ON MUTATIONS OF PRIME ASSOCIATIVE ALGEBRAS

Youngso Ko

1. Introduction

Let B be an algebra with multiplication denoted by $x y$ over a field F of characteristic $\neq 2$. Associated with B are an anticommutative algebra B^{-}and a commutative algebra B^{+}which are defined on the same vector space as B but with multiplications respectively given by anticommutative product $[x, y]=x y-y x$ and commutative product $x \circ y=\frac{1}{2}(x y+y x)$. Two well known anticommutative and commutative algebras are Lie and Jordan algebras which have a long standing history of applications to physics.

An algebra B is called Lie-admissible if the associated algebra B^{-}is a Lie algebra; that is B^{-}satisfies the Jacobi identity

$$
[[x, y], z]+[[y, z], x]+[[z, x], y]=0 .
$$

Similarly, B is termed Jordan-admissible if B^{+}becomes a Jordan algebra; that is

$$
[(x \circ x) \circ y] \circ x=(x \circ x) \circ(y \circ x) .
$$

The well-known examples of Lie-admissible algebras are the associative algebras and Lie algebras, and the associative algebras and Jordan algebras are Jordan-admissible.

Let A be an associative algebra with multiplication $x y$ over a field F. Let p, q be two fixed elements in A, and let $A(p, q)$ denote the algebra with multiplication

$$
x * y=x p y-y q x
$$

defined on the vector space A. The resulting algebra has been called the (p, q)-mutation of A. For a fixed element $r \in A$, denote $A^{(r)}$ to be

[^0]the algebra with multiplication $x_{(r)} y=x r y$, but with the same vector space as A. The algebra $A^{(r)}$ is called the r-homotope of A and it is clear that $A^{(r)}$ is also associative. A straightforward calculation shows that $A(p, q)^{-}=\left\{A^{(p+q)}\right\}^{-}$and $A(p, q)^{+}=\left\{A^{(p-q)}\right\}^{+}$. Hence any mutation algebra of an associative algebra is also Lie and Jordan-admissible. The structure of $A(p, q)$ has been investigated by a number of authors $[4,5$, 6].

By a derivation of A we mean a linear map $\delta: A \rightarrow A$ satisfying $\delta(x y)=x \delta(y)+\delta(x) y$, and denote by Der A the set of derivations of A.

An algebra B is called prime if the product of any two nonzero ideals of B is nonzero. It can be shown that B is prime if and only if $x B y=(0)$ implies $x=0$ or $y=0[3]$.

In this paper we discuss derivations of $A(p, q)$ when $A(p, q)$ is prime and $p, q \in A$ satisfy the condition $A=A p+A q+R$ where R is a subspace of $Z(A)$. Also we investigate isomorphisms of $A(p, q)$ to $B(a, b)$ when $B(a, b)$ is prime and $p, q \in A$ satisfy the above condition.

2. Derivations of mutation algebras

The derivations of $A(p, q)$ have been studied in [2], for the case where $A(p, q)$ is prime and $p, q \in A$ satisfy the condition $A=A p+A q$. We discuss the derivations of $A(p, q)$ when $p, q \in A$ satisfy the condition $A=A p+A q+R$, where R is a subspace contained in the center $Z(A)$ of A. First, investigating derivations of $A^{(p)}$, we have the following:

Theorem 1. Let A be a prime associative algebra with 1 over F of characteristic $\neq 2$, and p be a fixed element of A satisfying the condition $A=A p+R$, where R is a subspace of the center $Z(A)$ of A. Then a linear map $\delta: A \rightarrow A$ with $\delta(1)=\delta(p)=0$, is a derivation of $A^{(p)}$ if and only if δ is a derivation of A.

Proof. Suppose that $\delta \in \operatorname{Der} A$ with $\delta(p)=0$, then

$$
\delta(x p y)=\delta(x) p y+x \delta(p) y+x p \delta(y)=\delta(x) p y+x p \delta(y)
$$

and this means that $\delta \in \operatorname{Der} A^{(p)}$.
Conversely, assume that $\delta \in \operatorname{Der} A^{(p)}$ with $\delta(p)=\delta(1)=0$. For $x, y \in$ A, let $x=u p+r$ where $r \in R$. Then $\delta(x)=\delta(u p 1)+\delta(r)=\delta(u) p+\delta(r)$
and $\delta(r)$ satisfies $[\delta(r), p]=0$. Thus

$$
\begin{equation*}
\delta(x y)=\delta(u p y+r y)=\delta(u) p y+u p \delta(y)+\delta(r y) . \tag{2.1}
\end{equation*}
$$

