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PROPERTIES OF LATTICES PRESERVED

BY TAKING RECTANGULAR PRODUCTS

DEOK RAK BAE

A lattice is called bounded if it has both the least element and the
largest element which are usually denoted by °and 1, respectively. Re
cently, Bennett [4] defined the rectangular product of two bounded lat
tices L and M, denoted by LoM, to be the set

{(x,y)lx E L,y E M, x # O,y #= O} U {(O,O)}

with the order induced from the direct product L X M, which is also a
bounded lattice.

It follows immediately from the definition of the rectangular product
that all joins and nonzero meets agree in both LoM and L x M. Hence
any equation which is satisfied by L x M will be satisfied in sublat
tices of LoM which do not contain (0,0). Our intent here is to discuss
some properties of given bounded lattices preserved under the rectan
gular product construction. We assume throughout this paper that all
lattices are bounded.

Neither modularity nor distributivity is preserved by taking rectan
gular products. Here we list some of known results from Bennett [4].
We call a lattice atomic when every nonzero element is the join of the
atoms below it.

THEOREM A. Completeness and atomicity are preserved by taking
rectangular product.

A lattice in which each element has one and only one complement is
called uniquely complemented.
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THEOREM B. The rectangular product of two lattices is uniquely
complemented ifand only ifone of the factors is uniquely complemented
and the other is isomorphic to 2.

An atomic lattice L is said to be biatomic if whenever a and b are
nonzero elements and p is an atom in L with p ::; a V b, there are atoms
al ::; a and b1 ::; b with p ::; al V b1 •

THEOREM C. The rectangular product of lattices L1 and L2 is bi
atomic if and only if both L1 and L2 are.

We say that (a, b) is a modular pair in a lattice L if x ::; b implies that
x V (a 1\ b) = (x V a) 1\ b for any x E L. The lattice L is called weakly
modular if a 1\ b =f:. 0 implies that a and b form a modular pair for any
a, bEL.

THEOREM D. If L 1 and L2 are modular lattices, then L1 0L2 is
weakly modular. IfL 1 and L2 are weakly modular, then so is L1 0 L2 •

A lattice L is said to be have the anti-exchange property if p ::; q V a
and pia imply q i p V a where p and q are distinct atoms.

THEOREM E. If the rectangular product of atomic lattices L1 and L2

has the anti-exchange property, then so do L1 and L2 .

Let L be a lattice. For elements a > b in L, we write a >- b or b -< a
(a covers b or b is covered by a) if a ;::: e > b implies a = e for every

!~:,'.'.. . elewmt .~tQf L• ..A,o::__.:~,.Jii!!:~_.,W"hi.e,QY~·:~~.~:J!~

and aduiJ,l atom is any elemeiit"wlllcli Is cOvered by the greatesi" element.
Let us denote by A(L) and DA(L) the sets of all atoms and dual atoms,
respectively, of L. Then A(L1 0L2 ) = A(L1 ) x A(L2 ). The atoms of
L 10 L2 are exactly the elements (p, q), where p and q are atoms of L 1

and L2 , respectively. FUrtherrilore, the dual atoms in L1 0L2 are of
the form (e, 1) or (1, d), where c and d are dual atoms of L1 and L2 ,

respectively. IT two dual atoms of the rectangular product have a zero
meet, then they are of the same form.

REMARK. In [4], Bennett also proved the converse of Theorem E, but
this is not true. In Figure 1, 22 is atomic and satisfies the anti-exchange
property, but 220 22 does not. In fact, for the atoms (a, d) and (b, d)
in 22022 and the element (a,d) with (a,d) i (l,e), we have (a,d) ::;
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Figure 1.
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(b, d)V(l, c) = (1,1) in 22022 • But we have (b, d) :::; (a, d)V(l, c) = (1,1)
in 22022 •

The length of an n-element chain n is defined to be n - 1. More
generally, the length l(P) of an ordered set P is defined as the supremum
of the lengths of chains in P. In an ordered set P of finite length with
the least element 0, the height hex) of an element x E P is 1([0, x]). If P
has the greatest element 1, then clearly h(l) = l(P).

An ordered set P of finite length with °is called graded if for x, y E
P, x ::; y and hex) + 1 = hey) if and only if x ~ y, and is said to satisfy
the Jordan-Dedekind Chain Condition if all maximal chains between the
same endpoints have the same finite length. Observe that an ordered set
P with °is graded if and only if every interval of P is of finite length
and satisfies the Jordan-Dedekind Chain Condition.

