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THE CONDITION NUMBERS OF
TWO INTERPOLANT MATRICES

JOONSOOK LEE

1. Introduction

Given the scattered data (z,, fi), z; € R™, fi € R,1 = 1,...,n,
the interpolation problem by radial functions consists of finding an
interpolant to the data of the form

n

S(z) = 3 aigilz)

=1

where gi(z) is a radial function. In this papaer, we consider the case
of gi(z) = ||z — zi|| and z; € R!. Then || - || becomes absolute value.

There are some methods to find an interpolant S(r) using various
radial functions (Franke, 1982). In 1938, Shoenberg proved that the
coefficient matrix A;; = ||z; —z,|| is nonsingular if || - || is the Euclidean
norm. Hence interpolation by radial functions is always possible for
any set of distinct points. But a linear system determining the radial
interpolant is known to be ill-conditioned for large data sets.

To decrease the condition number of the coefficient matrix arising
in the linear system, we introduce different set of points {y;} to define
the basis functions. The new basis will be of the form g¢;(z) = ||z — |
and the new coefficient matrix A will be 4;; = ||z; — y;|. The points y;
used to define the basis functions will be called ‘knots’ and the points
z; where interpolation is to be carried out will be called ‘nodes’.

The new coefficient matrix A becomes singular for some set of {y;}
while A = ||z; — z;|| is nonsingular for any set of {z;}. The next
theorem tells the position of {y;} where A is nonsingular.
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THEOREM (JOONSOOK LEE,1992). A = |jz; — y;|| is nonsingular
if and only if y1 € [z1,%2),¥: € (zim1,Tit1) for i = 2,...,n — 2 and
Yn € (xn—l,zn]- O
We assume above position of {y;} throughout this paper. Now for the
matrix norm for condition number, we use || - |[;-norm i.e. maximum
absolute column sum.

'2.The Condition Number of 4 = lzi — ;]|

Since explicit forms of A and A~! are known, we can actually calcu-
late the condition number of A. Let 0 = z; < 22 < --- < z, = 1. We
can assume this without loss of generality since a condition number is
invariant in scaling.

LEMMA 2.1 (BOS AND SALCAUSCUS, 1987). If A is defined by
A = ||lz; — z;]|, then its inverse is

A7l =
h1—1 1 1
(4 0 0 L
1 _hithy 1
Th; T zhzh 0 0 0
. _hothy 1
0 2ho 2hohg 2hs 0 0
0 1 _hn—2+hn—1 1
T 2hn-2 2hn_2hn_1 2hn-1
l 1 hn-—l"l }
\ 5 0 0 iee 0 T ST —

LEMMA 2.2. Let |Ap| =30, |Aim|. Then
|A1] > [Az] > --- > [4p| and [An| > |Ap-1] > -+~ > [Ap41]
where
{ p=3% if n is even
p= ﬁzﬂ if n is odd

Proof. 1t is verified by direct calculation. We supress the detail. [

Now we state the lemma concerning the norm of A and A™! without
proof.
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LEMMA 2.3. Let h; = |z;41 — zi|. Then

4]l = max{|A:],|4n|}

1
A7 = ——
” ” 1<s < {h, + h,+1}

The next theorem gives a lower bound for || 4]|.

THEOREM 2.4. ||A]| > 2

Proof. From lemma2.2, ||A|l = ma.x{zl_1 — b, S (n =)
Bri}. Suppose Al < 2. Then Y i (n—i)h; < 2and 30 (n—
)hn-; < §. Now

n—1
Z(n —)hi + Z(n ) [
n—1

_Z(n—z(h +hn_)_nZh =n since Zhgzl.

=1 =

But S0 (n — ki + X0 (n — i)k < 2+ 2 =n. Thisisa
contradiction. [0

Y (n—i)h = Sorl(n—4)hy—;, the minimum condition num-
ber can be achieved. We can also show that if 3 ;' (n — i)h; is not
equal to Y no)'(n —i)hn;, then ||A] > %. Indeed let Srltn—d)hi >
Z (n=i)hn-y. Then 4] = Y7 (n—i)hs and 2] A = 2505 (n—

)h; > 21—1 (n—1i)h; +Z,_1 —Dh;=nY ! h; = n. One position
thch satisfying Zz_l (n—2)h; = 21—1 (n — t)ha—; is equally spaced
nodes.

