# THE CONDITION NUMBERS OF TWO INTERPOLANT MATRICES 

Joonsook Lee

## 1. Introduction

Given the scattered data $\left(x_{i}, f_{i}\right), x_{i} \in R^{m}, f_{i} \in R, i=1, \ldots, n$, the interpolation problem by radial functions consists of finding an interpolant to the data of the form

$$
S(x)=\sum_{i=1}^{n} a_{i} g_{i}(x)
$$

where $g_{i}(x)$ is a radial function. In this papaer, we consider the case of $g_{i}(x)=\left\|x-x_{i}\right\|$ and $x_{i} \in R^{1}$. Then $\|\cdot\|$ becomes absolute value.

There are some methods to find an interpolant $S(x)$ using various radial functions (Franke, 1982). In 1938, Shoenberg proved that the coefficient matrix $A_{i j}=\left\|x_{i}-x_{j}\right\|$ is nonsingular if $\|\cdot\|$ is the Euclidean norm. Hence interpolation by radial functions is always possible for any set of distinct points. But a linear system determining the radial interpolant is known to be ill-conditioned for large data sets.

To decrease the condition number of the coefficient matrix arising in the linear system, we introduce different set of points $\left\{y_{i}\right\}$ to define the basis functions. The new basis will be of the form $g_{i}(x)=\left\|x-y_{i}\right\|$ and the new coefficient matrix $\bar{A}$ will be $\bar{A}_{i j}=\left\|x_{i}-y_{j}\right\|$. The points $y_{i}$ used to define the basis functions will be called 'knots' and the points $x_{i}$ where interpolation is to be carried out will be called 'nodes'.

The new coefficient matrix $\bar{A}$ becomes singular for some set of $\left\{y_{i}\right\}$ while $A=\left\|x_{i}-x_{j}\right\|$ is nonsingular for any set of $\left\{x_{i}\right\}$. The next theorem tells the position of $\left\{y_{i}\right\}$ where $\bar{A}$ is nonsingular.

Theorem (Joonsook Lee, 1992). $\bar{A}=\left\|x_{i}-y_{j}\right\|$ is nonsingular if and only if $y_{1} \in\left[x_{1}, x_{2}\right), y_{i} \in\left(x_{i-1}, x_{i+1}\right)$ for $i=2, \ldots, n-2$ and $y_{n} \in\left(x_{n-1}, x_{n}\right]$.
We assume above position of $\left\{y_{i}\right\}$ throughout this paper. Now for the matrix norm for condition number, we use $\|\cdot\|_{1}$-norm i.e. maximum absolute column sum.

## 2.The Condition Number of $A=\left\|x_{i}-x_{j}\right\|$

Since explicit forms of $A$ and $A^{-1}$ are known, we can actually calculate the condition number of $A$. Let $0=x_{1}<x_{2}<\cdots<x_{n}=1$. We can assume this without loss of generality since a condition number is invariant in scaling.

Lemma 2.1 (Bos and Salcauscus, 1987). If $A$ is defined by $A=\left\|x_{i}-x_{j}\right\|$, then its inverse is
$A^{-1}=$

$$
\left(\begin{array}{ccccccc}
\frac{h_{1}-1}{2 h_{1}} & \frac{1}{2 h_{1}} & \cdots & & 0 & 0 & \frac{1}{2} \\
\frac{1}{2 h_{1}} & -\frac{h_{1}+h_{2}}{2 h_{2}} & \frac{1}{2 h_{2}} & 0 & \cdots & 0 & 0 \\
0 & \frac{1}{2 h_{2}} & -\frac{h_{2}+h_{3}}{2 h_{2} h_{3}} & \frac{1}{2 h_{3}} & 0 & \cdots & 0 \\
\vdots & & & \ddots & & \cdots & \vdots \\
0 & & & \cdots & \frac{1}{2 h_{n-2}} & -\frac{h_{n-2}+h_{n-1}}{2 h_{n-2} h_{n-1}} & \frac{1}{2 h_{n-1}} \\
\frac{1}{2} & 0 & 0 & \cdots & 0 & \frac{1}{2 h_{n-1}} & \frac{h_{n-1}}{2 h_{n-1}}
\end{array}\right)
$$