We know that h(a, b) = h(p,b)+l([(p,b),(a,b)]) = h(b)+(h(a)-l) =
h(a) + h(b) - 1 for some atom p :::; a in a lattice £. Thus one has the
following.

LEMMA 1. Let £1 and L2 be lattices. For a nonzero element (a, b) in
£1 0£2, we have h(a, b) = h(a) + h(b) - 1.

For lattices £1 and L 2 with (a,b) f (0,0), (a,b) ~ (c,d) in £10£2 if
and only if a = c in £1 and b ~ d in £2 or a ~ c in £1 and b = d in L2 •

Furthermore, (0,0) is covered by the elements of the form (p, q), where
both p and q are atoms of £1 and £2, respectively.
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THEOREM 1. The rectangular product oflattices L 1 and L2 is graded
if and only if both L 1 and L2 are.

Proof. Suppose that L 1 and L2 are graded. It is enough to show that
(a,b) ~ (c,d) and h(a, b) + 1 = h(c, d) if and only if (a,b) -< (c,d) in
L1 0 L2 - Suppose that (a, b) ~ (c, d) in L1 0L2 and h(a, b) +1 = h(e, d).
If (a, b) = (0,0) in L 1 oL2 , then we have (a, b) = (0,0) -< (e,d) in L1 oL2 •

If (a,b) =1= (0,0) in L1 0L2 , then h(a) + h(b) = h(a, b) + 1 = h(c,d) =
h(c) +h(d) - 1 by Lemma 1. Since h(a), h(b), h(e) and h(d) are positive
integers and (a,b) ~ (c,d) in L 1 0L2 , h(a) + 1 = h(c) and h(b) = h(d)
or h(a) = h(c) and h(b) + 1 = h(d). Since L1 and L2 are graded,
a -< c in L 1 and b = d in L2 or a = c in L1 and b -< d in L2 and
so (a, b) -< (c, d) in L 1 0 L2 • Conversely, suppose that (a, b) -< (c, d) in
L1 oL2 • If a = °in L1 or b = °in L2 , then (a,b) = (0,0) -< (c,d) in
L1 0 L2 , and hence h(a, b) +1 = 1 = h(e, d). If a =1= °in L1 and b =1= °in
L2 , then we have a_-< c in L1 and b= din L2 or a = c and b -< din L2 •

Since L 1 and L2 are graded, we have h(a) + 1 = h(e) and h(b) = h(d)
or h(a) = h(c) and h(b) + 1 = h(d). Hence (a, b) ~ (c,d) in L1 Cl L2

and h(a, b) + 1 = h(a) + h(b) = h(c) + h(d) - 1 = h(c, d) by Lemma l.
Therefore L 1 Cl L 2 is graded.

Now, suppose that L1 Cl L2 is graded. Let a ~ c in L 1 and h(a) +
1 = h(c). If a = °in L 1 , then h(a) + 1 = 1 = h(c) and so c is an
atom in L 1 • Thus a = °-< e in L1 • If a is a nonzero element in L1 ,

then, for any nonzero element b in £2, (a, b) ~ (c, b) in L 1 Cl L 2 and
h(a;lJ) +1 = h{a) + n(t:)" .:'('l(~J ...: 1) +h(b}"':' h(c,b) hy temma 1.
Since L 1 0 L2 is graded, (a, b) -< (c, b) in L1 0 L2 • Hence a -< e in L1 •

Conversely, suppose that a -< c in L 1 • If a = °in L 1 , then c is an atom
in L1 and so h(a) + 1 = 1 = h(c). If a =1= °in L}, then a ~ c in L1 and
(a, b) -< (c, b) in L 1 CI L2 for any nonzero element b in L2 • Since L1 Cl L2 is
graded, we have h(a, b) +1 = h(c, b) and so h(a, b) = h(a)+h(b) - 1 and
h(c, b) = h(c)+h(b)-1 = h(a, b)+1 by Lemma 1. Hence h(a)+1 = h(c).
Thus L 1 is graded. Similarly, L 2 is also graded.