Now we will achieve a lower bound for ||JA™?||. But we need to put
a restriction on the number of nodes. We get a lower bound for ||A7}||

only for the case of odd number of nodes. From now on, we let & be

an index such that |4~ = ﬁ + 7;,‘—1;—1
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LEMMA 2.5. If||A™Y| < 2(n — 1), then h; + hiyy > ;%5 forall i.

Proof. Suppose there exist some j such that hj+ hjy1 < -%5. Now
(hj+hj+1 )2 Z 4h]‘h]'+1 and this implies that Eﬁlﬁi 2 h_:I-T— Then
by our assumption

hj + Rt

1 1
=—+—2>2(n-1) O
hihjv1i ki hjga (n=1)

THEOREM 2.6. ||A™!|| > 2(n — 1) for odd number of nodes.

Proof. Suppose ||[A7Y|| < 2(n —1). Then by lemma 2.4, h; + hiy1 >
n—i—l- for all :. Then

= 2 n-1

1= hi=(ha+ha)+ -+ (hnz + ho- 1) > —-

=10
1 2

=1

THEOREM 2.7. If n is odd and ||A7Y|| = 2(n — 1), then h; = Z15
for all 1.

Proof. First we will show that h; + h,+1 > —— for all 2. Suppose
there ex1st some j such that h + hjt1 < 25 Then by lemma2.4,
+ ~ > 2(n — 1) and this contradlcts our a.ssumptlon
Now the facts hi+hip1 > 25 for all i and (hy +ho)+- -+ (bn—2+
h,—1) = limply that h; +h,+1 = n—;— for odd i. Let m be any arbitrary
odd index. Then hmp + Am41 = ;. But by the proof of lemma2.4,

%”—’;%"ﬂ—‘ > 2(n — 1) and equality holds only when hn = -5 and

hmir = 725. O

THEOREM 2.8. Let n be an odd number. ||A||||47}|| = n(n — 1) if
and only if nodes are equally spaced.

Proof. If h; = 15, it is obvious that ||A|||A7Y|| = n(n —1). Now
suppose ||A[[JA7|| = n(n — 1). Since ||A]| > % and ||A7|| > 2(n -
1), JAJIA~!] = n(n — 1) implies that 4] = % and [4~] =
2(n —1). Then by theorem2.7, h; = =1;. O
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We have shown that if n is odd, the minimum condition number
interpolation matrix is n(n—1). If n gets larger than 100, the condition
number becomes more than 100%2. We introduce new set of points {y;}
called ‘knots’ for basis and compare the two condition numbers of A
and A.

3. The Comparison of condition numbers of two coefficient
matrices

LEMMA 3.1(JOONSOOK LEE, 1992). K y., is in the interval [z,
Zk+1), then the m-th column of A is a linear and convex combination
of the k-th and the (k + 1)-st columns of A i.e.

A, = Thtl 7 Ym Ax + Ym — Tk Ay O
hg hi

Since every element of A is nonnegative, |4, is a linear and convex
combination of |4;| and |A;4.| for some j.

THEOREM 3.2. ||A| = max{|4;|,|4.|}.

Proof. Since we assume that y; € [z1,z2) and y; € (zi—1,Ti+1) for
i=2...n—1and y, € (Zn-1,Zn], it is clear that |A4,]| is a linear and
convex combination of |A4;| and |A,|.

Let p be the same p in lemma 2.2. Then for 2 <i < p, |4;|isa
linear and convex combination of |4;| and |44}, or |A;| and [Ai—1].
Ifi >3, |4;|>|A4;. Butifi=2, |Az|can be a linear combination
of |A;| and |A2|. We will compare |4;| and |4,].