Lemma 2.2. Let $\left|A_{m}\right|=\sum_{i=1}^{n}\left|A_{i m}\right|$. Then

$$
\left|A_{1}\right|>\left|A_{2}\right|>\cdots>\left|A_{p}\right| \text { and }\left|A_{n}\right|>\left|A_{n-1}\right|>\cdots>\left|A_{p+1}\right|
$$

where

$$
\begin{cases}p=\frac{n}{2} & \text { if } n \text { is even } \\ p=\frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Proof. It is verified by direct calculation. We supress the detail.
Now we state the lemma concerning the norm of $A$ and $A^{-1}$ without proof.

Lemma 2.3. Let $h_{i}=\left|x_{i+1}-x_{i}\right|$. Then

$$
\begin{gathered}
\|A\|=\max \left\{\left|A_{1}\right|,\left|A_{n}\right|\right\} \\
\left\|A^{-1}\right\|=\max _{1 \leq i \leq n-2}\left\{\frac{1}{h_{i}}+\frac{1}{h_{i+1}}\right\}
\end{gathered}
$$

The next theorem gives a lower bound for $\|A\|$.
Theorem 2.4. $\|A\| \geq \frac{n}{2}$
Proof. From lemma2.2, $\|A\|=\max \left\{\sum_{i=1}^{n-1}(n-i) h_{i}, \sum_{i=1}^{n-1}(n-i)\right.$ $\left.h_{n-i}\right\}$. Suppose $\|A\|<\frac{n}{2}$. Then $\sum_{i=1}^{n-1}(n-i) h_{i}<\frac{n}{2}$ and $\sum_{i=1}^{n-1}(n-$ i) $h_{n-i}<\frac{n}{2}$. Now

$$
\begin{aligned}
& \sum_{i=1}^{n-1}(n-i) h_{i}+\sum_{i=1}^{n-1}(n-i) h_{n-i} \\
= & \sum_{i=1}^{n-1}(n-i)\left(h_{i}+h_{n-i}\right)=n \sum_{i=1}^{n-1} h_{i}=n \text { since } \sum_{i=1}^{n-1} h_{i}=1 .
\end{aligned}
$$

But $\sum_{i=1}^{n-1}(n-i) h_{i}+\sum_{i=1}^{n-1}(n-i) h_{n-i}<\frac{n}{2}+\frac{n}{2}=n$. This is a contradiction.

If $\sum_{i=1}^{n-1}(n-i) h_{i}=\sum_{i=1}^{n-1}(n-i) h_{n-i}$, the minimum condition number can be achieved. We can also show that if $\sum_{i=1}^{n-1}(n-i) h_{i}$ is not equal to $\sum_{i=1}^{n-1}(n-i) h_{n-i}$, then $\|A\|>\frac{n}{2}$. Indeed let $\sum_{i=1}^{n-1}(n-i) h_{i}>$ $\sum_{i=1}^{n-1}(n-i) h_{n-i}$. Then $\|A\|=\sum_{i=1}^{n-1}(n-i) h_{i}$ and $2\|A\|=2 \sum_{i=1}^{n-1}(n-$ i) $h_{i}>\sum_{i=1}^{n-1}(n-i) h_{i}+\sum_{i=1}^{n-1}(n-i) h_{i}=n \sum_{i=1}^{n-1} h_{i}=n$. One position which satisfying $\sum_{i=1}^{n-1}(n-i) h_{i}=\sum_{i=1}^{n-1}(n-i) h_{n-i}$ is equally spaced nodes.