Since

$$
\begin{aligned}
& p \delta(r y)=1 p \delta(r y)=\delta(p r y)=\delta(r p y) \quad \text { and } \\
& p\{\delta(r y)-\delta(r) y-r \delta(y)\}=\delta(r p y)-\delta(r) p y-r p \delta(y)=0,
\end{aligned}
$$

for any $z=v p+s \in A$, where $s \in R$, we have

$$
\begin{aligned}
p z\{\delta(r y)-\delta(r) y-r \delta(y)\}= & p(v p+s)\{\delta(r y)-\delta(r) y-r \delta(y)\} \\
= & p v p\{\delta(r y)-\delta(r) y-r \delta(y)\} \\
& +s p\{\delta(r y)-\delta(r) y-r \delta(y)\}=0 .
\end{aligned}
$$

Thus $p A\{\delta(r y)-\delta(r) y-r \delta(y)\}=0$. We may assume $p \neq 0$, which, by primeness of A, implies $\delta(r y)=\delta(r) y+r \delta(y)$. Hence from (2.1)

$$
\begin{aligned}
\delta(x y) & =\delta(u) p y+u p \delta(y)+\delta(r) y+r \delta(y) \\
& =\delta(x) y+x \delta(y),
\end{aligned}
$$

which means $\delta \in \operatorname{Der} A$.
For $x \in A$, let R_{x} denote the right multiplication in A by x. For the case where p satisfies the condition $A=A p$, we have:

Theorem 2. Let A be a prime associative algebra with 1 and p be a fixed element of A satisfying the condition $A=A p$. Let $\delta: A \rightarrow A$ be a linear map. Then $\delta \in \operatorname{Der} A^{(p)}$ if and only if $\delta-R_{\delta(1)} \in \operatorname{Der} A$ and $\delta(p)=\delta(1) p+p \delta(1)$.

Proof. Suppose $\delta \in \operatorname{Der} A^{(p)}$ and $x=u p$, then $\delta(x)=\delta(u p 1)=$ $\delta(u) p+u p \delta(1)=\delta(u) p+x \delta(1)$. Hence $\left(\delta-R_{\delta(1)}\right)(x y)=\delta(u p y)-$ $x y \delta(1)=\delta(u) p y+u p \delta(y)-x y \delta(1)=(\delta(x)-x \delta(1)) y+x \delta(y)-x y \delta(1)=$ $\left(\delta-R_{\delta(1)}\right)(x) \dot{y}+x\left(\delta-R_{\delta(1)}\right)(y)$. Thus $\delta-R_{\delta(1)} \in \operatorname{Der} A$, and clearly $\delta(p)=\delta(1 p 1)=\delta(1) p+p \delta(1)$.

Conversely, if $\delta-R_{\delta(1)} \in \operatorname{Der} A$ and $\delta(p)=\delta(1) p+p \delta(1)$, then $\left(\delta-R_{\delta(1)}\right)(p)=\delta(p)-p \delta(1)=\delta(1) p$. Hence $\delta(x p y)=\left(\delta-R_{\delta(1)}\right)(x p y)+$ $x p y \delta(1)=\left(\delta-R_{\delta(1)}\right)(x) p y+x\left(\delta-R_{\delta(1)}\right)(p) y+x p\left(\delta-R_{\delta(1)}\right)(y)+$ $x p y \delta(1)=\delta(x) p y-x \delta(1) p y+x \delta(1) p y+x p \delta(y)=\delta(x) p y+x p \delta(y)$.

In [2], it is proved that if A is not commutative and $A(p, q)$ is prime for $p \neq q$, then $\delta \in \operatorname{Der} A(p, q)$ implies $\delta \in \operatorname{Der} A^{(p)}$ and $\delta \in \operatorname{Der} A^{(q)}$. From this result we have:

Theorem 3. Assume that A is an associative not commutative algebra with 1 and $p \neq q$ are fixed elements of A such that $A=A p+A q+R$ where $R \subset Z(A)$ and $A(p, q)$ is prime.

Then a linear map $\delta: A \rightarrow A$ with $\delta(p)=\delta(q)=\delta(1)=0$ is a derivation of $A(p, q)$ if and only if δ is a derivation of A.

