THE EIGENVALUE GAP WITH SYMMETRIC SINGLE-WELL POTENTIALS FOR DIFFERENCE OPERATORS

Insuk Kim

1. Introduction

The difference Laplacian acting in $\ell^{2}(\mathbb{Z})$ may be regarded as a discrete version of $-\frac{d^{2}}{d x^{2}}$ in $L^{2}(\mathbb{R})$. Regarding $D: \varphi(n) \longmapsto \varphi(n+1)-\varphi(n)$ and $D^{*}: \varphi(n) \longmapsto \varphi(n-1)-\varphi(n)$ as operators in $\ell^{2}(\mathbb{Z})$ so that $D^{*} D$ replaces $-\frac{d^{2}}{d x^{2}}$, the difference Laplacian $D^{*} D$ is a self adjoint operator, and we have $D^{*} D \varphi(n)=-\varphi(n+1)+2 \varphi(n)-\varphi(n-1)$.

We will consider the perturbation H of $D^{*} D, H=D^{*} D+V$ on $\ell^{2}\left(\mathbb{Z}_{N}\right)$ with various boundary conditions, where $\mathbb{Z}_{N}=\{-N, \ldots, N\}$, V multiplication by a real-valued function $V(n)$ on the integers with $\operatorname{supp} V \subset[-N, N]$.

For the difference operator on $\ell^{2}\left(\mathbb{Z}_{N}\right)$ with Dirichlet and Neumann boundary conditions, we would need the $(2 N+1) \times(2 N+1)$ matrix,

$$
H_{\gamma}=\left(\begin{array}{cccccc}
V(-N)+2-\gamma & -1 & 0 & & \cdots \\
-1 & V(-N+1)+2 & -1 & 0 & & \cdots \\
\vdots & \ddots & & & \vdots & \\
\cdots & & 0 & -1 & V(N-1)+2 & -1 \\
\cdots & & 0 & 0 & -1 & V(N)+2-\gamma
\end{array}\right)
$$

with $\gamma=0$ and $\gamma=1$, respectively, analogous to the Schrödinger operator $-\frac{d^{2}}{d x^{2}}+V$ on $L^{2}(\mathbb{R})$ with Dirichlet and Neumann boundary conditions.

The difference operator $H=D^{*} D+V$ on $\ell^{2}\left(\mathbb{Z}_{N}\right)$ with Dirichlet or Neumann boundary conditions has discrete spectrum $E_{1}<E_{2} \leq E_{3} \leq$ \cdots, for bounded V. The gap $\Gamma=E_{2}-E_{1}$ has attracted some interest.

[^0]Ashbaugh and Benguria [A-B-2] showed that if V is a symmetric singlewell potential in $[-N, N]$, i.e. $V(n)=V(-n)$ and V is nondecreasing on $[0, N]$, then

$$
\begin{equation*}
\Gamma \geq 2\left[\cos \left(\frac{\pi}{2(N+1)}\right)-\cos \left(\frac{\pi}{N+1}\right)\right] \tag{1.1}
\end{equation*}
$$

and this is just the gap for $V=$ constant. The above result is for Dirichlet boundary conditions. Here we verify the result with a different proof.

One reason for our interest in this question is that the gap can be used to estimate the difference between a solution φ of the difference equation $H_{\gamma} \varphi(n)=D^{*} D \varphi(n)+V(n) \varphi(n)=E \varphi(n)$ and a multiple of the normalized ground state solution φ_{1}, for E close to E_{1}. If H_{1} is the difference operator on $\ell^{2}\left(\mathbb{Z}_{N}\right)$ with Neumann boundary conditions,

