Comm. Korean Math. Soc. 9 (1994), No. 1, pp. 19-25

FUZZY COMMUTATIVE IDEALS IN BCI-ALGEBRAS

YOUNG BAE JUN AND JIE MENG

In [6], the second author of this paper and X. L. Xin introduced the notion of commutative BCI-algebras and discussed the structure of it. Also the second author [4] introduced the concept of commutative ideals in BCK-algebras, and the results in [4] are generalized to BCI-algebra by him([5]). In [3] the first author of this paper introduced the notion of closed fuzzy ideals of BCI-algebras and studied their properties.

The aim of this paper is to introduce the concept of fuzzy commutative ideals of BCI-algebras, and is to study their properties.

By a BCI-algebra we mean a nonempty set X with a binary operation * and a constant 0 satisfying the axioms:

- BCI-1 ((x * y) * (x * z)) * (z * y) = 0,
- BCI-2 (x * (x * y)) * y = 0,
- BCI-3 x * x = 0,

BCI-4 x * y = 0 and y * x = 0 imply x = y,

BCI-5 x * 0 = 0 implies that x = 0,

for all $x, y, z \in X$. In a BCI-algebra X, we can define a partial ordering \leq by putting $x \leq y$ if and only if x * y = 0.

In any BCI-algebra X, the following hold:

- (1) (x * y) * z = (x * z) * y,
- (2) x * (x * (x * y)) = x * y,
- (3) x * 0 = x.

In this paper, unless otherwise specified, X will always mean a BCIalgebra.

A nonempty subset I of X is called an ideal if it satisfies

(I1) $0 \in I$,

(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

We recall that a fuzzy set in X is a function μ from X into [0, 1].

Received May 25, 1993. Revised July 6, 1993.

Definition 1 ([7]). A fuzzy set μ in X is called a fuzzy ideal if it satisfies

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

Definition 2 ([3]). A fuzzy ideal μ of X is said to be closed if $\mu(0*x) \ge \mu(x)$ for all $x \in X$.

Now, for any fuzzy set μ in X, consider the following condition:

(4) $x * y \leq z$ implies $\mu(x) \geq \min\{\mu(y), \mu(z)\}$ for all $x, y, z \in X$.

THEOREM 1. Let μ be a fuzzy set in X. Then

(a) if μ is a fuzzy ideal of X, then μ satisfies the condition (4).

(b) if μ satisfies the conditions (F1) and (4), then μ is a fuzzy ideal of X.

Proof. (a). Let μ be a fuzzy ideal of X and let $x, y, z \in X$ be such that $x * y \leq z$. Then

$$\mu(x * y) \ge \min\{\mu((x * y) * z), \mu(z)\} \\= \min\{\mu(0), \mu(z)\} \\= \mu(z).$$

It follows that

£

$$\mu(x) \geq \min\{\mu(x * y), \mu(y)\} \geq \min\{\mu(y), \mu(z)\}.$$

Thus μ satisfies the condition (4).

(b). Assume that μ satisfies the conditions (F1) and (4). Combining BCI-2 and (4), we have

$$\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$$

for all $x, y \in X$. This is the condition (F2) and the proof is complete.

Definition 3 ([5]). A nonempty subset I of X is called a commutative ideal if it satisfies (I1) and

(C1) $(x*y)*z \in I$ and $z \in I$ imply $x*((y*(y*x))*(0*(0*(x*y)))) \in I$ for all x, y, z in X.

 $\mathbf{20}$

Definition 4. A fuzzy set μ in X is called a fuzzy commutative ideal if it satisfies (F1) and

(FC1) $\mu(x*((y*(y*x))*(0*(0*(x*y))))) \ge \min\{\mu((x*y)*z), \mu(z)\}$ for all $x, y, z \in X$.

Example. Let $X = \{0, a, 1, 2, 3\}$ in which * is defined by

*	0	a	1	2	3
0	0	0	3	$\overline{2}$	1
a	a	0	3	2	1
1	1	1	0	3	2
2	2	$\underline{2}$	1	0	3
3	3	3	2	1	0

Then (X; *, 0) is a BCI-algebra([1]). Let $t_0, t_1, t_2 \in [0, 1]$ be such that $t_0 > t_1 > t_2$. Define a function $\mu : X \to [0, 1]$ by $\mu(0) = t_0, \ \mu(a) = t_1$ and $\mu(1) = \mu(2) = \mu(3) = t_2$. By routine calculations, we know that μ is a fuzzy commutative ideal of X.

The following theorem is obvious, and omit the proof.

THEOREM 2. Let I be any nonempty subset of X. Then the following conditions are equivalent:

(a) I is a commutative ideal of X.

(b) The characteristic function χ_I of I is a fuzzy commutative ideal of X.

THEOREM 3. Any fuzzy commutative ideal must be a fuzzy ideal.

Proof. Let μ be a fuzzy commutative ideal of X and let $x, z \in X$. Then

$$\min\{\mu(x * z), \mu(z)\}\$$

$$= \min\{\mu((x * 0) * z), \mu(z)\}\$$

$$\leq \mu(x * ((0 * (0 * x)) * (0 * (0 * (x * 0)))))\$$

$$= \mu(x * 0)\$$

$$= \mu(x).$$

This completes the proof.

