J. Korean Math. Soc. 31 (1994), No. 1, pp. 139-148

THE DECOMPOSITION OF ALL SMOOTH VECTOR FIELDS ON SU(3)/T(r,s) INTO IRREDUCIBLE UNITARY REPRESENTATIONS

JOON-SIK PARK

0. Introduction.

Applying Frobenius' reciprocity law (cf. Proposition 2) and Urakawa's theorem (cf. Proposition 1), we completely decompose the set $\mathfrak{X}(M(r,s))$ of all smooth vector fields on SU(3)/T(r,s) into irreducible unitary representiations.

1. Preliminaries and Main Results.

1.1. In this section, we present some results on irreducible unitary representations of a compact connected Lie group. Throughout this section we use the following notation.

G: a compact connected Lie group; G_o : the commutator subgroup of G; $T(\text{resp. } T_o)$: a maximal toral subgroup of G (resp. G_o); $\mathfrak{g}(\text{resp.} \mathfrak{g}_o, \mathfrak{t}, \mathfrak{t}_o)$: the Lie algebra of G (resp. G_o, T, T_o); \mathfrak{g}_o^C (resp. \mathfrak{t}_o^c): the complexification of $\mathfrak{g}_o(\text{resp. } \mathfrak{t}_o)$.

We choose a positive definite inner produdct \langle , \rangle on \mathfrak{g} which is invariant under Ad(G), where Ad denotes the adjoint representation of G. Fixing a lexicographic order \rangle in $\sqrt{-1} \mathfrak{t}_o^*$, let P be the set of all positive roots of \mathfrak{g}_o^c relative to \mathfrak{t}_o^c . We denote by δ half the sum of all elements in P. Let $\Gamma(G) = \{H \in \mathfrak{t} \mid exp(H) = e\}$ and $I = \{\lambda \in \sqrt{-1} \mathfrak{t}^* \mid \lambda(H) \in \sqrt{-1} 2\pi Z$ for all $H \in \Gamma(G)\}$. An element in I is called a G-integral form. The elements of

 $D(G) = \{\lambda \in I; \langle \lambda, \alpha \rangle \ge 0 \text{ for all } \alpha \in P\}$

Received November 21, 1992. Revised April 2, 1993.

This research was supported by KOSEF(1991).

Joon-Sik Park

are called dominant G-integral forms. Then there exists a natural bijection from D(G) onto the set \hat{G} of all nonequivalent finite dimensional irreducible unitary representations of G which map a dominant G-integral form $\lambda \in D(G)$ to an irreducible unitary representation $(V_{\lambda}, \Pi_{\lambda})$ having highest weight λ . For $\lambda \in D(G)$, put $d(\lambda)$ the dimension of the representation of $(V_{\lambda}, \Pi_{\lambda})$. $d(\lambda)$ is given by

(1)
$$d(\lambda) = \prod_{\alpha \in P} \frac{\langle \lambda + \delta, \alpha \rangle}{\langle \delta, \alpha \rangle}.$$

1.2. We consider the following 7-dimensional homogeneous space M(r,s)

:= SU(3)/T(r,s) admitting positively curved Riemannian metrics, which was discovered by S. Aloff and N.R. Wallach (cf. [1]).

We preserve the notation used in 1.1. Let G = SU(3) and $\mathfrak{g} = \mathfrak{su}(3)$, the Lie algebra of SU(3), and let $T := T(r,s) := \{ diag[e^{2\pi i r\theta}, e^{2\pi i s\theta}, e^{-2\pi i (r+s)\theta}]; \theta \in R \}, |r| + |s| \neq 0 \ (r,s \in Z), i = \sqrt{-1}.$ Here diag[x, y, z] denotes a diagonal matrix of order 3 whose diagonal entries are x, y and z. Consider the coset manifold M(r, s) which is simply connected and $H^4(M(r,s), Z) \cong Z/cZ$ with $c = r^2 + rs + s^2$, provied r, s are relatively prime. The Lie algebra $\mathfrak{t}(r, s)$ of T(r, s) is included in a maximal abelian subalgebra \mathfrak{t} of \mathfrak{g} given by

$$\mathfrak{t} = \big\{ diag[x_1, x_2, x_3]; \ x_j \in R \ (j = 1, 2, 3), \ x_1 + x_2 + x_3 = 0 \big\}.$$