$$
\begin{aligned}
& \left\|\varphi-<\varphi, \varphi_{1}>\varphi_{1}\right\|^{2} \leq\left\langle\varphi, \frac{H_{1}-E_{1}}{E_{2}-E_{1}} \varphi>\right. \\
& =\frac{1}{E_{2}-E_{1}}\left\{\sum_{n=-N+1}^{N-1}\left[\left(D^{*} D+V(n)-E_{1}\right) \varphi(n)\right] \bar{\varphi}(n)\right. \\
& \quad+\left(1+V(N)-E_{1}\right)|\varphi(N)|^{2}-\varphi(N-1) \bar{\varphi}(N) \\
& \left.\quad+\left(1+V(-N)-E_{1}\right)|\varphi(-N)|^{2}-\varphi(-N+1) \bar{\varphi}(-N)\right\} \\
& = \\
& =\frac{\sum_{n=-N}^{N}\left(H_{\gamma}-E_{1}\right)|\varphi(n)|^{2}+(\gamma-1)\left(|\varphi(N)|^{2}+|\varphi(-N)|^{2}\right)}{E_{2}-E_{1}} \\
& =\frac{\left(E-E_{1}\right)\|\varphi\|^{2}+(\gamma-1)\left(|\varphi(N)|^{2}+|\varphi(-N)|^{2}\right)}{E_{2}-E_{1}} .
\end{aligned}
$$

2. Preliminaries

The difference Laplacian on a graph was studied in [DOD]. In this article, two kinds of functions are defined:

Let K be an arbitrary graph, i.e., a connected simplicial complex of one dimension, and $V(K)$ be the set of vertices of K. For two vertices $x, y \in V(K), x \sim y$ denotes a geometric edge (an edge without regard to its direction) connecting x and $y .[x, y]$ denotes a directed edge beginning
at x and ending at y, and $E(K)$ denotes the set of all directed edges of K. Furthermore, we denote by $C^{0}(K)$ the space of all real-valued functions f on $V(K)$, and $C^{1}(K)$ the space of all functions F on $E(K)$, satisfying

$$
\begin{equation*}
F([x, y])=-F([y, x]) \tag{2.1}
\end{equation*}
$$

For every edge of K, we fix a direction. (Here, in our case $V(K) \subset \mathbb{Z}$ and $E(K) \subset\{[n, n+1]: n \in \mathbb{Z}\}$.)

For $f \in C^{0}(K)$, we define ∇ as a bounded mapping of $C^{0}(K)$ into $C^{1}(K)$ by

$$
\begin{equation*}
\nabla f([x, y])=f(y)-f(x) \tag{2.2}
\end{equation*}
$$

If $F \in C^{1}(K)$, define

$$
\begin{equation*}
\nabla \cdot F(x)=\sum_{y \sim x} F([x, y]) \tag{2.3}
\end{equation*}
$$

as a mapping of $C^{1}(K)$ into $C^{0}(K)$. Furthermore, let us define products $f F \in C^{1}(K)$ for f and F as above by

$$
\begin{equation*}
f F([x, y])=\frac{f(x)+f(y)}{2} F([x, y]) \tag{2.4}
\end{equation*}
$$

and for $F, G \in C^{1}(K)$, products $F \cdot G \in C^{0}(K)$ by

$$
\begin{equation*}
(F \cdot G)(x)=\sum_{y \sim x} \frac{F([x, y]) G([x, y])}{2} \tag{2.5}
\end{equation*}
$$

Note that these multiplications are commutative, but not associative, that is, $f(g F) \neq(f g) F$ and $(f F) \cdot G \neq f(F \cdot G)$.

We have

$$
\begin{align*}
(\nabla \cdot f F)(x) & =\sum_{y \sim x} \frac{f(x)+f(y)}{2} F([x, y]) \quad \text { by } \quad(2.3) \quad \text { and } \tag{2.4}\\
& =\frac{1}{2} \sum_{y \sim x}(f(y)-f(x)) F([x, y])+\sum_{y \sim x} F([x, y]) f(x) \\
& =(\nabla f \cdot F)(x)+(\nabla \cdot F) f(x)
\end{align*}
$$