Let L be a complete lattice and let a be an element of L. Then a is
called compact if a ~ VX for some X ~ L implies a ~ VXl for some
finite Xl ~ X. A complete lattice is called algebraic if every element is
the join of compact elements.
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THEOREM 2. The rectangular product of lattices L1 and L2 is alge
braic if and only if both L 1 and L 2 are.

Proof. Note that L 1 and L 2 are complete if and only if L 1 0 L 2 is
complete by Theorem A. Suppose that L 1 and L 2 are algebraic. Take
any element (a, b) of L 1 0 L 2 • Since L 1 and L 2 are algebraic, a is a join
of compact elements Pi in L l and b is a join of compact elements qj in
L 2 • Then (a,b) = (V Pi, V qj) = Vi)Pi,qj). Now it is enough to show
that (pi, qj) is compact in L1 0 L 2 •

Suppose that (pi, qj) :s; V A fo:r some subset A of L l 0 L2 • Since
(Pi,qj):S; VA:s; V{(X,Y)IXI E Aland X2 E A2 } in L 1 0L2 , where
Al = {a E L1 I(a, b) E A} and A2 = {b E L2 1(a, b) E A}. Thus
Pi :s; VAl in L 1 and qj :s; V A 2 in L2· Since Pi and qj are compact
elements in L l and L 2 , respectively, there are finite subsets B} ~ A}
and B 2 ~ A 2 such that Pi :s; VB} in L} and qj :s; V B 2 in L 2 • Hence
(pi, qj) :s; (V B}, VB 2 ) in L 1 0L2 • Let B = {(a, b) Ia E B}, b E B 2 }.

Thus BnA is a finite subset of A and (Pi,qj) :s; V(BnA) and so
(pi, qj) is compact in L} 0 L2•

Conversely, suppose that L} 0 L2 is algebraic and let a be an element
of L}. For each element b of L 2 , (a,b) = V(Pi,qj) = (V pi, Vqj) for
some compact elements (Pi,qj) of L} 0 L 2. Thus a = VPi in L}. We
next show that Pi is a compact element in L}. IT Pi :s; V X for some
subset X of L}, then (pi, q) :s; (V X, q) in L} 0 L 2 for some element q of
{qjl(a,b) = V(Pi,qj)}, and hence (pi,q):S; (VX,q) = V(X,q). Since
L} 0 L 2 is an algebraic and (pi, q) is a compact element in L} 0 L2 , there
is finite subset X} of X such that (pi,q) :s; V(Xll q) = (V X},q) in
L1 0 L2 • Hence Pi :s; V X} for some finite subset Xl of X. Thus Pi is a
compact element in L}. Therefore L} is algebraic. Similarly, L 2 is also
algebraic.

A lattice L is called semimodular if it satisfies the upper covering
condition, that is, x >- x /\ Y implies that x V Y >- Y in L.

THEOREM 3. The rectangular product of lattices L} and L 2 is semi
modular if and only if both L} and L 2 are semimodular and IA(L}) I = 1
or IA(L2 ) 1= 1.

Proof. Suppose that L} and L 2 are semimodular. We may assume
without loss of generality that IA(L 2 ) I = 1. IT (a, b) >- (a, b) A (c, d) in



42 Deok Rak Bae

L 1 0 L 2 , then we have three cases to consider.
Case 1. b /\ d = 0 in L 2 •

Since (a,b) >- (0,0) = (a,b) /\ (e,d) in L1 oL2 , both a and b are
atoms of L 1 and L2 , respectively. Since IA(L2 ) I = 1 and b /\ d = 0 in
L 2 , d = 0 in L 2 • Either a /\ e = 0 or a /\ e =I- 0 in L1, hence we have
(e,d) = (0,0) in L 1 0L2 • Thus (a, b) V (e, d) = (a, b) >- (0,0) = (e, d) in
L 1 0 L 2 •

Case 2. a /\ e = 0 in L 1 and b /\ d =I- °in L 2 •

Since (a,b) >- (0,0) = (a, b) /\ (e,d) in L 1 0L2 , both a and b are
atoms of L 1 and L 2 , respectively, and hence a >- °= a /\ e in L 1 - Since
IA(L2 ) I = 1, we have b ::; d in L2 • By the semimodularity of L1,
a V e >- e in L 1, and hence (a,b) V (e,d) = (a V e,d) >- (e,d) in L1 0 L2 •