We choose an inner product <, > which is defined by Killing form B on \mathfrak{g} , i.e.,

(2)
$$\langle X,Y\rangle := -B(X,Y) = -6 Trace(XY), \ (X,Y \in \mathfrak{g}).$$

Let g be the G-invariant Riemannian metric on M(r,s) induced from this inner product \langle , \rangle , and let $\mathfrak{X}(M(r,s))$ be the set of all C^{∞} -vector fields on M(r,s). We define an inner product $((\ ,\))$ on $\mathfrak{X}(M(r,s))$ by

(3)
$$((X,Y)) := \int_{M(r,s)} g(X,Y) v_g,$$

and define the Hermitian inner product ((,)) on $\mathfrak{X}^{C}(M(r,s))$ which is the complexification of $\mathfrak{X}(M(r,s))$. The translation $\tau_{x}, (x \in G)$, of M(r,s) is defined by $\tau_x : M(r,s) \ni \overline{y} \to \overline{xy} \in M(r,s)$. Then $(\tau, \mathfrak{X}^C(M(r,s)))$ is a unitary representation of G.

1.3. We preserve the notation used in 1.2. The G-action on $\mathfrak{X}^{C}(M(r,s))$ is defined by

(4)
$$((\tau_x)_*V)_y := (\tau_x)_*V_{\overline{x^{-1}y}}, x, y \in G, V \in \mathfrak{X}(M(r,s)).$$

In this paper, we get the following Main Theorem and Corollary.

THEOREM. Let $(\tau, \mathfrak{X}^C(M(r,s))) = \sum_{\lambda \in D(SU(3))} m(\lambda) V_{\lambda}$ be the decomposition of $\mathfrak{X}^C(M(r,s))$ into irreducible unitary representations of SU(3). Assume r and s are relatively prime. Then D(SU(3)), $d(\lambda) = \dim_C V_{\lambda}$ and $m(\lambda)$ are as follows:

1)
$$D(SU(3)) = \{\lambda = m_1e_1 + m_2e_2 | m_1 \ge m_2 \ge 0, m_j \in Z(j = 1, 2)\},\$$

2) $d(\lambda) = \frac{1}{2}(m_1 - m_2 + 1)(m_1 + 2)(m_2 + 1),\$
 $\lambda = m_1e_1 + m_2e_2 \in D(SU(3)),$

3) For $\lambda = m_1e_1 + m_2e_2 \in D(SU(3))$, if $(m_1 + m_2)$ is a multiple of 3

1. in case of $m_2 = 0, 1, 2,$

1	m_1	=	0	3n	2	2+3n	4	4 + 3n
{	m_2	=	0	0	1	1	2	2
	$m(\lambda)$	\geq	1	7	8	1 14	15	21

2. in case of $m_2 = 3n$,

 $m(\lambda) \geq \begin{cases} 21m+7 & \text{when } m_1 = 3n+3m, \ (m=0,1,2,\cdots,n-1), \\ 21n+1 & \text{when } m_1 = 6n, \\ 21n+7 & \text{when } m_1 = 6n+3m, \ (m=1,2,\cdots), \end{cases}$

3. in case of $m_2 = 3n + 1$,

$$m(\lambda) \geq \left\{egin{array}{ll} 21m+14 & ext{when } m_1 = 3n+3m+2, \ & (m=0,1,2,\cdots,n-1), \ 21n+8 & ext{when } m_1 = 6n+2, \ & 21n+14 & ext{when } m_1 = 6n+3m+2, (m=1,2,\cdots), \end{array}
ight.$$

4. in case of $m_2 = 3n + 2$,

$$m(\lambda) \geq \left\{egin{array}{ll} 21(m+1) & ext{when } m_1 = 3n+3m+4, \ & (m=0,1,2,\cdots,n-1), \ 21n+15 & ext{when } m_1 = 6n+4, \ 21(n+1) & ext{when } m_1 = 6n+3m+4, (m=1,2,\cdots), \end{array}
ight.$$

where , in each case of 3), n varies over the set of all the natural numbers.

