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ASYMPTOTIC GRADE SCHEME AND
GRADE FUNCTION ON MODULES

SUNG HuN ANN

1. Introduction

R will always be a commutative Noetherian ring, I will be an ideal of
R and M will be a finitely generated R-module unless otherwise stated.
We denote by R the Rees ring R[u, It] of R with respect to I, where ¢
is an indeterminate and u = t~!. Similarly, we will denote by M the
graded R-module M[u,It] = @ I"M. It is finitely generated over R.

n>0
If (R, P) is a local ring, then R* will be the P-adic completion of R and
M* will be the completion of M with respect to the P-adic filtration
{P*M}.>0. In particular, we will denote by R} and Mp the Pp-adic
completion of Rp and Mp, respectively, where Rp, Pp and Mp are
localizations of R, P and M at P, respectively.

In 1976, L. J. Ratliff Jr. in [7], showed that if I is an ideal of a Noe-
therian ring R with ht(I) > 1 then the sets Assp(R/(I™),) are equal
for all large n, where I, is the integral closure of I and Assp(M) is
the set of all associate primes of M. Note that later he showed that
the assumption that ht(I) > 1 is not necessary. We denote this set by
A*(I,R),ie., A*(I,R) = Assp(R/(I™),) = AssR(R/(I""’l) )=--- for

all large n. It was shown in [7] that A*(I,R) C U Assp(R/I™). The

question of when the sets Assp(R/I™) are equal for all large n was left
open. This was settled in 1979, by M.Brodmann, in [2], even without the
assumption that h#(I) > 1. He showed that if I is an ideal of a Noether-
ian ring R and M is a finitely generated R-module, then the sequences
{Assp(M/I"M)}nen and {Assp(I"M[I"tIM)},en of sets of prime
ideals of R are eventually constant. We denote these sets by A*(I, M)
and B*(I, M), respectively. He also showed that A*(I, M) # B*(I, M).
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It is also known that neither A*(I, M) nor B*(I, M) is monotone. For
counterexamples, see [2] and [[4], page 2].

Since then these results have led to a large body of recent research.
In particular, the author, in [1], studied various questions related to
sets of prime ideals associated to powers of an ideal and a module
over a Noetherian ring. It was shown that the relationship of the sets
AX(I,M),A*(I,M), Q*(I,M),Q(I, M) and E(I, M) for rings have valid
analogues for modules and that all these sets are finite.

On the other hand, S. McAdam, in [3], introduced and studied grade
schemes and grade functions in the abstract. He gave a characterization
of grade functions. In the same paper, he showed the existence of the
canonical grade scheme for a certain grade function.

In section 2, we give a generalization of the grade schemes and grade
functions for rings to essentially finite modules. Most of these results
concerning such functions for rings which were shown in [3] also hold
for essentially finite R-modules. Numerous such results could be men-
tioned here, but instead we refer the reader to [3]. However, we state a
characterization of of grade functions.

In section 3, we define counterparts for modules of asymptotic (resp.
essential) sequences, and asymptotic (resp. essential) grades. In theo-
rems 3.9 and 3.10, it is shown that all maximal asymptotic (resp. essen-
tial ) sequences have the same length. Finally, in theorem 3.13, we also
give an explicit expression of the canonical grade scheme of asymptotic

grade functions on modyles.

2. Grade Schemes and Grade Functions

In this section, we give a generalization of the grade schemes and
grade functions for rings to essentially finite modules. In theorem 2.10,
we give a characterization of grade functions. All the proofs given in [3]
can be easily carried over to modules, so that we omit them.

We begin this section by defining essentially finite modules.

DEFINITION 2.1. Let R be a Noetherian ring. An R-module M is
said to be essentially finite if M is a finitely generated Rs—module for
some multiplicatively closed subset S of R.

We note that every finitely generated R-module is an essentially finite
R-module. We will denote by M a set of all essentially finite R~modules
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such that if M € M and T is a multiplicative subset of R then M1 € M.
Let Z be the set of all ideals of R.