Case 3. a /\ e =I- 0 in L 1 and b /\ d =I- OinL2 •

Since (a, b) >- (a, b) /\ (e, d) = (a /\ e, b /\ d) =I- (0,0) in L1 0 L2 , either
a >- a /\ c in L 1 and b = b /\ d in L 2 or a = a /\ e in L 1 and b >- b /\ d in
L 2• If a >- a /\ e in L 1 and b = b /\ d in L 2 , then b :s; d in L 2 • By the
semimodularity of L 1 , aVe >- ein L1 • Hence (a, b)V(c, d) = (aVe, bVd) =
(a V e, d) >- (e, d) in L 1 0 L2 _ If a = a /\ e in L1 and b >- b /\ d in L2 ,

then a ::; e in L1 • By the semimodularity of L2 , and b V d >- din L2 •

Thus (a,b) V (e,d) = (e,bV d) >- (e,d) in L1 0 L2 •

Conversely, suppose that L1 0 L2 is semimodular. We show that L1

and L2 are scmimodular and that IA(L1 ) I = 1 or IA(L2 ) I = 1.
Suppose that a >- a /\ e in L 1 - If a /\ e = 0 in L1 , then a is an

a.tom in L1 • For any atom bin L2, (a,b) >- (0,0) = (a,b)A (c,b) in
L 1 0 L2 • Since L 1 0 L2 is semimodular, (a, b) V (e, b) = (a V e, b) >
(e, b) in L1 0 L 2 , and hence a V e >- e in L 1 • If a /\ c =I- 0 in L1 , then
(a, b) >- (a /\ e, b) = (a, b) /\ (e, b) for any nonzero element bin L2 • Since
L 1 0L2 is a semimodular, we have (a, b) V (c, b) = (a V e, b) >- (c, b)
in L 1 0 L 2 • Hence a V c >- c in L 1 • Thus L 1 is semimodular. Sim
ilarly, L 2 is also semimodular. We next show that IA(L 1 ) I = 1 or
IA(L2 ) 1= 1. Suppose that IA(Lt} I ~ 2 and IA(L2 ) I ~ 2. Then there
exist two distinct atoms PI, ql in L 1 and two distinct atoms P2, q2 in
L2. Since (Pl,P2) >- (0,0) = (Pl,P2) /\ (q1,q2) in L1 0 L2 and L 1 0L2
is semimodular, we have (PI, P2) V (ql' q2) >- (ql' q2) in L1 0 L2. But
we have (P1,P2) V (q1, q2) = (PI V Q1,P2 V q2) >- (PI V q1,P2) >- (P1,P2)
in L1 0 L2 , which is a contradiction to the semimodularity of L1 oL2 •

•
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Hence IA(Ld 1= 1 or IA(L2) 1= 1.

A lattice L is said to be join-semidistributive if a V b = a V c implies
that a V b = a V (b /\ c) for all a, b, c E L. An ordered set P is said to
satisfy the Ascending Chain Condition (ACC) if every increasing chain
terminates:i.e., if XQ :::; Xl :::; ••• :::; X n :::; •.. in P, then X m = X m +1 = ...
for some positive integer m.

THEOREM 4. Let L1 and L2 be lattices.
(i) H L 1 0 L2 is join-semidistributive, then L1 and L2 are join-semi

distributive.
(ii) H L1 and L2 are biatomic, join-semidistributive and satisfy the

ACe, then L10 L2 is join-semidistributive.

Proof. (i) Let L 1 0 L 2 be join-semidistributive. Suppose that a V b =
a V c in L1 for a, b, cELl. IT a = 0 or b = 0 or c = 0 in L1, then
clearly a V b = a V (b /\ c). Now we assume that a :j:. 0, b :j:. 0 and
c :j:. 0 in L1. Since a V b = a V c in L1, (a V b, d) = (a V c, d) for
any nonzero element din L2. Hence (a V b,l) = (a V c,l) in L10L2,
that is, (a,l) V (b,l) = (a,l) V (c,l) in L10L2. Since L1oL2 is join
semidistributive, (a, 1) V (b, 1) = (a, 1) V ((b, 1) /\ (c, 1» in L10L2, and
hence

(aVb 1)= {(a,l)
, (aV(b/\c),I)

if b /\ c = 0 in L1 ,

if b /\ c :j:. 0 in L1 .