COROLLARY. The G-irreducible representation V_{λ} with highst weight $\lambda = 0$ contained in $\mathfrak{X}^{C}(M(r,s))$ is given by $\{fX_{7}\}_{C} = \{f \otimes X_{7}\}_{C}$, where f is a constant function on G and X_{7} is an orthogonal element to $\mathfrak{t}(r,s)$ in \mathfrak{t} with respect to \langle , \rangle .

2. Proof of the Main Results

Following the notations used in 1.2 and 1.3, we will prove the Main Results. The Lie algebra $\mathfrak{sl}_3(C)$ of $SL_3(C)$ is the complexification of the real Lie algebra $\mathfrak{su}(3)$ of SU(3). Let E_{ij} denote a square matrix with the (i, j)-entry being 1, and all the other entries being 0. Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{sl}_3(C)$ which consists of the diagonal matrices of trace 0. Then we have the direct sum decomposition

(5)
$$\mathfrak{sl}_3(C) = \mathfrak{h} + \sum_{i \neq j} CE_{ij}.$$

Then we have

(6)
$$[H, E_{ij}] = (e_i(H) - e_j(H))E_{ij}, \quad (H \in \mathfrak{h}).$$

Hence the non-zero roots of $\mathfrak{sl}_3(C)$ with respect to \mathfrak{h} are

(7)
$$e_i - e_j, \ (1 \le i, j \le 3, \ i \ne j).$$

We put

(8)
$$\alpha := e_1 - e_2, \ \beta := e_2 - e_3, \ \gamma := e_1 - e_3.$$

1**42**

We fix an order on $\sqrt{-1}\mathfrak{t}^*$ in such a way that $\alpha > \beta > 0$. On the other hand, the elements $H_{e_i-e_j} \in \sqrt{-1}\mathfrak{t}$ such that $(e_i - e_j)(H) = B(H_{e_i-e_j}, H)$ for all $H \in \mathfrak{t}^C$ are given as follows.

(9)
$$\begin{cases} H_{\alpha} = diag[1/6, -1/6, 0], & H_{\beta} = diag[0, 1/6, -1/6], \\ H_{\gamma} = diag[1/6, 0, -1/6]. \end{cases}$$

Following the order > on $\sqrt{-1}\mathfrak{t}^*$, we get

(10)
$$P = \{\alpha, \beta, \gamma\}, \quad \delta = 2e_1 + e_2.$$

Then the set D(G) of all dominant integral forms on G relative to t is given by
(11)

$$D(G) = \{\lambda = m_1e_1 + m_2e_2 | m_1 \ge m_2 \ge 0, \text{ and } m_j \in Z(j = 1, 2)\}.$$

For $\lambda = m_1 e_1 + m_2 e_2 \in D(G)$, we get from (1), (9) and (10)

(12)
$$d(\lambda) = \frac{1}{2}(m_1 - m_2 + 1)(m_1 + 2)(m_2 + 1).$$

We identify $\mathfrak{X}(M(r,s))$ with the following $C_T^{\infty}(G,\mathfrak{m})$ in the following definition (cf.[3]). Here \mathfrak{m} is the orthogonal complement of $\mathfrak{t}(r,s)$ in \mathfrak{g} .

DEFINITION. Let $C^{\infty}(G, \mathfrak{m})$ be the space of all smooth maps of G into \mathfrak{m} . We define the subspace $C^{\infty}_{T}(G, \mathfrak{m})$ of $C^{\infty}(G, \mathfrak{m})$ by (13)

$$C^{\infty}_{T}(G,\mathfrak{m}):=\big\{f\in C^{\infty}(G,\mathfrak{m}); f(xh)=Ad(h^{-1})f(x), x\in G, h\in T\big\}.$$

The identification Φ of $\mathfrak{X}(M(r,s))$ with $C^{\infty}_{T}(G,\mathfrak{m})$, $\Phi; C^{\infty}_{T}(G,\mathfrak{m}) \to \mathfrak{X}(M(r,s))$, is given by

(14)
$$\Phi(f)(\bar{x}) := (\tau_x)_* \big(f(x) \big)_o, \ x \in G.$$

Here $X_o, (X \in \mathfrak{m})$, is the tangent vector of M(r, s) at the origin $o := \{T\}$ which is defined by $X_o f = d/dt \ f(exp \ tX\dot{o})|_{t=0}$, and $(\tau_x)_*$ is the differential of the translation τ_x of M(r, s). Under the G-action on $C_T^{\infty}(G, \mathfrak{m})$ defined by