Moreover, notice that for $f, g \in C^{0}(K)$

$$
\begin{aligned}
\nabla(f g)([x, y]) & =f(y) g(y)-f(x) g(x) \quad \text { by } \quad(2.2) \\
& =\frac{f(x)+f(y)}{2}(g(y)-g(x))+(f(y)-f(x)) \frac{g(x)+g(y)}{2} \\
& =(f \nabla g+\nabla f g)([x, y]) \quad \text { by } \quad(2.4) \quad \text { and }
\end{aligned}
$$

Hence we have formulas similar to those for ordinary functions so that

$$
\nabla \cdot(f \nabla g)=\nabla f \cdot \nabla g+f \nabla \cdot \nabla g
$$

When $K \subset \mathbb{Z}, \nabla \cdot \nabla$ agrees with our definition of $-D^{*} D$, since

$$
\begin{align*}
\nabla \cdot \nabla f(n) & =\sum_{n^{\prime} \sim n} \nabla f\left(\left[n, n^{\prime}\right]\right) \quad \text { by } \tag{2.3}\\
& =\nabla f([n, n+1])+\nabla f([n, n-1]) \\
& =f(n+1)-2 f(n)+f(n-1) \\
& =-D^{*} D f(n)
\end{align*}
$$

We also have a version of the divergence theorem:

$$
\begin{align*}
\sum_{x \in K} \nabla \cdot F(x) & =\sum_{x \in K}\left(\sum_{y \sim x} F([x, y])\right) \quad \text { by } \quad(2.3) \tag{2.3}\\
& =\sum_{\substack{x, y \in K \\
y \sim x}}(F([x, y])+F([y, x]))+\sum_{\substack{x \in K y \notin K \\
x \sim y}} F([x, y]) \\
& =\sum_{\substack{x \in K y \notin K \\
x \sim y}} F([x, y]) \quad \text { by } \quad(2.1), \tag{2.1}
\end{align*}
$$

so for $f, \psi \in C^{0}(K)$

$$
\begin{equation*}
\sum_{x \in K} \nabla \cdot(f \nabla \psi)(x)=\sum_{\substack{x \in K y \notin K \\ x \sim y}} \frac{f(x)+f(y)}{2}(\psi(y)-\psi(x)) . \tag{2.6}
\end{equation*}
$$

3. Main Theorem.

Theorem. Consider $H_{0}=D^{*}+D+V$ on $[-N, N]$ with Dirichlet boundary conditions. Suppose that V is a symmetric single-well potential so that $V(-n)=V(n)$ on $[-N, N]$ and $\nabla V([n, n+1]) \geq 0$ on $[0, N]$. If E_{1} is the lowest eigenvalue and E_{2}, the next eigenvalue above E_{1} for H_{0}, then

$$
E_{2}-E_{1} \geq 2\left[\cos \left(\frac{\pi}{2(N+1)}\right)-\cos \left(\frac{\pi}{N+1}\right)\right]
$$

with equality if and only if V is constant.
Proof. For $i=1,2$, let

$$
H_{0} \varphi_{i}=E_{i} \varphi_{i}
$$

on $[-N, N]$ and define $\varphi_{i}(-N-1)=\varphi_{i}(N+1)=0$. Notice that $\left(H_{0}+C\right)^{-1}$ has positive entries and therefore φ_{1} can be chosen positive ([G]) so that $\varphi_{1}(n)>0$ is symmetric, $\varphi_{1}(-n)=\varphi_{1}(n)$ and $\varphi_{2}(-n)=$ $-\varphi_{2}(n)$ for $-N \leq n \leq N$ and $\varphi_{2}(0)=0$ (See Appendix). It may be assumed that $\varphi_{2}(n) \geq 0$ on $[-N, 0]$. Then we have that if $-N \leq n \leq 0$,

