Comm. Korean Math. Soc. 9 (1994), No. 1, pp. 79-87

THE EIGENVALUE GAP WITH
SYMMETRIC SINGLE-WELL POTENTIALS
FOR DIFFERENCE OPERATORS

INsuk KM

1. Introduction

The difference Laplacian acting in £2(Z) may be regarded as a discrete
version of ——%:; in L?(R). Regarding D : ¢(n) — ¢(n + 1) — ¢(n) and
D* : ¢(n) — p(n—1)—p(n) as operators in £2(Z) so that D*D replaces
—di:g, the difference Laplacian D*D is a self adjoint operator, and we
have D*Dy(n) = —p(n + 1) + 2p(n) — o(n — 1).

We will consider the perturbation H of D*D, H = D*D + V on
¢*(Zy) with various boundary conditions, where Zy = {—N,..., N},
V multiplication by a real-valued function V(n) on the integers with
suppV C [-N, N].

For the difference operator on ¢2(Zy) with Dirichlet and Neumann
boundary conditions, we would need the (2N + 1) x (2N + 1) matrix,

V(=N)+2—v -1 0
-1 V(-N+1)+2 -1 0
H,= : : :
0 -1 V(N—1)+2 -1
0 o -1 V(N)+2—v

with v = 0 and v = 1, respectively, analogous to the Schrodinger opera-
tor — -j’%—}-V on L?(R) with Dirichlet and Neumann boundary conditions.

The difference operator H = D*D + V on ¢?(Zy) with Dirichlet or
Neumann boundary conditions has discrete spectrum E; < E; < E3 <
-+, for bounded V. The gap I' = E; — E; has attracted some interest.
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Ashbaugh and Benguria [A-B-2] showed that if V' is a symmetric single-
well potential in [-N, N], i.e. V(n) = V(—n) and V is nondecreasing on
[0, N], then

(1.1) r>2 cos(é—(——]\;rTl)) - cos(—ﬁl_l_-i)

and this is just the gap for V = constant. The above result is for Dirichlet
boundary conditions. Here we verify the result with a different proof.
One reason for our interest in this question is that the gap can be
used to estimate the difference between a solution ¢ of the difference
equation H.p(n) = D*Dy(n) + V(n)p(n) = Ep(n) and a multiple of
the normalized ground state solution ¢, for FE close to E;. If H; is the
difference operator on £*(Zy) with Neumann boundary conditions,

H -

2 1 El

_— y > << —_———

II(F <SG 1 Sal” =< ¢, E2 E,lgl-c >

. N-1
_ m{ Z [(D*D + V(n) — Ey)p(n)]@(n)
n=-—N+1

+ (L4 V) = B[P = 9N ~ D)
+ (14 V=N) = B)lp-N)F = o ~N + 1)p(-1)}

_ Tone—n(Hy = EDle(m)? + (v = D(lp(N)P + le(-N)I?)

E, - E
_ (B = Ellel? + (v = D(Ie(N)? + le(=N)P?)
E; - E, )

2. Preliminaries

The difference Laplacian on a graph was studied in [DOD]. In this
article, two kinds of functions are defined:

Let K be an arbitrary graph, i.e., a connected simplicial complex of
one dimension, and V(K) be the set of vertices of K. For two vertices
z,y € V(K), x ~ y denotes a geometric edge (an edge without regard to
its direction) connecting = and y. [z,y] denotes a directed edge beginning
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at r and ending at y, and E(K') denotes the set of all directed edges of K.
Furthermore, we denote by C°(K) the space of all real-valued functions
f on V(K), and C'(K) the space of all functions F on E(K), satisfying

(2.1) F(lz,y]) = - F([y, ]).

For every edge of K, we fix a direction. (Here, in our case V(K) C Z
and E(K) C {[n,n+1]:n € Z}.)

For f € C°(K), we define V as a bounded mapping of C°(K) into
CY{(K) by

(2.2) Vi([z,y]) = f(y) — f(=)
If F € C}(K), define
(23) V. F(.’E) = Z F([:L', y])a

y~z

as a mapping of C*(K) into C°(K). Furthermore, let us define products
fF € CY(K) for f and F as above by

(24) £F () = LW pe ),
and for F, G € C*(K), products F - G € C°(K) by

y~z

Note that these multiplications are commutative, but not associative,

that s, f(gF) # (fo)F snd (/F)-G # J(F-G).