(15)
$$(\tau_x f)(y) := f(x^{-1}y), \ x, y \in G, \ f \in C^{\infty}_T(G, \mathfrak{m}),$$

 Φ is a G-isomorphism, that is,

(16)
$$(\Phi \circ \tau_x)(f) = ((\tau_x)_* \circ \Phi)(f), \ x \in G, \ f \in C^{\infty}_T(G, \mathfrak{m}).$$

For every $m \in \mathbb{Z}$, the following homomorphism \mathcal{X}_m of the 1-dimensional group T into the multiplicative group $\{z \in C; |z| = 1\}$ is well defined:

$$\mathcal{X}_m: T \ni diag[e^{2\pi i r\theta}, e^{2\pi i s\theta}, e^{-2\pi i (r+s)\theta}] \to e^{2\pi i m\theta}, \ i = \sqrt{-1}.$$

Hence $\mathcal{X}_m(m \in Z)$ are characters of T(r, s). In fact, we have

$$diag[e^{2\pi i r heta}, e^{2\pi i s heta}, e^{-2\pi i (r+s) heta}] = ext{identity} \iff heta \in Z,$$

since r, s are relatively prime.

To compute $m(\lambda)$, we apply the following two propositions.

PROPOSITION 1 ([6]). Assume r and s in T are relatively prime. Let $(V_{\lambda}, \pi_{\lambda})$ be an irreducible unitary representation of G with the highest weight $\lambda = m_1 e_1 + m_2 e_2 \in D(G)$. Then, as a representation of T, V_{λ} is decomposed into T-irreducible submodules as follows:

(17)
$$V_{\lambda} = \sum_{p=m_2+1}^{m_1+1} \sum_{q=0}^{m_2} \sum_{d=0}^{p-q-1} V_{r(m_1+m_2+2-2p-q+d)+s(1-p+q+2d)},$$

where $V_m (m \in Z)$ is the 1-dimensional irreducible T-submodule of V_{λ} with the character \mathcal{X}_m .

PROPOSITION 2. (Frobenius' reciprocity Theorem [2, 3]). The multiplicity $m(\lambda)$ of V_{λ} , $\lambda \in D(G)$, in $C_T^{\infty}(G, \mathfrak{m}^C)$ is

$$\dim Hom_G(V_{\lambda}, C^{\infty}_T(G, \mathfrak{m}^C)) = \dim Hom_T(V_{\lambda}, \mathfrak{m}^C),$$

where \mathfrak{m}^c is Ad(T)-module.

By above two the propositions, we get for $\lambda \in D(G)$

(18)
$$m(\lambda) = \begin{cases} \text{the number of elements } m, (m \text{ in } V_m \text{ of} \\ \text{the right side of (17) }), \text{ which belong to} \\ \{\pm (k-l), \ \pm (2k+l), \ 0, \ \pm (k+2l) \}. \end{cases}$$

144

We evaluate the number $m(\lambda)$, $\lambda = m_1 e_1 + m_2 e_2 \in D(G)$, by using a computer. In the table below, we express $n(\lambda)$ by the number whose position is (m_2, m_1) (see Fig.1). Then, $n(\lambda) \leq m(\lambda)$.

Thus we obtain the desired result for $m(\lambda)$ of the main theorem.

Finally, we define $(C^{\infty}(G) \otimes \mathfrak{m})_T$ by the subspace of $C^{\infty}(G) \otimes \mathfrak{m}$ consisting all elements $\sum_{i=1}^{l} f_i \otimes Y_i \in C^{\infty}(G) \otimes \mathfrak{m}$ satisfying $\sum_{i=1}^{l} R_h f_i \otimes Ad(h)Y_i = \sum_{i=1}^{l} f_i \otimes Y_i$ for all $h \in T$, where $(R_h f)(x) := f(xh)$ $(h \in T, x \in G, f \in C^{\infty}(G))$.