Now we will achieve a lower bound for $\left\|A^{-1}\right\|$. But we need to put a restriction on the number of nodes. We get a lower bound for $\left\|A^{-1}\right\|$ only for the case of odd number of nodes. From now on, we let $k$ be an index such that $\left\|A^{-1}\right\|=\frac{1}{h_{k}}+\frac{1}{h_{k+1}}$.

Lemma 2.5. If $\left\|A^{-1}\right\|<2(n-1)$, then $h_{i}+h_{i+1}>\frac{2}{n-1}$ for all $i$.
Proof. Suppose there exist some $j$ such that $h_{j}+h_{j+1} \leq \frac{2}{n-1}$. Now $\left(h_{j}+h_{j+1}\right)^{2} \geq 4 h_{j} h_{j+1}$ and this implies that $\frac{h_{j}+h_{j+1}}{h_{j} h_{j+1}} \geq \frac{4}{h_{j}+h_{j+1}}$. Then by our assumption

$$
\frac{h_{j}+h_{j+1}}{h_{j} h_{j+1}}=\frac{1}{h_{j}}+\frac{1}{h_{j+1}} \geq 2(n-1)
$$

THEOREM 2.6. $\left\|A^{-1}\right\| \geq 2(n-1)$ for odd number of nodes.
Proof. Suppose $\left\|A^{-1}\right\|<2(n-1)$. Then by lemma $2.4, h_{i}+h_{i+1}>$ $\frac{2}{n-1}$ for all $i$. Then
$1=\sum_{i=1}^{n-1} h_{i}=\left(h_{1}+h_{2}\right)+\cdots+\left(h_{n-2}+h_{n-1}\right)>\frac{2}{n-1} \cdot \frac{n-1}{2}=1$

Theorem 2.7. If $n$ is odd and $\left\|A^{-1}\right\|=2(n-1)$, then $h_{i}=\frac{1}{n-1}$ for all $i$.

Proof. First we will show that $h_{i}+h_{i+1} \geq \frac{2}{n-1}$ for all $i$. Suppose there exist some $j$ such that $h_{j}+h_{j+1}<\frac{2}{n-1}$. Then by lemma2.4, $\frac{1}{h_{j}}+\frac{1}{h_{j+1}}>2(n-1)$ and this contradicts our assumption.

Now the facts $h_{i}+h_{i+1} \geq \frac{2}{n-1}$ for all $i$ and $\left(h_{1}+h_{2}\right)+\cdots+\left(h_{n-2}+\right.$ $\left.h_{n-1}\right)=1$ imply that $h_{i}+h_{i+1}=\frac{2}{n-1}$ for odd $i$. Let $m$ be any arbitrary odd index. Then $h_{m}+h_{m+1}=\frac{2}{n-1}$. But by the proof of lemma2.4, $\frac{h_{m}+h_{m+1}}{h_{m} h_{m+1}} \geq 2(n-1)$ and equality holds only when $h_{m}=\frac{1}{n-1}$ and $h_{m+1}=\frac{1}{n-1}$.

Theorem 2.8. Let $n$ be an odd number. $\|A\|\left\|A^{-1}\right\|=n(n-1)$ if and only if nodes are equally spaced.

Proof. If $h_{i}=\frac{1}{n-1}$, it is obvious that $\|A\|\left\|A^{-1}\right\|=n(n-1)$. Now suppose $\|A\|\left\|A^{-1}\right\|=n(n-1)$. Since $\|A\| \geq \frac{n}{2}$ and $\left\|A^{-1}\right\| \geq 2(n-$ 1), $\quad\|A\|\left\|A^{-1}\right\|=n(n-1)$ implies that $\|A\|=\frac{n}{2}$ and $\left\|A^{-1}\right\|=$ $2(n-1)$. Then by theorem $2.7, h_{i}=\frac{1}{n-1}$.

We have shown that if $n$ is odd, the minimum condition number interpolation matrix is $n(n-1)$. If $n$ gets larger than 100 , the condition number becomes more than $100^{2}$. We introduce new set of points $\left\{y_{i}\right\}$ called 'knots' for basis and compare the two condition numbers of $A$ and $\bar{A}$.