Thus, either b/\c = 0 in L1or b/\c i= 0 in Ll, aVb = aV(b/\c) in L1. Hence
L 1 is join-semidistributive. Similarly, L 2 is also join-semidistributive.

(ii) Let L 1 and L 2 be biatomic, join-semidistributive and satisfy the
ACC. Suppose that (al, a2)V(b1, b2) = (al, a2)V(c1, C2) in L1 0 L2 for any
elements (all a2), (bl, b2) and (Cll C2) in L1 0 L2. Thus (a1 Vbll a2 Vb2) =
(a1 V C1, a2 V C2) in L1 0 L2, and hence a1 V b1 = a1 V C1 in L1 and
a2 V b2 = a2 V C2 in L2. Since L1 and L2 are join-semidistributive
lattices, a1 V b1 = a1 V (b1 /\ cd in L1 and a2 V b2 = a2 V (bz /\ C2) in L2.

Case 1. b1 /\ C1 :j:. 0 in L 1 and b2 /\ C2 :j:. 0 in L 2 •

Since b1 /\ C1 :j:. 0 in L1 and b2 /\ C2 :j:. 0 in L2, we have, in L1 0 L2,

(al, a2) V (bb b2) = (a1 V bll a2 V b2)

= (a1 V (b1 /\ c1),a2 V (b2 /\ C2))
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= (at, a2) V «b1 A Cl), (b2 A C2»

= (at,a2) V «bl,~) A (Cl,C2)).

Case 2. b1 A Cl =°in £1 or b2 A C2 = °in L 2 •

Since (aI, a2) V « b}, b2) A (c}, C2)) = (a}, a2), it is enough to show
that (bt,~) ::; (a},a2) in L1 a L2. Take any atom (p,q) ::; (bl'~) in
L1 a L2. Then (p, q) ::; (aI, a2)V(bI, b2) = (a}, a2)V(CI, C2) L1oL2. Since
L1 a L2 is a biatomic, there is an atom (rll, r21) ::; (Cl, C2) in L1 a L2
such that (p,q) ::; (a},a2) V (r11,r21). Since (r11,r2t} ::; (Cl,C2) ::;
(Cl, c2)V(aI, a2) = (aI, a2)V(b}, ~), there is an atom (S11, S21) ::; (bl,~)
in L1 a L2 such that (p,q) ::; (al,a2) V (r11,r2t) ::; (aI,a2) V (S11,S21).
Continuing this process, we have (p, q) ::; (at, a2) V (r11 , r21) ::; (at, a2) V
(S11,S21) ::; ... ::; (at,a2) V (rlk,r2k)::; (aI,a2) V (Slk,S2k)::; ... , where
(rlk,r2k)::; (C},C2) such that (SI(k-l),S2(k-1)::; (at,a2)V(rIk,r21.) and
(SIk,S2k) ::; (b1,b2) such that (rIk,r2k) ::; (a},a2) V (Slk,S2k). Since
L 1 and L2 satisfy the ACC, and hence L 1 oL2 satisfies the ACC, we
have (al,a2) V (rIk,r2k) = (aI,a2) V (Slk,S2k). If (rlk,r2k) = (Slk,S2k)
in L 1 a L 2 , then (p,q) ::; (at,a2) V (rIk,r2k) = (at,a2) V (Slk,S2k) ::;
(a}, a2) V «bl'~) A (ct, C2» = (at, a2). Otherwise (at, a2) V (rIk, r2k) =
(a}, a2) V (sa, S2k) = (aI, a2) by the join-semidistributivity of Li(i =
1,2). Hence (p,q) $ (aI,a2) in L1 rJ L2, showing that (b1,b2)::; (aI,a2).

We recall that, in any lattice L, the following conditions are equiva
lent:
'!(iJEbr8:D;f:~::'X"i;.::t~~~'·.'·;i.;I!:t~E·1:[,(if':trl\'Xi =lfJrormi·""f, .,

then Xl A X2 A ... 1\ X n =I 0 in L.
(ii) For any elements X, y, z in L, if each of x A y, Y A z and z A X is

nonzero elements, then X 1\ Y A z is nonzero.

A lattice L is said to satisfy the Chinese Remainder Theorem(CRT)
if and only if the condition (i) (and hen~ (ii» holds in it.

