta^{2} r, f\right)\right\} \tag{15}\\
& C \leq \frac{8}{(\beta-1)^{2}} T\left(\beta^{2} r, f\right)
\end{align*}
$$

Hence we deduce from (7), (13), (14) and (15) that

$$
\begin{aligned}
m_{2}(r, f)^{2} & =\left|c_{0}(r, f)\right|^{2}+2 \sum_{m=1}^{\infty}\left|c_{m}(r, f)\right|^{2} \\
& \leq T(r, f)^{2}+2 \frac{16}{(\beta-1)^{2}} T(r, f) T\left(\beta^{2} r, f\right)\left\{2+\log T\left(\beta^{2} r, f\right)\right\} \\
& \leq \frac{250}{\left(\beta^{2}-1\right)^{2}} T(r, f) T\left(\beta^{2} r, f\right)\left\{2+\log T\left(\beta^{2} r, f\right)\right\}
\end{aligned}
$$

Taking $\alpha=\beta^{2}$, we conclude that

$$
m_{2}(r, f) \leq \frac{20}{\alpha-1}\left[T(r, f) T(\alpha r, f)\{2+\log T(\alpha r, f)]^{\frac{1}{2}}\right.
$$

4. Proof of Theorem 3

Let $q \geq 1$ and let

$$
f(z)=\prod E\left(\frac{z}{z_{\nu}}, q\right) / \prod E\left(\frac{z}{w_{\nu}}, q\right)
$$

where $\left|\arg z_{\nu}\right| \leq \omega,\left|\pi-\arg w_{\nu}\right| \leq \omega$ with $0 \leq \omega \leq \frac{\pi}{2}-\varepsilon, \varepsilon>0$. Then we have, by (6),

$$
c_{1}(r, f)=\frac{1}{2} \sum_{\left|z_{\nu}\right| \leq r}\left\{\frac{r}{z_{\nu}}-\frac{\overline{z_{\nu}}}{r}\right\}-\frac{1}{2} \sum_{\left|w_{\nu}\right| \leq r}\left\{\frac{r}{w_{\nu}}-\frac{\overline{w_{\nu}}}{r}\right\} .
$$

Hence

$$
\begin{align*}
\operatorname{Re} c_{1}(r, f) & \geq \frac{1}{2} \sum_{\left|z_{2}\right| \leq r}\left\{\frac{r}{\left|z_{\nu}\right|}-\frac{\left|z_{\nu}\right|}{r}+\frac{r}{\left|w_{\nu}\right|}-\frac{\left|w_{\nu}\right|}{r}\right\} \cos \omega \tag{16}\\
& =\frac{\cos \omega}{2} \int_{0}^{r}\left(\frac{r}{t}-\frac{t}{r}\right) d n(t)
\end{align*}
$$

where $n(t)=n(t, f)+n(t, 1 / f)$. Integration by parts applied twice to (16) yields

$$
\begin{aligned}
\frac{\operatorname{Re} c_{1}(r, f)}{\cos \omega} & \geq N(r, f)+N\left(r, \frac{1}{f}\right)+\frac{1}{2} \int_{0}^{r} \frac{N(r, f)+N(r, 1 / f)}{t}\left\{\frac{r}{t}-\frac{t}{r}\right\} d t \\
& \geq N(r, f)+N\left(r, \frac{1}{f}\right)
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
m_{2}(r, f) \geq\left|c_{1}(r, f)\right| \geq \operatorname{Re} c_{1}(r, f) \geq\left\{N(r, f)+N\left(r, \frac{1}{f}\right)\right\} \cos \omega . \tag{17}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
m_{2}(r, f) \geq m(r, f)+m\left(r, \frac{1}{f}\right) . \tag{18}
\end{equation*}
$$

Therefore we deduce from (17) and (18) that

$$
\begin{aligned}
(1+\cos \omega) m_{2}(r, f) & \geq\left\{T(r, f)+T\left(r, \frac{1}{f}\right)\right\} \cos \omega \\
& =2 \cos \omega T(r, f)
\end{aligned}
$$

Hence we conclude that

$$
T(r, f) \leq \frac{1+\cos \omega}{2 \cos \omega} m_{2}(r, f) .
$$

5. An upper bound for $m_{2}(r, f) / T(r, f)$ on a set of r with positive lower logarithmic density

In the remaining part of the present paper, we seek upper estimates for $m_{2}(r, f)$ in terms of $T(r, f)$, now however permitting exceptional sets of r.

