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THE DECOMPOSITION OF ALL SMOOTH

VECTOR FIELDS ON SU(3)jT(r, s) INTO

IRREDUCIBLE UNITARY REPRESENTATIONS

JOON-SIK PARK

o. Introduction.

Applying Frobenius' reciprocity law (cf. Proposition 2) and Urak
awa's theorem (cf. Proposition 1), we completely decompose the set
.I(M(r, s)) of all smooth vector fields on SU(3)jT(r, s) into irreducible
unitary representiations.

1. Preliminaries and Main Results.

1.1. In this section, we present some results on irreducible unitary
representations of a compact connected Lie group. Throughout this
section we use the following notation. •

G : a compact connected Lie group; Go: the commutator subgroup
of G; T(resp. To): a maximal toral subgroup of G (resp. Go); g(resp.
go, t, to): the Lie algebra of G (resp. Go, T, To); g~ (resp. t~): the
complexification of go (resp. to)'

We choose a positive definite inner produdct < , > on 9 which is
invariant under Ad(G), where Ad denotes the adjoint representation
of G. Fixing a lexicographic order > in A t~, let P be the set
of all positive roots of g~ ralative to t~. We denote by 6 half the
sum of all elements in P. Let f(G) = {H E t I exp(H) = e} and
1= P. E A t* I >'(H) E A 27rZ for all H E f(Gn. An element
in I is called a G-integral form. The elements of

D(G) = P. El; ()., Q) ~ 0 for all Q E P}
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are called dominant G-integral forms. Then there exists a natural
bijection from D(G) onto the setG of all nonequivalent finite dimen
sional irreducible unitary representations of G which map a dominant
G-integral form >. E D(G) to an irreducible unitary representation
(V..x, ITA) having highest weight >.. For>. E D(G), put d(>.) the dimen
sion of the representation of (V..x,IT..x). d(>.) is given by

(1) d(>')= IT (>'+6,a).
OIEP (6, a)

1.2. We consider the following 7-dimensional homogeneous space
M(r,s)

:= SU(3)/T(r,s) adimitting positively curved Riemannian metrics,
which was discovered by S. Aloff and N.R. Wallach (cf. [1]).

We preserve the notation used in 1.1. Let G = SU(3) and g = su(3),
the Lie algebra of SU(3), and let T:= T(r,s):= {diag[e211"ir8,e211"is8,
e-211"i(r+s)8]; 8 ER}, Irl + Is/ =1= 0 (r, s E Z), i = yCI. Here
diag[x, y, z] denotes a diagonal matrix of order 3 whose diagonal entries
are x, y and z. Consider the coset manifold M (r, s) which is simply
connected and H4(M(r,s),Z)~Z/cZ with c = r 2 +rs +S2, provied
r,s are relatively prime. The Lie algebra t(r,s) of T(r,s) is included
in a maximal abelian subalgebra t oig given by

t = {diag[XI,X2,Xa]; Xj E R (j = 1,2,3), Xl + X2 + Xa = O}.

We choose an inner product < , > which is defined by Killing form B
on g, i.e.,

(2) (X, Y) := -B(X, Y) = -6 Trace(XY), (X, YE g).

Let 9 be the G-invariant Riemannian metric on M (r, s) induced from
this inner product < , >, and let X(M(r,s» be the set of all COO-vector
fields on M(r,s). We define an inner product (( , »on X(M(r,s» by

(3) ((X, Y»:= f g(X, Y)vg ,
lM(r,s)

and define the Hermitian inner product (( , »on XC(M(r, s» which
is the complexification of X(M(r,s». The translation Tx,(X E G),
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of M(r,s) is defined by Tx : M(r,8) 3 fj - xy E M(r,s). Then
(T,XC(M(r,s») is a unitary representation of G.

1.3. We preserve the notation used in 1.2. The G-action on
XC(M(r, s» is defined by

(4) (Tx)*V)y:= (Tx)*V~_ly, x,y E G, V E X(M(r,s».

In this paper, we get the following Main Theorem and Corollary.

THEOREM. Let (T,XC(M(r,s») = L:AED(SU(3» m('x)VA be the de
composition of XC(M(r, s» into irreducible unitary representations of
SU(3). Assume r and s are relatively prime. Then D(SU(3», d('x) =
dimcVA and m('x) are as follows:

1) D(SU(3» = {,X = mtet + m2e21 mt ~ m2 ~ O,mj E Z(j = 1,2)},
1

2) d('x) = 2(mt - m2 + 1)(mt + 2)(m2 + 1),

,X = mtet + m2e2 E D(SU(3»,

3) For'x = mtet + m2e2 E D(SU(3», if (mt + m2) is a multiple of3

1. in case ofm2 = 0,1,2,

{ m, = 0 3n 2 2+3n 4 4+3n
m2 = 0 0 1 1 2 2

m('x) > 1 7 8 14 15 21

2. in case of m2 = 3n ,

{

21m+7 whenmt =3n+3m, (m=O,I,2,··· ,n-l),

m('x) ~ 21n + 1 when mt = 6n,

21n+7 whenmt=6n+3m, (m=1,2,···),

3. in case of m2 = 3n + 1 ,

1
21m + 14

m('x) ~ 21n+8

21n + 14

when mt = 3n + 3m +2,

(m = 0,1,2"" , n - 1),

when mt = 6n + 2,

when mt = 6n + 3m + 2, (m =1,2", . ),
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4. in case ofm2 = 3n + 2,

I
21(m + 1)

meA) 2: 21n + 15

21(n + 1)

when ml = 3n + 3m + 4,

(m=O,1,2,··· ,n-1),

when ml = 6n+4,

when ml = 6n + 3m + 4, (m = 1,2, ... ),

where, in each case of 3), n varies over the set of all the natural
numbers.