Under the G-action on $C^{\infty}(G) \otimes \mathfrak{m}, (\tau_x f)(y) := f(x^{-1}y), \tau_x(f \otimes X) := \tau_x f \otimes X, (x, y \in G, f \in C^{\infty}(G), X \in \mathfrak{m}), \text{ the } (C^{\infty}(G) \otimes \mathfrak{m})_T$ is a G-submodule. Then, $C^{\infty}_T(G, \mathfrak{m})$ and $(C^{\infty}(G) \otimes \mathfrak{m})_T$ are G-isomorphic by correspondence $f \to \sum_{j=1}^7 f_j \otimes X_j$, where $f(x) = \sum_{j=1}^7 f_j(x)X_j, x \in G$ and $(X_j)_{j=1}^7$ is an orthonormal basis of \mathfrak{m} such that X_7 is an orthogonal element to $\mathfrak{t}(k, l)$ in \mathfrak{t} with respect to <, >.

From the above correspondences and main theorem, the corollary is obtained.

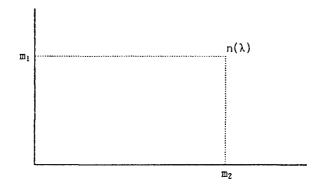


Fig. 1

35	<u> </u>	14		()	35			56			77			98		[]
34	<u> </u>	17	21		- 33	42			63			84		- 30	105	
33	7			28			49			70			91		100	112
32	<u> </u>	14		20	35		-10	56			77			98		116
31			21			42			63			84			105	
30	7		61	28		16	49		00	70		01	91		100	106
29	<u> </u>	14		20	35		10	56			77			98		100
28			21			42			63			84			99	
27	7			28			49			70			91			91
26	<u> </u>	14			35			56			77		•1	92	<u> </u>	
25			21			42			63			84			84	
24	7			28			49			70		<u> </u>	85		<u> </u>	70
23		14			35			56			77			77		
22			21			42			63			78	_		63	
21	7			28			49			70			70			49
20		14			35			56			71			56		
19			21			42			63			63			42	
18	7			28			49			64			49			28
17		14			35			56			56			35		
16			21			42			57			42			21	
15	7			28			49			49			28			7
14		14			35			50			35			14		
13		ч С	21	·	N	42			42			21				
12	7			28			43			28			7			
11		14			35			35			14					
10			21			36			21							
9	7			28			28			7						
8		14			29			14								
7			21			21										
6	7			22			7									
5		14			14											
4			15													
3	7			7												
2		8														
1																
0	1															
R1 R2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Table 1

e,

51			133			154			175			175		<u> </u>	154	
50	119			140			161			176			161			140
49		126			147			168			168			147		
48			133			154			169			154			133	
47	119			140			161			161			140			119
46		126			147			162			147			126		
45			133			154			133			112			91	
	119			140			155			140			133			112
43		126			147			147			126			105		
42			133			148			133			112			91	
41	119			140			140			119			98			77
40		126			141			126			105			84		
39			133			133			112			91			70	
	119			134			119			98			77			56
37		126			126			105			84			63		
36			127			112			91			70			49	
	119			119			98			77			56			35
34		120			105			84			63	1		42		
33			112			91	L		70			49	·		28	
	113	_		98			77	_		56			35	1	<u> </u>	14
31		105			84			63			42			21		
30			91			70			49			28			7	
29	98			77	_		56			35			14			
28		84			63			42		·	21	L				
27			70			49			28			7				
26	77			56			35			14						
25		63			42			21								
24			49			28			7							
23	56			35			14					L				
22		42			21											
21			28			7										
20	35			14										<u> </u>		
19		21														
18			7													
17	14															
16																
a. th	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Table 2

Joon-Sik Park

References

- S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positive curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93-97.
- 2. R. Bott, The index theorem for homogeneous differential operators, Differential and combinatorial Topology, Princeton University Press, 1965, pp. 167-187.
- 3. A. Ikeda and Y. Taniguchi, Spectra and eigenforms on S^n and $P^n(C)$, Osaka J. Math. 15 (1978), 515-546.
- 4. M. Sugiura, Unitary Representation and Harmonic Analysis, Kodansha, Tokyo and Wiley, New York, 1975.
- 5. M. Takeuchi, Modern Theory of Spherical Functions, Iwanami, Tokyo, 1974.
- 6. H. Urakawa, Numerical computations of the spectra of the Laplacian on 7-dimensional homogeneous manifolds SU(3)/T(k, l), SIAM J. Math. Anal. no.5 15 (1984), 979-987.

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Korea