We have the following easy observations concerning the above defini-
tion.

LEMMA 2.2. Let R be a Noetherian ring and M an essentially finite
module; Say M is a finite Rg—module for some multiplicatively closed
subset S of R.

(1) For any s € S, the homomorphism ¢, : M — M defined by
¢s(z) = sz, for any x € M, is a bijection.

(2) If IM # M then M/IM is S—torsion free and IS = 0.

(3) If P € Supp(M) and P(\S =0 then PMp # Mp.

Proof. This is straight forward.

DEFINITION 2.3. A function Ag : T x M — Spec(R) is said to be
a proto—grade scheme on M if, for each (I, M) € T x M,

(1) Ag(I, M) is a finite subset of Supp(M/IM).

(2) Ag(I,M) =49 if and only if IM = M.

(3) If T is a multiplicatively closed subset of R then

Ap(I,Mg) = {P € Ap(I,M): P[|T = #}.

In the case that MM is the set of all localizations of some essentially
finite R-module M, we will say that Ar(, ) is a proto—grade scheme on
M instead MM . In this case, a proto-grade scheme Ag( , ) is a function
from T x MM into the class of all finite subsets of Suppr(M).

REMARK 2.4. If Ar(, ) is a proto-grade scheme on M and T is a
multiplicatively closed subset of R, then we have an induced proto-grade
scheme Ag,(, )on Mr={M € M : M is an Rr—-module} defined by
ART(IT,M) = {PRT :Pe AR(I, M)}

LEMMA 2.5. Let M € M,I € T and T be a multiplicatively closed
subset of R, then

ART(IT,MT) = {PRT :Pe¢ AR(I, MT)}
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Proof. 1t is clear that {PRz : P € Ar(I,M7)} C AR (I, Mr). Let
Q € Ap,.(Ir,Mr). Then there exists a prime P € Ag(I, M) such that
Q = PRr. It is clear that P(\T = 0. Hence P € Ar(I,Mr).

We will denote Ar(I, M) by A(I, M) and Suppr(M) by Supp(M) to
simplify the notations unless we want to emphasize its dependence on
R.

DEFINITION 2.6. Let A( , ) be a proto—grade scheme on M and let
M € M. A sequence of elements z,,...,x, of R is said to be an avoiding
sequence for A on M if

(1) (z1,---y2n)M # M.
(2) For eachz =1,2,...,n,

z: ¢ | J{P: P € A((z1,...,2i-1)R, M)}.

In definition 2.6, we will consider the empty sequence as an avoiding
sequence for A and the ideal generated by the empty sequence is the zero
ideal of R.

We now state definitions of grade schemes and grade functions which
will be considered in this paper.

DEFINITION 2.7. Let A be proto—grade scheme on M.

(1) Let M € M. Then an avoding sequence z,,...,z, contained in
I is said to be a maximal avoiding sequence for A in F on M if

IC| J{P: P€ A((z1,-.,24)R, M)}.

(2) I, for each (I, M) € T x M, all maximal avoiding sequences for
A in I on M have the same length then A is said to be a grade
scheme on M and we will call an avoiding sequence for A on M
an A-sequence on M.

(3) Let A be a grade scheme on M and let f(I, M) be the length
of a maximal A-sequence in I on M, for any (I,M) € T x M.
Then f( , ) is said to be the grade function of A.

(4) ¥ f(, ) is the grade function of some grade scheme on M, then
it is said to be a grade function on M.
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DEFINITION 2.8. Let A and B be grade schemes on M. Then
We write A C B if A(I, M) C B(I,M) for any (I, M) € T x M.

We note that almost all the results regarding above definitions which
were shown in [3] hold for modules. The proofs for modules are essen-
tially the same as those for rings, so that we omit them. We refer the
reader who are interested in to [3]. However, we now state the results
which are considered in this paper.

DEFINITION 2.9. Let @ € Spec(R) and U be an infinite subset of
Spec(R) such that for each P € U, @ C P. If for any infinite subset V
of U, we have (}{P : P € V} = Q then (Q, U) is said to be a conforming

pair.