(1)

|A1| ~ | 4a|

— (1t + (1- 22 14al) - () 101+ (1= 1) 1401
(%1; - —)|A1| - (";';)lAll +(1- ——)IAzl
=( )(lAll — |42|)

where by = £ — y2 and a3 = 3 — ¥;.
But a; > b; and (1) become positive. It follows similar analysis for
p+1<:i<n 0O
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COROLLARY 3.3. ||4| < || 4]|-

proof. It follows theorem3.2. [I

Before we state the theorem about A~!, we need to introduce some
notations by letting e; = z‘,; ¥l and d; = J%l Also we let R; and
R; be the i-th rows of A and A respectively.

THEOREM 3.4 (JOONSOOK LEE, 1992). Let y; € [z1,22),y; €
(Zic1,Zig1) fort = 2,...n — 1 and y, € (Tp—1,2s]. Let (zk,Zp41)

be the unique subinterval containing two knots. If we assume that y,
belongs to the separated interval [z,41, ], then

R,, =
([ == 5m fp+1<m<k-1
_d—diyy diy .
) (— _d,,+1) “(T—J—;M)Tkﬂ fm=k
(:;Tgm)Tk+1 (ﬁﬁm)sk ifm=k+1
where
- m—(p+1)
Z ( 1)_1 Z:}Rm—i
=0
q-—m . -
Tn = Z(—l)'bgiiRmH
=0
and
€g...€¢ ds---dt
at={ (1-e5)...(L—e) bE={ (1—e5)...(1—es)
lif s > ¢ 1lifs >t

Since A is nonsingular with our assumption any row of A is a linear
combination of A !, This means that A . is a linear combination of

A,-"jl for ¢ = 1...n Now we want to compa.re A=Y and ||A7}||. But
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|A7Y| = maxi<i<n—2 {xl— + 7;.—1+—‘} where -,37+ 7;&; is a (2 +1)-st abso-
lute column sum. Then we need to compare IA;-‘II and [fij_ll only for
ji=2...n— 1By1emma21A”l—-Oforz'#j-—l,j,j-}-landfi;i-be—
comes a linear combination of A7’ 11 3 AJ i AJ_+1 J Now by theorem3.4,
we can actually calculate the coeficients for A] 1,455 A;H j- Since

these coefficients depend on m and j, we denote them by E;(m). Then
we write

1
JJ+

+ E;(m)AT

A;IJZ j—l(m) j- 1]
Ej(m)A7Y

Here E;(m) represents the coefficient of R; when we write R, as a
linear combination of R;s by theorem3.4. For example E,,,(m) is one of

1 1-dm41 l—em-1 1

{l—em’l—-cm—d,.,,+1’ I—Cm_l—'d ? l—d }.

LEMMA 3.5. E;(i) > 1,Ei;11(3) < 0,E;_1(i) < 0,E;42(¢) > 0 and

t 2( ) 2 0.

Proof. 1t is verified by direct calculation. [

THEOREM 3.6. ||A7Y|| > ||[A7Y.

Proof We will compare l/i,_nfj] with IA;:,', for j > 2. By lemma2.1,
A,_n{j =0ifm # ;-1,55+1 Then |/_1;1J > lA:nlyj| for m #

J—1,7,7+1. Hence we only need to consider the case m = j—1,3j,7+1.
Now

AZlj = Ej-](m)Aj—ll’] + Ej(m)A;; + Ejp1(m )AJ_.H j

and A7 1 jand A _:1 ; are positive and A7 ! is negative.

First we conmder m=7j~1.
A7l =Ein(G - DA+ Ei(G ~ DA + Eia(G + DAL
Then by lemma3.5, all three terms are positive and

IAJ ],]I
=|Ej1(5 — VA ;I + 1B = DA+ B (G = DAL
>|AT

j— 1,_1|
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The cases m = j,7 + 1 follow similar analysis. [

By corollary3.3, we know that ||A]| is always smaller than |A|l.
But only y; and y, may contribute to improve ||A|| since |4} =
max{[A;[,[An|}. On the other hand, ||A7}|| is getting bigger as more
knots are picked. We may improve the condition number over all if we
improve || A|| while holding [|A~!|| egual to |JA™||.
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