## 3. The Comparison of condition numbers of two coefficient matrices

Lemma 3.1(Joonsook Lee, 1992). If $y_{m}$ is in the interval [ $x_{k}$, $x_{k+1}$ ], then the $m$-th column of $\bar{A}$ is a linear and convex combination of the $k$-th and the $(k+1)$-st columns of $A$ i.e.

$$
\bar{A}_{m}=\left(\frac{x_{k+1}-y_{m}}{h_{k}}\right) A_{k}+\left(\frac{y_{m}-x_{k}}{h_{k}}\right) A_{k+1}
$$

Since every element of $A$ is nonnegative, $\left|\bar{A}_{i}\right|$ is a linear and convex combination of $\left|A_{j}\right|$ and $\left|A_{j+1}\right|$ for some $j$.

Theorem 3.2. $\|\bar{A}\|=\max \left\{\left|\bar{A}_{1}\right|,\left|\bar{A}_{n}\right|\right\}$.
Proof. Since we assume that $y_{1} \in\left[x_{1}, x_{2}\right)$ and $y_{i} \in\left(x_{i-1}, x_{i+1}\right)$ for $i=2 \ldots n-1$ and $y_{n} \in\left(x_{n-1}, x_{n}\right]$, it is clear that $\left|\bar{A}_{1}\right|$ is a linear and convex combination of $\left|A_{1}\right|$ and $\left|A_{2}\right|$.

Let $p$ be the same $p$ in lemma 2.2. Then for $2 \leq i \leq p, \quad\left|\bar{A}_{i}\right|$ is a linear and convex combination of $\left|A_{i}\right|$ and $\left|A_{i+1}\right|$, or $\left|A_{i}\right|$ and $\left|A_{i-1}\right|$. If $i \geq 3, \quad\left|\bar{A}_{1}\right|>\left|\bar{A}_{i}\right|$. But if $i=2, \quad\left|\bar{A}_{2}\right|$ can be a linear combination of $\left|A_{1}\right|$ and $\left|A_{2}\right|$. We will compare $\left|\bar{A}_{1}\right|$ and $\left|\bar{A}_{2}\right|$.

$$
\begin{align*}
& \left|\bar{A}_{1}\right|-\left|\bar{A}_{2}\right|  \tag{1}\\
= & \left(\frac{a_{1}}{h_{1}}\left|A_{1}\right|+\left(1-\frac{a_{1}}{h_{1}}\right)\left|A_{2}\right|\right)-\left(\left(\frac{b_{1}}{h_{1}}\right)\left|A_{1}\right|+\left(1-\frac{b_{1}}{h_{1}}\right)\left|A_{2}\right|\right) \\
= & \left(\frac{b_{1}}{h_{1}}-\frac{a_{1}}{h_{1}}\right)\left|A_{1}\right|-\left(\frac{b_{1}}{h_{1}}\right)\left|A_{1}\right|+\left(1-\frac{b_{1}}{h_{1}}\right)\left|A_{2}\right| \\
= & \left(\frac{a_{1}-b_{1}}{h_{1}}\right)\left(\left|A_{1}\right|-\left|A_{2}\right|\right)
\end{align*}
$$

where $b_{1}=x_{2}-y_{2}$ and $a_{1}=x_{2}-y_{1}$.
But $a_{1}>b_{1}$ and (1) become positive. It follows similar analysis for $p+1 \leq i \leq n$.
corollary 3.3. $\|\bar{A}\| \leq\|A\|$.
proof. It follows theorem3.2.
Before we state the theorem about $\bar{A}^{-1}$, we need to introduce some notations by letting $e_{i}=\frac{\left|x_{i}-y_{i}\right|}{h_{i}}$ and $d_{i}=\frac{\left|x_{i}-y_{i}\right|}{h_{i-1}}$. Also we let $R_{i}$ and $\bar{R}_{i}$ be the $i$-th rows of $A$ and $\bar{A}$ respectively.