Remark. A fuzzy ideal may not be fuzzy commutative. For instance, let $X = \{0, 1, 2, 3, 4\}$ in which the operation * is defined by

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	4	4	3	0

Then (X; *, 0) is a BCI-algebra([5]). Let $t_0, t_1, t_2 \in [0, 1]$ be such that $t_0 > t_1 > t_2$. Define $\mu : X \to [0, 1]$ by $\mu(0) = t_0, \ \mu(1) = t_1$ and $\mu(2) = \mu(3) = \mu(4) = t_2$. Routine calculations give that μ is a fuzzy ideal of X. But μ is not a fuzzy commutative ideal of X, because

$$\mu(2*((3*(3*2))*(0*(0*(2*3))))) \not\geq \min\{\mu((2*3)*0), \mu(0)\}.$$

THEOREM 4. A fuzzy ideal μ of X is fuzzy commutative if and only if it satisfies

(FC2) $\mu(x * ((y * (y * x)) * (0 * (0 * (x * y))))) \ge \mu(x * y)$ for all $x, y \in X$.

Proof. Assume that μ is a fuzzy commutative ideal of X. If we take z = 0 in (FC1), then we get (FC2).

Conversely suppose that μ satisfies (FC2). Since μ is a fuzzy ideal, therefore

$$\mu(x*y) \geq \min\{\mu((x*y)*z), \mu(z)\}$$

for all $x, y, z \in X$. From (FC2), we obtain (FC1). This completes the proof.

THEOREM 5. Let μ be a closed fuzzy ideal of X. Then μ is fuzzy commutative if and only if it satisfies

 $(\mathbf{FC3}) \quad \mu(x \ast (y \ast (y \ast x))) \ge \mu(x \ast y) \text{ for all } x, y \in X.$

Proof. Suppose that μ is a fuzzy commutative ideal of X. Let $x, y, z \in$

X. Then

$$(x * (y * (y * x))) * (x * ((y * (y * x)) * (0 * (0 * (x * y)))))$$

$$\leq ((y * (y * x)) * (0 * (0 * (x * y)))) * (y * (y * x))$$

$$= ((y * (y * x)) * (y * (y * x))) * (0 * (0 * (x * y)))$$

$$= 0 * (0 * (0 * (x * y)))$$

$$= 0 * (x * y).$$

It follows from Theorem 1(a) and (FC2) that

$$\mu(x * (y * (y * x)))$$

$$\geq \min\{\mu(x * ((y * (y * x)) * (0 * (0 * (x * y))))), \mu(0 * (x * y))\}$$

$$\geq \min\{\mu(x * y), \mu(0 * (x * y))\}$$

$$= \mu(x * y).$$

Hence μ satisfies (FC3).

Conversely assume that μ satisfies the condition (FC3) and let $x, y \in X$. Then

$$(x * ((y * (y * x)) * (0 * (0 * (x * y))))) * (x * (y * (y * x))) \leq (y * (y * x)) * ((y * (y * x)) * (0 * (0 * (x * y)))) \leq 0 * (0 * (x * y)).$$

By Theorem 1(a) and (FC3) we have

$$\mu(x * ((y * (y * x)) * (0 * (0 * (x * y))))) \geq \min\{\mu(x * (y * (y * x))), \mu(0 * (0 * (x * y)))\} \geq \min\{\mu(x * y), \mu(0 * (0 * (x * y)))\} = \mu(x * y),$$

which proves that μ satisfies the condition (FC2). Hence μ is fuzzy commutative, and the proof is complete.

Definition 5 ([6]). A BCI-algebra X is called commutative if, for all x, y in X.

(5) $x \leq y$ implies x = y * (y * x).

PROPOSITION 1 ([6]). A BCI-algebra X is commutative if and only if it satisfies

(6) x * (x * y) = y * (y * (x * (x * y))) for all $x, y \in X$.

THEOREM 6. Let X be a commutative BCI-algebra. Then every closed fuzzy ideal is fuzzy commutative.

Proof. Assume that X is a commutative BCI-algebra and let μ be a closed fuzzy ideal of X. Let $x, y \in X$. Then, by means of Proposition 1, we have

$$(x * (y * (y * x))) * (x * y)$$

= (x * (x * y)) * (y * (y * x))
= (y * (y * (x * (x * y)))) * (y * (y * x))
= (y * (y * (y * x))) * (y * (x * (x * y)))
= (y * x) * (y * (x * (x * y)))
 $\leq (x * (x * y)) * x$
= 0 * (x * y).

Using Theorem 1(a); we get

$$\mu(x * (y * (y * x))) \ge \min\{\mu(x * y), \mu(0 * (x * y))\} = \mu(x * y).$$

Hence, by Theorem 5 we conclude that μ is a fuzzy commutative ideal of X.

References

- S. A. Bhatti, M. A. Chaudhry and B. Ahmad, On classification of BCI-algebras, Math. Japon. 34 (1989), 865-876.
- 2. Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK(BCI)algebras, Math. Japon. 38 (1993), 67-71.
- 3. Y. B. Jun, Closed fuzzy ideals in BCI-algebras, Math. Japon. 38 (1993), 199-202.
- J. Meng, Commutative ideals in BCK-algebras, Pure appl. Math. (in China) 9 (1991), 49-53.
- J. Meng, An ideal characterization of commutative BCI-algebras, Pusan Kyongnam Math. J. 9 (1993), 1-6.
- J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japon. 37 (1992), 569-572.

24

7. O. G. Xi, Fuzzy BCK-algebra, Math. Japon. 36 (1991), 935-942.

Department of Mathematics Education Gyeongsang National University Chinju 660–701, Korea

Department of Mathematics Northwest University Xian, 710069 P. R. China