Proof. Suppose that $\delta \in \operatorname{Der} A(p, q)$. Since $A(p, q)$ is prime and A is not commutative, from [2; Proposition 5.3] $\delta \in \operatorname{Der} A^{(p)}$ and $\delta \in$ Der $A^{(q)}$.

Let $x, y \in A$ and $x=u p+v q+r, r \in R$. Then

$$
\begin{align*}
\delta(x y) & =\delta\{(u p+v q+r) y\} \tag{2.2}\\
& =\delta(u) p y+u p \delta(y)+\delta(v) q y+v q \delta(y)+\delta(r y) .
\end{align*}
$$

Since $\delta \in \operatorname{Der} A^{(p)}$ and $\delta \in \operatorname{Der} A^{(q)}$, we have $p\{\delta(r y)-\delta(r) y-r \delta(y)\}=0$ and $q\{\delta(r y)-\delta(r) y-r \delta(y)\}=0$. Hence for $z=w_{1} p+w_{2} q+t, t \in R$, $p z\{\delta(r y)-\delta(r) y-r \delta(y)\}=0$. That is, $p A\{\delta(r y)-\delta(r) y-r \delta(y)\}=0$. Primeness of $A(p, q)$ implies that A is prime [1; Theorem 2.5]. Assuming that $p \neq 0$, we get $\delta(r y)=\delta(r) y+r \delta(y)$. Hence from (2.2)

$$
\begin{aligned}
\delta(x y) & =\delta(u) p y+\delta(v) q y+\delta(r) y+u p \delta(y)+v q \delta(y)+r \delta(y) \\
& =\delta(x) y+x \delta(y),
\end{aligned}
$$

and therefore, $\delta \in \operatorname{Der} A$.
Conversely, if $\delta \in \operatorname{Der} A$ with $\delta(p)=\delta(q)=0$, then $\delta \in \operatorname{Der} A^{(p)}$ and $\delta \in \operatorname{Der} A^{(q)}$, and hence $\delta \in \operatorname{Der} A(p, q)$.

If p, q be invertible in A, then $A=A p+A q$ and Osborn showed that $A(p, q)$ is prime if and only if A is prime [7; Theorem 3.1]. Hence we have:

Corollary 4. Assume that A is a non-commutative prime associative algebra with 1 and $p \neq q$ are invertible in A. Then a linear map $\delta: A \rightarrow A$ with $\delta(p)=\delta(q)=\delta(1)=0$ is a derivation of $A(p, q)$ if and only if δ is a derivation of A.

For the case when $p, q \in A$ satisfy the condition $A=A p+A q$ and $A(p, q)$ is prime, it was proved that $\delta \in \operatorname{Der} A(p, q)$ is expressed as $\delta=$ $\delta_{0}+R_{a}$ for some $\delta_{0} \in \operatorname{Der} A$ and $a=\delta(1)$ [2; Theorem 5.1].

3. Isomorphisms of mutation algebras

Isomorphisms of $A(p, q)$ to $B(a, b)$ were determined in terms of isomorphisms or anti-isomorphisms of A to B when B is prime with 1 and (a, b) is normal in B, that is $B=a B+b B=B a+B b$. In this section, we investigate a similar problem under the conditions that $A=A p+A q+R$ and $B(a, b)$ is prime, where R is a subspace of $Z(A)$. The following is our main result in this section.

Theorem 5. Assume that A, B are associative algebras with unity 1 and $p, q \in A,(p \neq q), a, b \in B,(a \neq b)$, are fixed elements such that $A=A p+A q+R$ where $R \subset Z(A)$ and $B(a, b)$ is prime. If $\varphi: A(p, q) \rightarrow$ $B(a, b)$ is an isomorphism with $\varphi(1)=1$, then φ is an isomorphism or an anti-isomorphism of A to B.

Proof. If B is not commutative, then by [2; Theorem 3.2], φ satisfies

$$
\begin{equation*}
\varphi(x p y)=\varphi(x) a \varphi(y) \text { and } \varphi(x q y)=\varphi(x) b \varphi(y) \text { for all } x, y \in A \tag{3.1}
\end{equation*}
$$

or
(3.2) $\varphi(x p y)=-\varphi(y) b \varphi(x)$ and $\varphi(x q y)=-\varphi(y) a \varphi(x)$ for all $x, y \in A$.