$$
\begin{align*}
\nabla\left(\frac{\varphi_{2}}{\varphi_{1}}\right)(& {[n, n+1])=\frac{\varphi_{2}(n+1)}{\varphi_{1}(n+1)}-\frac{\varphi_{2}(n)}{\varphi_{1}(n)} } \tag{3.1}\\
= & \frac{1}{\varphi_{1}(n+1) \varphi_{1}(n)}\left\{\left(\varphi_{2}(n+1)-\varphi_{2}(n)\right) \frac{\varphi_{1}(n+1)+\varphi_{1}(n)}{2}\right. \\
& \left.-\left(\varphi_{1}(n+1)-\varphi_{1}(n)\right) \frac{\varphi_{2}(n+1)+\varphi_{2}(n)}{2}\right\} \\
= & \frac{1}{\varphi_{1}(n+1) \varphi_{1}(n)}\left(\nabla \varphi_{2} \varphi_{1}-\varphi_{2} \nabla \varphi_{1}\right)([n, n+1])
\end{align*}
$$

by noting (2.2) and (2.4). Then by using our version of the divergence
theorem (2.6) and $\varphi_{i}(-N-1)=0(i=0,1)$, the above (3.1) becomes

$$
\begin{aligned}
\nabla\left(\frac{\varphi_{2}}{\varphi_{1}}\right) & ([n, n+1])=\frac{1}{\varphi_{1}(n+1) \varphi_{1}(n)} \sum_{k=-N}^{n} \nabla \cdot\left(\nabla \varphi_{2} \varphi_{1}-\varphi_{2} \nabla \varphi_{1}\right)(k) \\
& =\frac{1}{\varphi_{1}(n+1) \varphi \cdot(n)} \sum_{k=-N}^{n}\left(-D^{*} D \varphi_{2} \varphi_{1}+D^{*} D \varphi_{1} \varphi_{2}\right)(k) \\
& =\frac{E_{1}-E_{2}}{\varphi_{1}(n+1) \varphi_{1}(n)} \sum_{k=-N}^{n} \varphi_{1} \varphi_{2}(k) \leq 0
\end{aligned}
$$

So $\left(\varphi_{2} / \varphi_{1}\right)(n)$ is decreasing as n goes from $-N$ to 0 , and by symmetry $\left(\varphi_{2} / \varphi_{1}\right)(n)$ is also decreasing as n goes from 0 to N, which implies $\left(\varphi_{2} / \varphi_{1}\right)^{2}(n)$ is increasing as $|n|$ goes from 0 to N.

Choose the largest integer $a \in(0, N)$ so that $\left(\varphi_{2}^{2} / \varphi_{1}^{2}\right)(a)<1$. By symmetry we get $\left(\varphi_{2}^{2} / \varphi_{1}^{2}\right)(n)<1$ on $[-a, a]$ and $\left(\varphi_{2}^{2} / \varphi_{1}^{2}\right)(n) \geq 1$ on $[-N,-a-1] \cup[a+1, N]$. Since for unit eigenfuctions φ_{2} and φ_{1},

$$
0=\left(\sum_{n=-N}^{-a-1}+\sum_{n=-a}^{a}+\sum_{n=a+1}^{N}\right)\left(\frac{\varphi_{2}^{2}(n)}{\varphi_{1}^{2}(n)}-1\right) \varphi_{1}^{2}(n)
$$

if $W(n)$ is any symmetric function, increasing on $[0, N]$, we know

$$
\begin{aligned}
& \quad \sum_{n=-N}^{N}\left(\frac{\varphi_{2}^{2}(n)}{\varphi_{1}^{2}(n)}-1\right) \varphi_{1}^{2}(n) W(n) \\
& = \\
& \quad \sum_{n=-a}^{a}\left(\frac{\varphi_{2}^{2}(n)}{\varphi_{1}^{2}(n)}-1\right) \varphi_{1}^{2}(n) W(n) \\
& \\
& \quad+\left(\sum_{n=-N}^{-a-1}+\sum_{n=a+1}^{N}\right)\left(\frac{\varphi_{2}^{2}(n)}{\varphi_{1}^{2}(n)}-1\right) \varphi_{1}^{2}(n) W(n) \\
& \geq W(a+1) \sum_{n=-N}^{N}\left(\frac{\varphi_{2}^{2}(n)}{\varphi_{1}^{2}(n)}-1\right) \varphi_{1}^{2}(n)=0,
\end{aligned}
$$

