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THE CONDITION NUMBERS OF

TWO INTERPOLANT MATRICES

JOONSOOK LEE

1. Introduction

Given the scattered data (xi,fi), Xi E Rm,!i E R,i = 1, ... ,n,
the interpolation problem by radial functions consists of finding an
interpolant to the data of the form

n

Sex) = I: aigi(X)
i=I

where gi(X) is a radial function. In this papaer, we consider the case
of gi(X) = Ilx - xi/I and Xi E RI. Then 11 ·11 becomes absolute value.

There are some methods to find an interpolant S(x) using various
radial functions (Franke, 1982). In 1938, Shoenberg proved that the
coefficient matrix Aij = IIxi -xjll is nonsingular if 11· 11 is the Euclidean
norm. Hence interpolation by radial functions is always possible for
any set of distinct points. But a linear system determining the radial
interpolant is known to be ill-conditioned for large data sets.

To decrease the condition number of the coefficient matrix arising
in the linear system, we introduce different set of points {yd to define
the basis functions. The new basis will be of the form gi(X) = Ilx - Yill
and the new coefficient matrix A will be Aij = IIxi - Yj 11. The points Yi
used to define the basis functions will be called 'knots' and the points
x i where interpolation is to be carried out will be called 'nodes'.

The new coefficient matrix A becomes singular for some set of {yd
while A = 11 xi-X j 11 is nonsingular for any set of {xd. The next
theorem tells the position of {yd where A is nonsingular.
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THEOREM (JOONSOOK LEE,1992). A = IIxi - Yill is nonsingular
if and only if YI E [XI, X2), Yi E (Xi-I, Xi+l) for i = 2, ... , n - 2 and
Yn E (xn-I,X n ]. 0

We assume above position of {yd throughout this paper. Now for the
matrix nonn for condition number, we use 1I·lh-nonn i.e. maximum
absolute column sum.

2.The Condition Number of A = II xi - xiII
Since explicit fonns of A and A-I are known, we can actually calcu

late the condition number of A. Let 0 = Xl < X2 < ... < X n = 1. We
can assume this without loss of generality since a condition number is
invariant in scaling.

LEMMA 2.1 (Bos AND SALCAUSCUS, 1987). If A is defined by
A = IIxi - Xi ,I, then its inverse is

A-I =
h1-1 I 0 0 I
2h1 2h1 '2

I _ h1 +h2 I 0 0 02h1 2h1 h2 2h2
0 I _h2+ha I 0 02h2 2h 2ha 2ha

o
I
'2 o o

I
2h... _ 2

o

h... _2+h _l

2h... _2 h _l

I
2h... _l

I
2h..._ 1

h ... _1-1
2h..._l

LEMMA 2.2. Let IAml = ~:=IIAiml. Then

IAII> IA2 1> ... > IApl and IAnl> IAn-II > ... > IAp+I1

where
ifn is even

ifn is odd

Proof. It is verified by direct calculation. We supress the detail. 0

Now we state the lemma concerning the nonn of A and A-I without
proof.
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LEMMA 2.3, Let hi = IXi+I - xiI. Then

_ {1 I}IIA 111= max -+-
lSiSn-2 hi hi+1

The next theorem gives a lower bound for IIAlI.
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THEOREM 2.4. IIAII;;:: ¥

Proof. From lemma2.2, IIAII = max{L:~:ll(n - i)hi,2:7:/(n - i)

hn-d· Suppose IIAII < ¥. Then L:7:/(n - i)hi < ¥ and 2:~:11(n
i)hn - i < ¥. Now

n-l n-l
L)n - i)hi +L)n - i)hn- i
i=l i=l
n-I n-l

= I)n - i)(hi + hn- i) = n L hi = n
i=l i=l

n-l
SInce Lhi = 1.

i=l

But 2:~:11(n - i)h i + L:~:l\n - i)hn- i < ¥+ ¥ = n. This is a
contradiction. 0

If 2:~:11(n - i)hi = 2:~:/(n - i)hn- i, the minimum condition num
ber can be achieved. We can also show that if 2:~:11(n - i)hi is not

equal to L:7:1I(n - i)hn- i, then IIAII > ¥. Indeed let L:~:/(n - i)hi >
2:~:/(n-i)hn-i' Then IIAII = 2:~:/(n-i)hi and 211AII = 2 2:~11(n-
')h ",n-l( ")h ",n-I( ')h ",n-l h 0 ..
Z i > L.ti=l n - Z i + L.ti=l n - Z i = n L...ti=l i = n. ne pOSItIon
which satisfying L:~:/(n - i)hi = L:~:II(n - i)hn-i is equally spaced
nodes.