In general, the CRT need not be preserved by taking direct products.
For example, M n and 2 satisfy the CRT, but M n x 2 does not, where
M n is the lattice of length 2 with n atoms. But this property is preserved
by taking rectangular products, as the definition of rectangular product
that (a, b) = (0,0) in L 1 a L2 if and only if a =°in L 1 or b =°in L2 •
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THEOREM 5. The rectangular product of lattices L1 and L 2 satisfies
the CRT if and only if both L 1 and L2 do.

A lattice L satisfies the 8triet Chine8e Remainder Theorem (strict C
R T) if L is atomic and for any atoms p, q, r in L, M(p, q, r) = (p V q) /\
(q V r) /\ (r V p) is an atom in£. Note that the strict CRT implies the
CRT, but the converse does not hold (see M n ).

Figure 2.

In general, the strict CRT need not be preserved by taking direct
products. For example, En and 2 satisfy the strict CRT, but En X 2
does not(see Figure 2 for n = 4), where An : al < b1 > a2 < b2 >
... < bn- 1 > an < bn > a1 and En = An U {a, I}. But this property is
preserved by rectangular products, as the following theorem shows.

THEOREM 6. The rectangular product of lattices L1 and L2 satisfies
the strict CRT if and only if both L 1 and L2 do.

Proof. Suppose that £1 and £2 satisfy the strict CRT. Note that £1
and L 2 are atomic if and only if £1 0 £2 is an atomic by Theorem A. We
know that (PI,P2),(q1,q2) and (rl,r2) are atoms in L1 0 L2 if and only
if Pi, qi, r i are atoms in Li for i=1,2. Since L 1 and L 2 satisfy the strict
CRT, M(pI,ql,rd is an atom in L 1 and M(P2,q2,r2) is an atom in
L 2 • Recall that the definition of rectangular product that L 1 0 L 2 is a
join sublattice of the direct product L 1 x L 2 and that any nonzero meet
agrees in the rectangular product and the direct product. Now we have,
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M( (PI ,P2), (qI, q2), (TI, T2»

= ((PI, P2) V (qI, q2» A ((qI, q2) V (TI , T2» A ((TI , T2) V (PI, P2»

= (Pt V qt,P2 V q2) A (qt V Tt,q2 V T2) A (Tt V Pt, T2 V P2).

Since M(pi, qi, Ti) = (pi V qi) A (qi V Ti) A (Ti V Pi) is an atom in Li for i =
1,2. Thus M((Pt,P2),(qhq2),(TI,T2» = (M(Pt,qt,Tt},M(P2,q2,T2» is
an atom in Lt oL2. Hence LI 0 L2 satisfies the strict CRT.

Conversely, suppose that Lt 0 L2 satisfies the strict CRT. Take any
atoms PI, qh Tt in Lt· Thus (PI, s), (qh s) and (Tt, s) are atoms in Lt cL2
for any atom s in L2. Since Lt 0 L2 satisfies the strict CRT, we have

M((pI, s), (qt, s), (Tt,S»

= ((Pt, s) V (qt, s» A ((qt , s) V (Tt , S» A ((Tt , s) V (Pt, s»
= (Pt V qt,s) A (qt V Tt,S) A (Tt V Pt,s),

which is an atom in L t 0 L 2 • Thus

M((Pt,S),(qt,S),(Tt,S»

= (Pt V qt , s) A (qt V Tt, s) A (Tt V Pt, s)

= ((Pt V qt} A (qt V Tt) A (Tt V pt},s)

= (M(pllqt, Tt),s),

which is an atom in Lt 0 L2 and so M(Pt , qt , Tt) is an atom In Lt. Hence
L I satisfies the strict CRT. Similarly, L 2 satisfies the strict CRT.

An algebraic lattice is said to be median if it is biatomic and satisfies
the strict CRT.

THEOREM 7. The rectangular product oflattices L t and L2 is median
if and only if both L t and L 2 are.

Proof. It follows from Theorems C, 2 and 6

A lattice satisfies the switching condition if L is atomic and for any
atoms P, q, T, S with P, q ::; r V S and P ::; r V q implies that q ::; S V p.

Since all joins, and nonzero meets agree in both Lt oL2 and Lt x L2 ,

the following results are obtained immediately.
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THEOREM 8. The rectangular product of lattices L 1 and L2 satisfies
the switching condition if and only if so do £1 and £2-

THEOREM 9. The rectangular product of lattices £1 and L2 is com
plemented if and only if both £1 and L 2 are.
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