1)) = Y LI W ) by 23) amd 29)

y~z

= 2 (W) - F@)E(lea)) + 3 F(lz,u) (=)

y~z y~z

= (Vf-F)z) + (V- F)f(2).
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Moreover, notice that for f, g € C°(K)

V(fo)lesD) = o) - F@e(@) By (22)
=IO o) - @) + (s6) - £ 2L
~(fYe+Vfolea) by (24) md (22)

" Hence we have formulas similar to those for ordinary functions so that
V- (fVg)=Vf-Vg+ fV-Vg.

When K C Z, V - V agrees with our definition of —D*D, since

V-Vi(r)= ) Vi(n,n]) by (23)

n'~n

=Vf(lr,n+1)) + Vf([n,n-1])
=f(n+1)=2f(n)+ f(n-1)
= —D*Df(n).

We also have a version of the divergence theorem:

Y V-F@)=) (3 Fazy)) by (23)

zeK z€EK y~=z

= Z (F(lz,y]) + F(ly,z))) + Z F([z,y])

z,9yEK z€K y¢K
yr~z T~y

= Y F(ey) by (21),

z€K y¢K
vy
so for f, ¢ € C°(K)

26 L v(vee= Y {DHO40 e

2
r€K €K y¢K
T~y
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3. Main Theorem.

THEOREM. Consider Hy = D* + D + V on [N, N] with Dirichlet
boundary conditions. Suppose that V is a symmetric single-well poten-
tial so that V(—n) = V(n) on [-N,N] and VV([n,n+1]) > 0 on [0, N].
If E, is the lowest eigenvalue and E,, the next eigenvalue above E; for
H,, then

m T
E2 - El 2 2 COS('é-('N——;‘—ﬁ) - COS(-NT:-[) N

with equality if and only if V' is constant.

Proof. For i1 =1,2, let
Hop; = E;p;

on [—N,N] and define @;(—N — 1) = @i(N + 1) = 0. Notice that
(Ho + C)™! has positive entries and therefore ¢, can be chosen positive
([G]) so that @;(n) > 0 is symmetric, @;(—n) = p1(n) and pa(—n) =
—pa(n) for —N < n < N and ¢,(0) = 0 (See Appendix). It may be
assumed that ¢(n) > 0 on [—N,0]. Then we have that if —-N < n <0,

(3.1)

22\t n _¢2(n+1)  ¢an)
V(m)([ 1) pi(n+1)  ¢i1(n)

- p1(n +11)901(n) {(992(" + 1) — p2(n)) p1(n + 1; +¢1(n)
— (pr(n+1) - ‘P1(n)) pa(n +1) + %(n)}
2
1

- e1(n+ 1)901(77.) (V‘Pw} B cszLp:l)([n,n i 1])

by noting (2.2) and (2.4). Then by using our version of the divergence
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theorem (2.6) and ¢;(—N —1) =0 (¢ = 0, 1), the above (3.1) becomes

Y2 _ 1 n . _
v(2)tmn+ D= 2,V (Voo = Venh)

1
" pi(n+ Dp-(n) 4
E, —

= mn+1)¢1(n) Z Proa(k) <0

n
Z (—D*Dezp1 + D* Doz ) (k)

So (2 /41 )(n) is decreasing as n goes from —N to 0, and by symmetry
(2 /1 )(n) is also decreasing as n goes from 0 to N, which implies
(2 /o1 )2(n) is increasing as |n| goes from 0 to N.

Choose the largest integer a € (0, N) so that (% /p?)(a) < 1. By

symmetry we get (3 /¢?)(n) < 1 on [~a,d] and (% /¢?)(n) > 1 on
[-N,—a - 1] U [a + 1, N]. Since for unit eigenfuctions @, and ¢,

- (55 5)(E3- )0

n=—N n=-—gq n=a+1

if W(n) is any symmetric function, increasing on [0, N], we know

N 2 n
> (85 -1)gimwin)
n=—N 1
a 2 n
-y (“—"%E-n—; -1)¢%(n)W(n)

(54 3 (29 - 1)etemwen

n=-~N n=a+l

> W(a+1) Z (‘ngzg—-l) V3(n) =0,

n=—N
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with equality if and only if W is constant. Thus it follows that

N N

(32) D W) 2 Y pi(mW(n),

n=—N n=-N

with equality if and only if W is constant.