DEFINITION 2.10. For a given nonnegative integer valued function f,
we say that f satisfies condition (#) if f satisfies the following conditions
(1) f(I,M) = min{f(P, Mp) : P € Supp(M/IM)}.
(2) f(P,Mp) < dim(Mp) for all P € Supp(M).
(3) ¥(Q,U) is a conforming pair and if f(P,Mp)<nforal Pe€ U
then f(Q,Mg) <n-1.

THEOREM 2.11 (CHARACTERIZATION OF GRADE FUNCTIONS). Let
M € M and let f be a nononegative integer valued function defined
onZ x M. Then f is a grade function on M if and only ifit satisfies
the condition (#) . In this case, A¢(I,M) = {P € Supp(M/IM) :
f(I,Mp) = f(P,Mp)} defined on T x M is a grade scheme on M.

Proof. This is similar to the proof of [[3], theorem(2.4)].

DEFINITION 2.12. If f be a grade function on M then Ay is said to
be the canonical grade scheme of f on M.

3. Asymptotic and Essential Grades on Modules

In this section, we define asymptotic (resp.essential) sequences, and
asymptotic (resp. essential) grades on modules. we note that all results
concerning asymptotic (resp. essential) sequences, and asymptotic (resp.
essential) grades for rings have valid analogues for modules. This is
expected from propositions 3.3 and 3.4. Numerous other results could
be mentioned here but instead we refer to [1].
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DEFINITION 3.1. Let R be a commutative noetherian ring with unity
and I an ideal of R Let M be a finitely generated R-module.

(1) Q*(I,M) = {P € Spec(R); there exist a prime ¢ minimal in
Suppps, (Mp) with PR}p minimal over IR} + ¢}

(2) A*(I,M)={P: P =Qn R for some Q € Q*(uR,M)}

(3) Q(I, M) = {P € Spec(R): there exists a prime ¢ € Asspy,(Mp)
with Pp minimal over IR} + ¢}

4) E(I, M) ={P: P=QnNR for some @ € Q(uR,M)}

LEMMA 3.2. Let A(I,M) represent any one of the above. Let S be
a multiplicatively closed subset of R disjoint from the prime P. Then

P € A(I, M) if and only if Ps € A(Is, Ms)

Proof. This is straight forward.

The following propositions were proved in [1]. We refer to [1] for a
proof.

PROPOSITION 3.3. Let R be a commutative noetherian ring with
unity and I an ideal of R Let M be a finitely generated R-module.
(1) P € Q(I,M) (resp. E(I,M)) if and only if there exists
g € Assp(M) with ¢ C P and P/q € Q(I +q/q,R/q) (resp.
E(I+4/q,R[q)).
(2) P €Q*(I, M) (resp. A*(I, M)) if and oaly if there exists a prime
q minimal in Suppr(M) with ¢ C P and

P/q € Q*(I +q/q, R/q)(resp. A*(I+q/q,R/q)).

PROPOSITION 3.4. Let A(I, M) denote any of Q*(I, M), A*(I, M),
A*(I,M), Q(I,M) or E(I,M). Let ® : R — T be a faithfully flat ring
homomorphism.

(1) Q€ AIT,M@RxT), then QR € A*(I,M).

(2) P € A(I,M) and Q is a minimal prime ideal over PT, then

Qe AUT,MQT).
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PROPOSITION 3.5. Let R be a commutative noetherian ring with
unity and I an ideal of R Let M be a finitely generated R-module. Then

E(I, M) C A*(I, M)

THEOREM 3.6. Let R be a commutative noetherian ring with unity
and I an ideal of R Let M be a finitely generated R-module. Then the
following hold.

(1) Q*(I, M) C Q(I, M)(NA*(I, M)
(2) QU, M) A*(I,M) C E(I,M) C A*(I,M)
(3) The sets Q*(I, M), A*(I,M),Q(I, M) and E(I, M) are finite.

Proof. This follows from definition 3.1, proposition 3.3, 3.4 and 3.5
and those results known for rings.