with equality if and only if W is constant. Thus it follows that

$$
\begin{equation*}
\sum_{n=-N}^{N} \varphi_{2}^{2}(n) W(n) \geq \sum_{n=-N}^{N} \varphi_{1}^{2}(n) W(n) \tag{3.2}
\end{equation*}
$$

with equality if and only if W is constant.
Now let $H_{0}(\tau)$ be the operator H_{0} with τV replacing V for $0 \leq \tau \leq 1$, where $V(-n)=V(n)$ and $\nabla V[n, n+1] \geq 0$ for $0 \leq n \leq N$. Let $E_{j}(\tau)$ be the j th eigenvalue for $H_{0}(\tau)$ with unit eigenvector $\varphi_{j}(\tau)$. Then we get

$$
\begin{aligned}
& {\left[E_{j}\left(\tau^{\prime}\right)-E_{j}(\tau)\right] \sum_{n=-N}^{N} \varphi_{j}(\tau) \varphi_{j}\left(\tau^{\prime}\right)(n)} \\
& =\sum_{n=-N}^{N}\left(H_{0}\left(\tau^{\prime}\right) \varphi_{j}\left(\tau^{\prime}\right) \varphi_{j}(\tau)-H_{0}(\tau) \varphi_{j}(\tau) \varphi_{j}\left(\tau^{\prime}\right)\right)(n) \\
& =\sum_{n=-N}^{N}\left(\tau^{\prime} V(n)-\tau V(n)\right) \varphi_{j}(\tau) \varphi_{j}\left(\tau^{\prime}\right)(n)
\end{aligned}
$$

so

$$
\frac{d E_{j}(\tau)}{d \tau}=\sum_{n=-N}^{N} V(n) \varphi_{j}^{2}(\tau)(n)
$$

Thus

$$
\frac{d}{d \tau}\left(E_{2}(\tau)-E_{1}(\tau)\right)=\sum_{n=-N}^{N} V(n)\left(\varphi_{2}^{2}(\tau)-\varphi_{1}^{2}(\tau)\right)(n) \geq 0
$$

by (3.2), with equality if and only if V is constant. Therefore the gap $E_{2}(\tau)-E_{1}(\tau)$ is nondecreasing with τ and we derive

$$
E_{2}(1)-E_{1}(1) \geq E_{2}(0)-E_{1}(0)=2\left[\cos \left(\frac{\pi}{2(N+1)}\right)-\cos \left(\frac{\pi}{N+1}\right)\right]
$$

with equality if and only if V is constant.

References

[A] Agmon, S., Lectures on exponential decay of solutions of second order elliptic equations, Princeton University Press, Princeton, N.J., 1982.
[A-B-1] Ashbaugh, M. S., Benguria, R. D., Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Amer. Math. Soc. 105 (1989), 419-424.
[A-B-2] , Some eigenvalue inequalities for a class of Jacobi matrices, Linear Algebra Appl. 136 (1990), 215-234.
[DOD] Dodziuk, J., Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794.
[F-L] Fernandez, C., Lavine, R., Lower bounds for resonance widths in potential and obstacle scattering, Comm. Math. Phys. 128 (1990), 263-284.
[G] Gantmacher, F. R., Applications of the theory of matrices, Interscience, New York, 1959.
[L] Lavine, R., Spectral density and sojourn times. In: Nuttall, J.(ed.) Atomic scattering theory. London, Ontario (1978), Univ. Western Ontario, 45-61.
[R-S] Reed, M., Simon, B., Methods of modern mathematical physics, vol. IV, Academic Press, New York, 1978.