Now we will achieve a lower bound for IIA-III. But we need to put
a restriction on the number of nodes. We get a lower bound for IIA-111
only for the case of odd number of nodes. From now on, we let k be
an index such that IIA-111 = hI + -h1 .

le le+l
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LEMMA 2.5. If IIA-III < 2(n -1), then hi + hi+! > n:'1 for all i.

Proof· Suppose there exist some j such that h j + hj+1 ::; n:'I' Now

(h j +hj+l)2 ~ 4hj hj +1 and this implies that h/,,:~~+/ ~ hj+tjt;l. Then
by our assumption

THEOREM 2.6. IIA-I II ~ 2(n -1) for odd number of nodes.

Proof. Suppose IIA-III < 2(n-1). Then by lemma 2.4, hi+hi+1 >
n:'1 for all i. Then

n-I 2 n-1
1 = L hi = (hI + h2 ) + ... + (h n - 2 + hn - 1 ) > n -1 . -2- = 1 0

i=1

THEOREM 2.7. Ifn is odd and IIA-11I = 2(n -1), then hi = n:l
for all i.

Proof First we will show that hi + hi+! .~. n:'l for all i. Suppose
there exist some j such that h j +- hj+1 < n:'l. Then by lemrIla2.4,
lj + hj~l > 2(n -1) and this contradicts our assumption.

Now the facts hi +hi+ I ~ n:'l for all i and (hI +h2 ) +... +(hn - 2 +
hn - I ) = 1 imply that hi+hi+l = n:'1 for odd i. Let m be any arbitrary
odd index. Then hm + hm +1 = n:'l' But by the proof of lemma2.4,

h;;~hm+l > 2(n - 1) and equality holds only when hm = --1-1 and
m m+l - n-

hm +! = n:I' 0

THEOREM 2.8. Let n be an odd number. IIAIIIIA-11I = n(n -1) if
and only ifnodes are equally spaced.

Proof. If hi = n:I' it is obvious that IIAIIIIA-III = n(n -1). Now
suppose IIAIIIIA-11I = n(n - 1). Since IIAII ~ ¥ and IIA-I II ~ 2(n
1), IIAIIIIA-11I = n(n - 1) implies that IIAII = ¥ and IIA-1 1I =
2(n -1). Then by theorem2.7, hi = n:l' 0
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We have shown that if n is odd, the minimum condition number
interpolation matrix is n(n -1). IT n gets larger than 100, the condition
number becomes more than 1002. We introduce new set of points {Yi}
called 'knots' for basis and compare the two condition numbers of A
andA.

3. The Comparison of condition numbers of two coefficient
matrices

LEMMA 3.1(JOONSOOK LEE, 1992). If Ym is in the interval [Xk,
Xk+l], then the m-th column of A is a linear and convex combination
of the k-th and the (k + l)-st columns of A i.e.

A = (Xk+l - Ym) A + (Ym - Xk) A 0
m hk k h

k
k+l

Since every element of A is nonnegative, IAi I is a linear and convex
combination of IAjl and IAj+ll for some j.

THEOREM 3.2. IIAII = max{IA11, IAnl}.

Proof. Since we assume that Yl E [XI, X2) and Yi E (Xi-I, xi+d for
i = 2 ... n -1 and Yn E (xn-I,X n ], it is clear that IAll is a linear and
convex combination of IAll and IA21.