We now define asymptotic (resp. essential ) sequences on modules.

DEFINITION 3.7. The sequence of elements x4, z3,... ,z, of R is said
to be an asymptotic (respectively, essential) sequence on M if
(1) (ml""axn)M#M _
(2) For : = 1,...,nz; & U{p : p €A*((z1,...,7i-1)R, M)}
( respectively, z; € | J{p: p € E((z1,...,zi-1)R,M)})

LEMMA 3.8. Let R be a local ring and M a finitely generated R-
module. Let zy,...,z, € R such that (z;,...,2,)M # M.

(1) z4,...,z, is an asymptotic sequence on M if and only if for each
minimal prime q € Supp(M*), (z1,...,2n)R* + q/q is an ideal
of the principal class in R*/q.

(2) z1,...,z, is an essential sequence on M if and only if for each
prime ¢ € Assps(M*), (z1,...,z,)R* + g/q is an ideal of the
principal class in R*[q.

Proof. Let z;,...,z, be an asymptotic sequence on M. It follows
from propositions 3.3 and 3.4 that z; + ¢,...,z, + ¢ is an asymptotic
sequence on R*/q. Hence ht((z1,...,zn)R* + ¢/q) = n. Conversely, by
[lemma(5.3) in [4]], z1 +4q, ..., T, +¢ is an asymptotic sequence on R*/q.
Hence z,,...,z, is an asymptotic sequence on M.

A proof of (2) is analogous to the proof of (1)

The following two theorems show that all maximal asymptotic (resp.
essential) sequences have the same length.
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THEOREM 3.9. Let R be a semi-local ring and M a finitely generated
R-module. Then the following are equal.

(1) The length of any maximal asymptotic sequence in I on M.
(2) ml;n{ht(IR}‘; + ¢q/q); P € Spec(R) with I C P and ¢ a minimal

prime in Supp(M}p)}.
(3) ngn{dim(M}",); P € Spec(R) with I C P}.

Proof. Let z,,...,z, be a maximal asymptotic sequence in I on
M. Let P € Spec(R) with I C P. Then for any minimal prime
q € Supp(Mp) ht((1,...,2n)Rp +4/q) = n. Hence ht{(IRp +q/q) 2 n.
This shows that (No. in (2)) > (No. in (1)). It is also clear that
(No. in (3)) > (No in (2)). To complete the proof it suffices to
show that (No. in (1)) > (No. in (3)). Let z,...,z, be a maxi-
mal asymptotic sequence in I on M. Then there exists a prime ideal
Q € A*((z1,...,7)R, M) such that I C Q. By proposition 3.4 and
lemma 3.2 Q@ € A*((z3,..., zn)Ry, M§). There exists a minimal prime
g € Supp(Mg) such that Qole € A*((zy,-.. ,n)Ry+4/q, RH/g). Since

0/4 is quasi-unmixed local and z; +g¢,.. .,z + ¢ is an asymptotic se-
quence on R /g, by [lemma(3.3) in [5]] n = ht(Q5/q) = dim(Mp).
Therefore (No. in(3)) < (No. in (1)).

THEOREM 3.10. Let R be a semi-local ring and M a finitely gener-
ated R-module. Then the following are equal.

(1) The length of any maximal essential sequence in I on M.

(2) mJn{ht(IR + g/q); for any P € Spec(R) with I C P and for
any prime q € Assps (Mp)}.