Appendix

Lemma. Let $H_{0}=D^{*} D+V$ on $[-N, N]$ with $V(-n)=V(n)$. For $i=1,2$, let $H_{0} \varphi_{i}(n)=E_{i} \varphi_{i}(n)$, where E_{1} is the lowest eigenvalue and E_{2}, the next eigenvalue above E_{1} for H_{0}. Then φ_{2} is odd and changes sign only at 0 , so we may choose φ_{2} positive on $[-N,-1]$ and negative on $[1, N]$.

Proof. We may choose $\varphi_{1}(n)>0$ and $\varphi_{1}(-n)=\varphi_{1}(n)$ on $[-N, N]$. This implies φ_{2} changes sign on $[-N, N]$ because $\varphi_{2} \perp \varphi_{1}$. Furthermore, φ_{2} is even or odd, because if $(J \varphi)(n)=\varphi(-n)$ we have $H_{0} J=J H_{0}$, so $H_{0} \varphi=\lambda \varphi$ implies $J \varphi$ is an eigenvector with same eigenvalue and so $J \varphi_{2}=c \varphi_{2}$ and J has eigenvalue 1 or -1 with even or odd eigenvector, respectively.

If φ_{2} is odd, then $\varphi_{2}(0)=0$ and E_{2} is an eigenvalue for $D^{*} D+V$ on $[-N,-1]$ with Dirichlet boundary conditions. Any other eigenvalue of this operator also is an eigenvalue of H_{0} with odd eigenvector. Thus E_{2} must be the lowest eigenvalue of H_{0} on $[-N,-1]$ and φ_{2} may be chosen positive on $[-N,-1]$ and Lemma is proved.

Suppose φ_{2} is even. Then φ_{2} must change sign somewhere between $-N$ and -1 , say at k so that $\varphi_{2}(k) \varphi_{2}(k+1) \leq 0$.

Set

$$
\varphi(j)=\left\{\begin{array}{lll}
\varphi_{2}(j) & \text { for } & j \leq k \\
0 & \text { for } & j>k
\end{array}\right.
$$

Then if E is the lowest eigenvalue with odd eigenvector, i.e., the lowest eigenvalue of the Dirichlet operator on $[-N,-1]$,

$$
\begin{aligned}
E= & \inf _{\substack{\psi(0)=0 \\
\psi(-N-1)=0}}\left\{\frac{\sum_{j=-N}^{-1}[-\psi(j+1)+(2+V(j)) \psi(j)-\psi(j-1)] \psi(j)}{\sum_{j=-N}^{-1} \psi(j)^{2}}\right\} \\
\leq & \frac{\sum_{j=-N}^{-1}[-\varphi(j+1)+(2+V(j)) \varphi(j)-\varphi(j-1)] \varphi(j)}{\sum_{j=-N}^{-1} \varphi(j)^{2}} \\
= & \left\{(2+V(k)) \varphi_{2}(k)^{2}-\varphi_{2}(k-1) \varphi_{2}(k)+\sum_{j=-N}^{k-1}\left[-\varphi_{2}(j+1)\right.\right. \\
& \left.\left.+(2+V(j)) \varphi_{2}(j)-\varphi_{2}(j-1)\right] \varphi_{2}(j)\right\} / \sum_{j=-N}^{k} \varphi_{2}(j)^{2} \\
\leq & \left\{\sum _ { j = - N } ^ { k } \left[-\varphi_{2}(j+1)\right.\right. \\
& \left.\left.+(2+V(j)) \varphi_{2}(j)-\varphi_{2}(j-1)\right] \varphi_{2}(j)\right\} / \sum_{j=-N}^{k} \varphi_{2}(j)^{2} \\
= & E_{2},
\end{aligned}
$$

since $-\varphi_{2}(k) \varphi_{2}(k+1) \geq 0$. This is a contradiction, since E_{2} is supposed to be the next eigenvalue above E_{1} (E_{2} cannot equal E since eigenvalues of H_{0} are simple).

Global Analysis Research Center
Department of Mathematics
Seoul National University
Seoul 151-742, Korea

[^0]: Received May 18, 1993.
 Supported by GARC.