Let p be the same p in lemma 2.2. Then for 2 :::; i :::; p, IAi I is a
linear and convex combination of IAil and IAi+ll, or IAil and IAi-ll·
If i ~ 3, lAd> l..4i l. But if i = 2, 1..421can be a linear combination
of IAll and IA21. We will compare IAll and 1..421.
(1)

1..41 1-1..421

= (~: IAII + (1- ~:)IA21) - ((~:)IAll + (1- ~:)IA21)

( bl al) (bl ) (bl )= --- IAll- - IAll+ 1-- IA21
hI hI hI hI

=(a
l~ b

l )(IAl l-IA21)

where bl = X2 - Y2 and al = X2 - Yl.
But al > bl and (1) become positive. It follows similar analysis for

p+ 1:::; i:::; n. 0
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COROLLARY 3.3. IIAII::; IIAII.

proof. It follows theorem3.2. D

Before we state the theorem about A-I, we need to introduce some
notations by letting ei = IXih-:yd and di = IXhi ~Yi I. Also we let Ri and

" .-1

~ be the i-th rows of A and A respectively.

THEOREM 3.4 (JoONSOOK LEE, 1992). Let Yl E [XbX2),Yi E

(Xi-l,Xi+l) for i = 2, ... n -1 and Yn E (Xn-bXn). Let (Xk,Xk+l)
be the unique subinterval containing two knots. H we assume that Ym
belongs to the separated interval [Xp+b xq], then

Rm =

1_lern Sm if p + 1 ::; m ::; k - 1

( I-dk±l ) S ( dk±l ) ,.." if k
1 ek-dk+l k - l-ek dk+l .Lk+l m =

(1-:k-~t±J Tk+l - (l-eke~dk+J Sk ifm = k + 1

1-~rn Tm if k + 2 ::; m ::; q

where

m-(p+l)

Sm = ~ (-l)-ia:=~Rm_i
i=O

q-m

Tm = ~(-l)ib:t;Rm+i
i=O

and

Since A is nonsingular with our assumption, any row of A is a linear
combination of Ai:? This means that A~j is a linear combination of

Aijl for i = 1 ... n. Now we want to compare IIA-1 11 and IIA-1 11. But
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IIA-III = maxI<i<n-2 {hI + -hI } where hI +~ is a (i + l)-st abso-- - • _+1 • ,+1

lute column sum. Then we need to compare IA;11 and IA;ll only for

j = 2 ... n -1 By lemma2.1, Aijl = 0 for i 1= j -l,j,j +1 and A~~ be

comes a linear combination of Aj~l,j'Aj,], Aj~l,j' Now by theorem3.4,

we can actually calculate the coefficients for Aj~l,j' Aj,], Aj~l,j' Since
these coefficients depend on m and j, we denote them by Ej(m). Then
we write

A~~ =Ej-l(m)Aj~l,j+Ej(m)Aj,] +
Ej+l(m)Aj~l,j

Here Ej(m) represents the coefficient of Rj when we write Rm as a
linear combination of R~s by theorem3.4. For example Em(m) is one of

{_l_ I-dm±l l-e m _l _1_}
I-em' l-em -dm ±l ' l-em_l-dm ' I-dm .

LEMMA 3.5. Ei(i) > 1,Ei+l(i) :::; O,Ei- 1(i) :::; O,Ei+2(i) ~ 0 and
E i - 2 (i) ~ O.

Proof. It is verified by direct calculation. 0

THEOREM 3.6. IIA-1 11 ~ IIA- I II.
Proof. We will compare IA~~jl with IA~~jl for j ~ 2. By lemma2.1,

A~~j = 0 if m 1= j - l,j,j + 1. Then IA~~jl 2 IA~~jl for m 1=
j -1,j,j +1. Hence we only need to consider the case m = j -1,j,j +1.
Now

and Aj~l,j and Aj~l,j are positive and Aj,] is negative.
First we consider m = j - 1.

Aj~l,j = Ej-l(j - l)Aj~l,j +Ej(j - I)Aj,J +Ej+l(j + I)Aj~l,j'

Then by lemma3.5, all three terms are positive and
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The cases m = j, j + 1 follow similar analysis. 0

By corollary3.3, we know that IIAII is always smaller than IIAII.
But only Yl and Yn may contribute to improve IIAII since IIAII =
max{IAll,IAnl}. On the other hand, IIA-llI is getting bigger as more
knots are picked. We may improve the condition number over all if we
improve IIAII while holding IIA-111 egual to IIA-111.
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