(3) mgn{dim(R;,/q);P € Spec(R) with I C P and a prime q €
Assps (M)}

Proof. Let z4,-..,z, be a maximal essential sequence in I on M. Let

P € Spec(R) with I C P. Then for any q € Assgs,(Mp) ht((z1,...,%n)
P + ¢/q) = n. Hence ht(IRp + q/q) > n and this shows that (No. in
(2))>(No. in (1)). It is also clear that (No. in (3))>(No. in (2)).
To complete the proof it suffices to show that (No. in (1))>(No. in
(3)). Let z3,...,z, be a maximal essential sequence in I on M. Then
there exists a prime ideal @ € E((z1,...,zs)R, M) such that I C Q.
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By proposition 3.4 and lemma 3.2 Qg € E(z,...,z,)Rg,M3). By
proposition 3.3 there exists a prime ideal ¢ € Assgy, (Mg) such that
Q%/q € E((z1,...,z2)Ry + q/q,Ry/q)- Since R /q is unmixed local
domain and x; + ¢,...,Zn + ¢ 1s an essential sequence on Ra/q, by
[lemma(3.3) in [5]], n = ht(Qg/q) = dim(Ry/q). Therefore (No. in
(1))>(No. in (3)).

We are now ready to give the definitions of asymptotic and essential
grades on modules.

DEFINITION 3.11. Let I be an ideal of R. The asymptotic ( respec-
tively, essential ) grade of I on M is the length of a maximal asymptotic
( respectively, essential) sequence in I on M and we will denote this by
agr(I, M) ( respectively, egr(I, M)).

We showed in theorem 3.9 and 3.10 that all maximal asymptotic
(resp. essential) sequences have the same length so that agr(I, M) and
egr(I, M) are well defined.

LEMMA 3.12. Let R and M be as in theorem 3.9 and let I be an
ideal of R with IM # M. Then a regular sequence in I on M is an
essential sequence in I on M and an essential sequence in I on M is an
asymptotic sequence in I on M. In particular, gr(I,M) < egr(I,M) <
agr(I, M) < hi(I + g/q) for any minimal prime q € Supp(M).

Proof. By theorem 3.6 A*(I, M) C E(I,M) C A*(I,M). It is clear
that agr(I, M) < ht(I + q/q). Hence, the lemma follows from these.

We now closed this section with stating some examples of grade
schemes and grade functions on modules and with identifying the canon-
ical grade scheme A; when f is the asymptotic grade function on M.
The essential case is analogous to the asymptotic case.

EXAMPLE. Let R be a Noetherian ring and M a finitely generated
R-module.

(1) Let Ay(I,M) = Assp(M/IM). Then A;:(I,M) is the grade
scheme on M, the A;-sequences are regular sequences on M and
the grade function f;(I, M) is classical grade.

(2) Let Ap(I, M) = A*(I, M) = Assp(M/(I"M)) for all large n. It
is known that in general, Assp(M/IM) and Assp(M/(I"M))
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are not comparable. But if I is generated by a R—-sequence then
Assp(M/IM) = Assp(M/(I"M)) for any n > 1.

In this case A;(I,M) = Ax(I,M) and f1(I,M) = f,(I,M).

(3) Let A3(I,M) = A*(I,M). Then Az-sequences are asymptotic
sequences on M and the grade function f3(I, M) is asymptotic
grade.

(4) Let A4(I,M) = E(I,M). Then A —sequences are essential se-
quences on M and the grade furiction fy(I, M) is essential grade.

(5) Let

As(I,M) = {P € Spec(R) : P is minimal in Supp(M/IM)}
Then fs(I, M) = ht((I + (0:5 M))/(0:p M)).

THEOREM 3.13. Let M be a finitely generated R—module and let f be
asymptotic grade function on M. Then P € A¢(I, M) if and only if, for
each minimal prime ¢ € Supp(M}), ht((IR}+q)/q) > min{dim(R}/p) :
p minimal in Supp(M3)}. In particular, Af(I, M) C A*(I,M).

Proof. By theorem 3.9, f(P,Mp) = min{dim(Rp/p) : p minimal
in Supp(M3)} and f(I,Mp) = min{ht((IR} + ¢)/q) : ¢ minimal in
Supp(Mp)}. Hence the first assertion follows. To show that Ag(I, M) C
A*(I,M),let ¢ be a minimal prime in Supp(M3}) such that dJm(R /9) =
f(P,Mp). ¥ P € Af(I, M), then by the above, ht((IR} + 9)/q) =
dim(R}%/q) = ht(Pp/q). Hence Pj is minimal over IR} + g. Hence
Pe A*(I, M).
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