For $E \subset[1 . \infty)$, define the logarithmic measure of E by

$$
m_{\ell}(E)=\int_{E} \frac{d t}{t}
$$

The upper and lower logarithmic density of E are defined by

$$
\begin{aligned}
& \overline{\log \operatorname{dens}} E=\underset{r \rightarrow \infty}{\limsup _{s} \frac{m_{\ell}(E \cap[1, r])}{\log r},} \\
& \underline{\log \operatorname{dens} E}=\liminf _{r \rightarrow \infty} \frac{m_{\ell}(E \cap[1, r])}{\log r} .
\end{aligned}
$$

We denote the Ahlfors-Shimizu characteristic by

$$
T_{0}(r, f)=\int_{0}^{r} \frac{A(t, f)}{t} d t
$$

where $A(t, f)$ is the average number of solutions of $f(z)=a$ in $|z| \leq t$ as a varies over the Riemann sphere.

In 1969, Petrenko [8] proved Paley's conjecture:

Theorem B. For any meromorphic function f of order $\lambda<\infty$, we have

$$
\liminf _{r \rightarrow \infty} \frac{\log M(r, f)}{T(r, f)} \leq \begin{cases}\frac{\pi \lambda}{\sin \pi \lambda}, & \lambda \leq \frac{1}{2} \\ \pi \lambda, & \lambda>\frac{1}{2}\end{cases}
$$

We now obtain a theorem for $m_{2}(r, f)$ analogous to Theorem B.
Theorem 4. Let $f(z)$ be meromorphic in the plane of order $\lambda, 0<$ $\lambda<\infty$. Then there exists a set $E \subset[1, \infty)$ with positive lower logarithmic density such that

$$
\limsup _{r \rightarrow \infty, r \in E} \frac{m_{2}(r, f)}{T(r, f)} \leq c_{\lambda}
$$

where c_{λ} is a constant depending only on λ and

$$
c_{\lambda}=O(\sqrt{\lambda}), \quad \text { as } \quad \lambda \rightarrow \infty .
$$

Proof. To prove the theorem, we need the following results from [5].
Lemma C. Let $f(z)$ be meromorphic in the plane of order $\lambda, 0<$ $\lambda<\infty$. For $K>1$, let

$$
E_{1}(K)=\left\{r>1: A(r, f) / T_{0}(r, f)>K \lambda\right\} .
$$

Then we have
(a)

$$
\overline{\log \operatorname{dens}} E_{1}(K) \leq 1 / K
$$

and
(b) if $\varepsilon>0$, there exists $\boldsymbol{c}(\varepsilon)>0$ and a set $E_{2}(\varepsilon) \subset[1, \infty)$ with

$$
\underline{\log \text { dens }} E_{2}(\varepsilon) \geq c(\varepsilon)
$$

such that for all $r \in E_{2}(\varepsilon)$,

$$
T_{0}\left(r e^{h}, f\right)<h(e+\varepsilon) A(r, f)
$$

where $h=T_{0}(r, f) / A(r, f)$.
We may first assume $f(0)=1$ for convenience. By Theorem A with $R=r e^{h}$, we have

$$
\begin{equation*}
m_{2}(r, f) \leq\left\{1+8 \sqrt{\log 2} \sqrt{A(r, f) / T_{0}(r, f)}\right\} T\left(r e^{h}, f\right) \tag{19}
\end{equation*}
$$

By Lemma $C(b)$, there exist a number $c(e)>0$ and a set $E_{2}(e) \subset[1, \infty)$ with

$$
\begin{equation*}
\log \text { dens } E_{2}(e) \geq c(e)>0 \tag{20}
\end{equation*}
$$

such that if $r \in E_{2}(e)$,

$$
\begin{equation*}
T_{0}\left(r e^{h}, f\right)<2 e T_{0}(r, f) \tag{21}
\end{equation*}
$$

If we choose a number K_{0} so large that

$$
\begin{equation*}
1 / K_{0}<c(e) \tag{22}
\end{equation*}
$$

then by Lemma C (a) there exists a set $E_{1}\left(K_{0}\right)$ with

$$
\begin{equation*}
\overline{\log \operatorname{dens}} E_{1}\left(K_{0}\right) \leq 1 / K_{0} \tag{23}
\end{equation*}
$$

such that for $r \in[1, \infty)-E_{1}\left(K_{0}\right)$,

$$
\begin{equation*}
\frac{A(r, f)}{T_{0}(r, f)} \leq K_{0} \lambda \tag{24}
\end{equation*}
$$

Setting $E=E_{2}(e)-E_{1}\left(K_{0}\right)$, we then have by (20), (22), and (23) that

$$
\underline{\log \operatorname{dens}} E \geq c(e)-1 / K_{0}>0
$$

and we conclude from (19), (21), and (24) that for sufficiently large $r \in E$,

$$
m_{2}(r, f) \leq\left(1+8 \sqrt{\log 2} \sqrt{K_{0} \lambda}\right)(2 e T(r, f))
$$

since $T(R, f)=T_{0}(R, f)+O(1)$ as $R \rightarrow \infty$. Hence

$$
\limsup _{r \rightarrow \infty, r \in E} \frac{m_{2}(r, f)}{T(r, f)} \leq 2 e\left(1+8 \sqrt{\log 2} \sqrt{K_{0} \lambda}\right)=O(\sqrt{\lambda}), \quad \lambda \rightarrow \infty
$$

This proves Theorem 4.