If $x=u p+v q+r$ with $r \in R$, then $\varphi(x)=\varphi(u) a+\varphi(v) b+\varphi(r)$. Assume φ satisfies (3.1). Then for any $y \in A$

$$
\begin{align*}
\varphi(x y) & =\varphi(u p y+v q y+r y) \tag{3.3}\\
& =\varphi(u) a \varphi(y)+\varphi(v) b \varphi(y)+\varphi(r y)
\end{align*}
$$

Since $[\varphi(r), a]=0$ and $[\varphi(r), b]=0, a\{\varphi(r y)-\varphi(r) \varphi(y)\}=\varphi(r p y)-$ $\varphi(r) a \varphi(y)=0$ and $b\{\varphi(r y)-\varphi(r) \varphi(y)\}=0$. For $z \in B$, then there exists $c=w p+s q+t, t \in R$, with $\varphi(c)=z$. Hence $a z\{\varphi(r y)-\varphi(r) \varphi(y)\}=$ $a\{\varphi(w) a+\varphi(s) b+\varphi(t)\}\{\varphi(r y)-\varphi(r) \varphi(y)\}=0$. Primeness of $B(a, b)$ means that B is prime, and assuming that $a \neq 0$, we obtain $\varphi(r y)=$ $\varphi(r) \varphi(y)$. From (3.3), it follows that $\varphi(x y)=\varphi(x) \varphi(y)$.

If φ satisfy (3.2) then

$$
\begin{align*}
\varphi(x y) & =\varphi(u p y+v q y+r y) \tag{3.4}\\
& =-\varphi(y) b \varphi(u)-\varphi(y) a \varphi(v)+\varphi(r y)
\end{align*}
$$

From (3.2) $\{\varphi(r y)-\varphi(y) \varphi(r)\} b=-\varphi(p r y)+\varphi(r p y)=0$ and $\{\varphi(r y)-$ $\varphi(y) \varphi(r)\} a=-\varphi(r q y)+\varphi(r q y)=0$. Thus, for $z \in B,\{\varphi(r y)-$ $\varphi(y) \varphi(r)\} z a=\{\varphi(r y)-\varphi(y) \varphi(r)\}\{-b \varphi(w)-a \varphi(s)+\varphi(t)\} a=0$. Assuming that $a \neq 0, \varphi(r y)=\varphi(y) \varphi(r)$. By (3.4) we have $\varphi(x y)=\varphi(y) \varphi(x)$, which means φ is an anti-isomorphism of A to B.

Finally, if B is commutative, then by [2; Proposition 3.8] A is also commutative and φ is an isomorphism of $A^{(p-q)}$ to $B^{(a-b)}$. Thus for $x, y \in A$,

$$
\begin{aligned}
\varphi(x) \varphi(y)(a-b)=\varphi(x)(a-b) \varphi(y) & =\varphi(x(p-q) y) \\
& =\varphi(x y(p-q) 1)=\varphi(x y)(a-b) .
\end{aligned}
$$

Because B is prime, commutative and $a-b \neq 0$, we have $\varphi(x y)=$ $\varphi(x) \varphi(y)$ for all $x, y \in A$.

References

1. A. Eldugue and F. Montaner, On mutations of associative algebras, J. Korean Math. Soc. 28 (1991), 143-156.
2. A. Elduque, F. Montaner and H. C. Myung, Automorphisms and derivations in a class of Jordan and Malcev admissible algebras, Nova J. of Algebra and Geometry 2 (1993), to appear.
3. I. N. Herstein, Topics in Ring Theory, University of Chicago Press, 1969.
4. H. C. Myung, The exponentiation and deformations of Lie-admissible algebras, Hadronic J. 5 (1982), 771-903.
5. H.C. Myung and A. A. Sagle, On Eie-admissible mutations of associative atigebras, Hadronic J. 10 (1987), 35-51.
6. R. H. Oehmke, Some elementary structure theorems for a class of Lie-admissible algebras, Hadronic J. 3 (1979), 293-319.
7. J. M. Osborn, The Lie-admissible mutation $A(r, s)$ of an associative algebra A, Hadronic J. 5 (1982), 904-930.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

[^0]: Received June 12, 1992. Revised August 30, 1993.
 Supported in part by the Ministry of Education, grant no. BSRIP 93-104.