Theorem 3.4 (Joonsook Lee, 1992). Let $y_{1} \in\left[x_{1}, x_{2}\right), y_{i} \in$ ( $x_{i-1}, x_{i+1}$ ) for $i=2, \ldots n-1$ and $y_{n} \in\left(x_{n-1}, x_{n}\right]$. Let $\left(x_{k}, x_{k+1}\right)$ be the unique subinterval containing two knots. If we assume that $y_{m}$ belongs to the separated interval $\left[x_{p+1}, x_{q}\right]$, then

$$
\begin{aligned}
& \bar{R}_{m}= \\
& \begin{cases}\frac{1}{1-e_{m}} S_{m} & \text { if } p+1 \leq m \leq k-1 \\
\left(\frac{1-d_{k+1}}{1-e_{k}-d_{k+1}}\right) S_{k}-\left(\frac{d_{k+1}}{1-e_{k}-d_{k+1}}\right) T_{k+1} & \text { if } m=k \\
\left(\frac{1-e_{k}}{1-e_{k}-d_{k+1}}\right) T_{k+1}-\left(\frac{e_{k}}{1-e_{k}-d_{k+1}}\right) S_{k} & \text { if } m=k+1 \\
\frac{1}{1-d_{m}} T_{m} & \text { if } k+2 \leq m \leq q\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{m}=\sum_{i=0}^{m-(p+1)}(-1)^{-i} a_{m-i}^{m-1} R_{m-i} \\
& T_{m}=\sum_{i=0}^{q-m}(-1)^{i} b_{m+1}^{m+i} R_{m+i}
\end{aligned}
$$

and

$$
a_{s}^{t}=\left\{\begin{array}{c}
\frac{e_{s} \ldots e_{t}}{\left(1-e_{s}\right) \ldots\left(1-e_{t}\right)} \\
\text { 1if } s>t
\end{array} \quad b_{s}^{t}=\left\{\begin{array}{c}
\frac{d_{s} \ldots d_{t}}{\left(1-e_{s}\right) \ldots\left(1-e_{t}\right)} \\
\text { lif } s>t
\end{array}\right.\right.
$$

Since $\bar{A}$ is nonsingular with our assumption, any row of $\bar{A}$ is a linear combination of $A_{i j}^{-1}$. This means that $\bar{A}_{m j}^{-1}$ is a linear combination of $A_{i j}^{-1}$ for $i=1 \ldots n$. Now we want to compare $\left\|\bar{A}^{-1}\right\|$ and $\left\|A^{-1}\right\|$. But
$\left\|A^{-1}\right\|=\max _{1 \leq i \leq n-2}\left\{\frac{1}{h_{i}}+\frac{1}{h_{i+1}}\right\}$ where $\frac{1}{h_{i}}+\frac{1}{h_{i+1}}$ is a $(i+1)$-st absolute column sum. Then we need to compare $\left|A_{j}^{-1}\right|$ and $\left|\bar{A}_{j}^{-1}\right|$ only for $j=2 \ldots n-1$ By lemma2.1, $A_{i j}^{-1}=0$ for $i \neq j-1, j, j+1$ and $\bar{A}_{m j}^{-1}$ becomes a linear combination of $A_{j-1, j}^{-1}, A_{j, j}^{-1}, A_{j+1, j}^{-1}$. Now by theorem3.4, we can actually calculate the coefficients for $A_{j-1, j}^{-1}, A_{j, j}^{-1}, A_{j+1, j}^{-1}$. Since these coefficients depend on $m$ and $j$, we denote them by $E_{j}(m)$. Then we write

$$
\begin{aligned}
\bar{A}_{m j}^{-1}= & E_{j-1}(m) A_{j-1, j}^{-1}+E_{j}(m) A_{j, j}^{-1}+ \\
& E_{j+1}(m) A_{j+1, j}^{-1}
\end{aligned}
$$

Here $E_{j}(m)$ represents the coefficient of $R_{j}$ when we write $\bar{R}_{m}$ as a linear combination of $R_{i}^{\prime} s$ by theorem3.4. For example $E_{m}(m)$ is one of $\left\{\frac{1}{1-e_{m}}, \frac{1-d_{m+1}}{1-e_{m}-d_{m+1}}, \frac{1-e_{m-1}}{1-e_{m-1}-d_{m}}, \frac{1}{1-d_{m}}\right\}$.