6. Examples

In Theorem 4 our estimate for c_{λ} is certainly not best possible, but at least we need

$$
c_{\lambda} \geq \frac{\pi \sqrt{\lambda}}{2}
$$

as is shown by the following example. For $0<\alpha<1$, we set

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(1+\alpha n)}
$$

Then $E_{\alpha}(z)$, called Mittag-Leffler's function, is an entire function of order $1 / \alpha$ and has the following property [1, p50]: If

$$
0<\alpha<1, z=r e^{i \theta}, \quad r \geq 2
$$

we have that, as $r \rightarrow \infty$,

$$
E_{\alpha}(z)= \begin{cases}\frac{1}{\alpha} \exp \left(z^{1 / \alpha}\right)+o(1), & |\theta| \leq \frac{3}{4} \alpha \pi \\ o(1), & \text { otherwise }\end{cases}
$$

Hence we get

$$
\begin{align*}
T\left(r, E_{\alpha}\right) & =\frac{1}{2 \pi} \int_{-\frac{3}{4} \alpha \pi}^{\frac{3}{4} \alpha \pi} \log ^{+}\left|\exp \left\{r^{\frac{1}{\alpha}} e^{i\left(\frac{\theta}{\alpha}\right)}\right\}\right| d \theta+O(1) \tag{25}\\
& =\frac{1}{2 \pi} \int_{-\frac{\alpha \pi}{2}}^{\frac{\alpha \pi}{2}} r^{\frac{1}{\alpha}} \cos \frac{\theta}{\alpha} d \theta+O(1) \\
& =\frac{\alpha}{\pi} r^{\frac{1}{\alpha}}+O(1), \quad r \rightarrow \infty
\end{align*}
$$

and if $m_{2}^{+}(r, f)$ is the L_{2} norm of $\log ^{+}\left|f\left(r e^{i \theta}\right)\right|$ then
(26) $\quad m_{2}^{+}\left(r, E_{\alpha}\right)^{2} \geq(1-o(1)) \frac{1}{2 \pi} \int_{-\frac{\alpha \pi}{2}}^{\frac{\alpha \pi}{2}}\left[\log ^{+}\left|\exp \left\{r^{\frac{1}{\alpha}} e^{i\left(\frac{\theta}{\alpha}\right)}\right\}\right|\right]^{2} d \theta$

$$
\begin{aligned}
& =(1-o(1)) \frac{1}{2 \pi} \int_{-\frac{\alpha \pi}{2}}^{\frac{\alpha \pi}{2}}\left(r^{\frac{1}{\alpha}} \cos \frac{\theta}{\alpha}\right)^{2} d \theta \\
& =(1-o(1)) \frac{\alpha}{4} r^{\frac{2}{\alpha}}, \quad r \rightarrow \infty
\end{aligned}
$$

Setting $\lambda=1 / \alpha$, we conclude from (25) and (26) for the entire function $E_{\alpha}(z)$ of order λ that

$$
\liminf _{r \rightarrow \infty} \frac{m_{2}^{+}\left(r, E_{\alpha}\right)}{T\left(r, E_{\alpha}\right)} \geq \frac{\pi \sqrt{\lambda}}{2} .
$$

This proves our assertion since $m_{2}(r, f)=m_{2}^{+}(r, f)+m_{2}^{+}(r, 1 / f)$.

References

1. M. L. Cartwright, Integral functions, Cambridge University Press, New York, 1956.
2. A. Edrei and W. H. J. Fuchs, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292-328.
3. W. K. Hayman, Meromorphic functions, Oxford University Press, Oxford, 1964.
4. K. Kwon, On the growth of entire functions, Israel J. Math., (to appear).
5. S. Hellerstein, J. Miles and J. Rossi, On the growth of solutions of $f^{\prime \prime}+g f^{\prime}+$ $h f=0$, Trans. Amer. Math. Soc. 324 (1991), 693-706.
6. J. Miles and D. F. Shea, On the growth of meromorphic functions having at least one deficient value, Duke Math. J. 43 (1976), 171-185.
7. M. Ozawa, On the growth of meromorphic functions, Kodai Math. J. 6 (1983), 250-260.
8. V. P. Petrenko, The growth of meromorphic functions of finite lower order, Izv. Ak. Nauk U.S.S.R. 33 (1969), 414-454.

Department of Mathematics
Korea Military Academy
P O Box 77, Gongneung, Nowon
Seoul 139-799, Korea

[^0]: Received June 25, 1993. Revised October 8, 1993.
 The first author was supported by the Wharangdae Research Institute, Korea Military Academy, 1992.