Now let Hy(7) be the operator Hy with 7V replacing V for0 < 7 <1,
where V(—n) = V(n) and VV[n,n+1] 2 0for 0 < n < N. Let E;(7)
be the jth eigenvalue for Ho(7) with unit eigenvector ¢;j(7). Then we
get

N
[Ei(r") = Ei(")] ). @i(t)ei(")(n)

n=—N

N
= Z (Ho(*")pi(t")pi(7) — Ho()e;(T)e;(7"))(n)

n=-N
N
= 3 (#V(n) - TV (n))pi(r)ei()(n),
n=—N
% N
0 _ 3 Vinr)in).
n=~N
Thus

N
e (B~ Ba(0) = 3 V) ) 20,

by (3.2), with equality if and only if V is constant. Therefore the gap
E,(7) — Ey(7) is nondecreasing with 7 and we derive

with equality if and only if V' is constant.



86 Insuk Kim

References

[A] Agmon, S., Lectures on exponential decay of solutions of second order el
liptic equations, Princeton University Press, Princeton, N.J., 1982.

[A-B-1] Ashbaugh, M. S., Benguria, R. D., Optimal lower bound for the gap be-
tween the first two eigenvalues of one-dimensional Schrodinger operators
with symmetric single-well potentials, Proc. Amer. Math. Soc. 105 (1989),
419-424.

, Some eigenvalue inequalities for a class of Jacobi matrices, Linear
Algebra Appl. 136 (1990), 215-234.

[DOD] Dodziuk, J., Difference equations, isoperimetric inequality and iransience
of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794.

[A-B-2]

[F-1] Fernandez, C., Lavine, R., Lower bounds for resonance widths in potential
and obstacle scattering, Comm. Math. Phys. 128 (1990), 263-284.

[G] Gantmacher, F. R., Applications of the theory of matrices, Interscience,
New York, 1959.

{L] Lavine, R., Spectral density and sojourn times. In: Nuttall, J.(ed.) Atomic

scattering theory. London, Ontario (1978), Univ. Western Ontario, 45-61.
[R-S] Reed, M., Simon, B., Methods of modern mathematical physics, vol. IV,
Academic Press, New York, 1978.

Appendix

LEMMA. Let Hy = D*D + V on [-N, N] with V(—n) = V(n). For
i = 1,2, let Hopi(n) = E;pi(n), where E, is the lowest eigenvalue and
E,, the next eigenvalue above E; for Hy. Then @, is odd and changes
sign only at 0, so we may choose ¢, positive on [—N, —1] and negative
on [1,N].

Proof. We may choose pi(n) > 0 and ¢1(—n) = ¢3(n) on [-N, N].
This implies 2 changes sign on [N, N| because @2 L ;. Furthermore,
@2 is even or odd, because if (Jp)(n) = p(—n) we have HoJ = JH,,
so Hyp = Ap implies Jy is an eigenvector with same eigenvalue and so
Jp2 = epg and J has eigenvalue 1 or —1 with even or odd eigenvector,
respectively.

If ¢2 is odd, then ¢2(0) = 0 and E; is an eigenvalue for D*D + V on
[-N,—1] with Dirichlet boundary conditions. Any other eigenvalue of
this operator also is an eigenvalue of Hy with odd eigenvector. Thus E,
must be the lowest eigenvalue of Hy on [~N, —1] and @2 may be chosen
positive on [N, —1] and Lemma is proved.
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Suppose @2 is even. Then ¢, must change sign somewhere between
—N and —1, say at k so that ¢2(k)p2(k+1) <0.
Set . i
: p2(7) for j<k
v(7) = :
0 for j> k.
Then if FE is the lowest eigenvalue with odd eigenvector, i.e., the lowest
eigenvalue of the Dirichlet operator on [N, —1],
E = inf

{ ;;_N[—¢(j+1)+(2+V(j))w(j)—w(j—l)w(j)}
(0)=0 ;'-=1—N ¢(])2

P(—N—1)=0

e nl=eG + D+ @+ V3E)el) — G — Dle()

1 -
j=—n ()

k-1
- {(2 FVE)aR) — g2k —Dpa(k) + Y [=pa(G +1)
j=-N

<

k
+(2+ V())e2(d) — 0205 - 1)]<p2(j)} Y i)

j=—-N
k
<{ X eati+)
j=-—N
k
HRHVIel) = 02l = D)} [ 3 i
j=—N
= Ey,

since —@a(k)p2(k+1) > 0. This is a contradiction, since E; is supposed
to be the next eigenvalue above E; (E; cannot equal E since eigenvalues
of Hy are simple).
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