Lemma 3.5. $E_{i}(i)>1, E_{i+1}(i) \leq 0, E_{i-1}(i) \leq 0, E_{i+2}(i) \geq 0$ and $E_{i-2}(i) \geq 0$.

Proof. It is verified by direct calculation.
Theorem 3.6. $\left\|\bar{A}^{-1}\right\| \geq\left\|A^{-1}\right\|$.
Proof. We will compare $\left|\bar{A}_{m, j}^{-1}\right|$ with $\left|A_{m, j}^{-1}\right|$ for $j \geq 2$. By lemma2.1, $A_{m, j}^{-1}=0$ if $m \neq j-1, j, j+1$. Then $\left|\bar{A}_{m, j}^{-1}\right| \geq\left|A_{m, j}^{-1}\right|$ for $m \neq$ $j-1, j, j+1$. Hence we only need to consider the case $m=j-1, j, j+1$. Now

$$
\bar{A}_{m}^{-1} j=E_{j-1}(m) A_{j-1, j}^{-1}+E_{j}(m) A_{j, j}^{-1}+E_{j+1}(m) A_{j+1, j}^{-1}
$$

and $A_{j-1, j}^{-1}$ and $A_{j+1, j}^{-1}$ are positive and $A_{j, j}^{-1}$ is negative.
First we consider $m=j-1$.

$$
\bar{A}_{j-1, j}^{-1}=E_{j-1}(j-1) A_{j-1, j}^{-1}+E_{j}(j-1) A_{j, j}^{-1}+E_{j+1}(j+1) A_{j+1, j}^{-1}
$$

Then by lemma3.5, all three terms are positive and

$$
\begin{aligned}
& \left|\bar{A}_{j-1, j}^{-1}\right| \\
= & \left|E_{j-1}(j-1) A_{j-1, j}^{-1}\right|+\left|E_{j}(j-1) A_{j, j}^{-1}\right|+\left|E_{j+1}(j-1) A_{j+1, j}^{-1}\right| \\
\geq & \left|A_{j-1, j}^{-1}\right|
\end{aligned}
$$

The cases $m=j, j+1$ follow similar analysis.
By corollary3.3, we know that $\|\bar{A}\|$ is always smaller than $\|A\|$. But only $y_{1}$ and $y_{n}$ may contribute to improve $\|\bar{A}\|$ since $\|\bar{A}\|=$ $\max \left\{\left|\bar{A}_{1}\right|,\left|\bar{A}_{n}\right|\right\}$. On the other hand, $\left\|A^{-1}\right\|$ is getting bigger as more knots are picked. We may improve the condition number over all if we improve $\|\bar{A}\|$ while holding $\left\|\bar{A}^{-1}\right\|$ egual to $\left\|A^{-1}\right\|$.

## References

1. Bos,L.P. and Salkauskas,K., On the matrix $\left[\left|x_{i}-x_{j}\right|^{3}\right]$ and the cubic spline continuity equations, Journal of Approximation Theory 51 (1987), 81-88.
2. Franke, Scattered Data Interpolation: tests of some methods, Math.Comp. 38 (1982), 181-200.
3. Lee, Joonsook, Singularity of a Coefficient Matrix Applied Functional Analysis and Optimization, (to appear).
4. Schoenberg,I.J., Metric Spaces and Compeletly Monotone Functions, Ann. of Math. 38 (1938), 811-841.

Department of Mathematics
Ewha Womans University
Seoul, Korea