COROLLARY. The G-irreducible representation V>. with highst wei
ght A = 0 contained in XC(M(r, s» is given by {fXdc={f ® X 7 }c,
where f is a constant function on G and X 7 is an orthogonal element
to t(r.s) in t with respect to < , >.

2. Proof of the Main Results

Following the notations used in 1.2 and 1.3, we will prove the Main
Results. The Lie algebra 5£3(C) of SL3(C) is the complexification of
the real Lie algebra su(3) of SU(3). Let E ij denote a square matrix
with the (i,j)-entry being 1, and all the other entries being O. Let ~ be
a Cartan subalgebra of S£3(C) which consists of the diagonal matrices
of trace o. Then we have the direct sum. decomposition

(5)

Then we have

5£3(C) = ~ +L CEijo
i;f.j

(6)

Hence the non-zero roots of S[3(C) with respect to ~ are

(7)

We put

(8)
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We fix an order on At* in such a way that a > f3 > O. On the
other hand, the elements Hei - ej E At such that (ei - ej)(H) =
B(Hei - ej , H) for all H E tC are given as follows.

(9) {
HOt = d~ag[1/6,-1/6,0], Hp = diag[0,1/6,-1/6],

H-y = dzag[1/6,0, -1/6].

Following the order> on At*, we get

(10)

(12)

Then the set D( G) of all dominant integral forms on G relative to t is
given by
(11)

D(G) = {A = mlel + m2e2/ ml ~ m2 ~ 0, and mj E Z(j = 1,2)}.

For A = mlel + m2e2 E D(G), we get from (1), (9) and (10)

1
d(A) = "2(m1 - m2 + l)(ml +2)(m2 +1).

We identify X(M(r,s)) with the following CT'(G,rn) in the following
definition (cf. [3]). Here rn is the orthogonal complement oft(r, s) in g.

DEFINTION. Let COO(G,rn) be the space of all smooth maps of G
into rn. We define the subspace CT'(G, rn) of COO(G, m) by
(13)
CT'(G,rn):= {f E COO(G,rn);f(xh) = Ad(h-1)f(x),x E G,h ET}.

The identification «P of X(M(r,s)) with CT'(G,m),
«P;CT'(G,rn) -+ X(M(r,s)), is given by

(14)

Here X o , (X Ern), is the tangent vector of M(r, s) at the origin 0 :=
{T} which is defined by Xof = d/dt f(exp tXo)!t=o, and (Tx)* is the
differential of the translation T x of M (r, s). Under the G-action on
CT'(G, rn) defined by

(15) (Txf)(y):= f(x-1y), x,y E G, f E CT'(G,rn),
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ep is a G-isomorphism, that is,

(16) (ep 0 Tx)(f) = (Tx). 0 ep)(f), x E G, f E Cr(G, m).

For every m E Z, the following homomorphism Xm of the I-dimens
ional group T into the multiplicative group {z E C; Izl = I} is well
defined:

Hence Xm(m E Z) are characters of T(r,s). In fact, we have

diag [e21rir8, e21ris8, e-Z1ri(r+s)8] = identity <===} (J E Z,

since r, s are relatively prime.
To compute meA), we apply the following two propositions.

PROPOSITION 1 ([6]). Assume r and s in T are relatively prime.
Let (V;\, '7r;\) be an irreducible unitary representation of G with the
highest weight A = m1 e1 +mzez E D(G). Then, as a representation of
T, V;\ is decomposed into T -irreducible submodules as follows:

ml +1 m2 p-q-1

(17) V;\ = L L L Vr(ml+m2+2- 2p-q+d)+s(1-p+q+2d),

p=m2+1 q=O d=O

where Vm (m E Z) is the I-dimensional irreducible T -submodule of V;\
with the character Xm .

PROPOSITION 2. (Frobenius'reciprocity Theorem [2, 3]). The mul
tiplicity meA) ofV;\, AE D(G), in C:;'(G, mC) is

dimHoma(V;\,C'TCG,mC
)) = dimHomT(V;\,mc ),

where me is Ad(T)-module.

By above two the propositions, we get for A E D(G)

{

the number of elements m, (m in Vm of

(18) meA) = the right side of (17) ), which belong to

{±(k-1), ±(2k+ 1), 0, ±(k+21)}.
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We evaluate the number m('x), ,X = mlel + m2e2 E D(G), by using a
computer. In the table below, we express n('x) by the number whose
position is (m2' mI) (see Fig.I). Then, n('x) ~ m('x).

Thus we obtain the desired result for m('x) of the main theorem.

Finally, we define (COO(G)®mh by the subspace of COO(G)®m con
sisting all elements L:~=l Ii ®Yi E COO(G) ®m satisfying L:~=l Rhh ®
Ad(h)Yi = L:~=l h ® Yi for all hET, where (RhJ)(x) := f(xh) (h E
T,x E G,f E COO(G)) .

Under the G-action on COO(G) ® m,(TzJ)(y) := f(X-1y),TzU ®
X) := Tzf ® X,(x,y E G, f E COO(G), X E m), the (COO(G) ®
m)T is a G-submodule. Then, CT'(G, m) and (COO(G) ® m)T are
G-isomorphic by correspondence f -+ L:}=l h ® Xj, where f(x) =

L:}=l h(x)Xj,X E G and (Xj)}=l is an orthonormal basis of m such
that X 7 is an orhtogonal element to t(k, 1) in {with respect to < , > .

From the above correspondences and main theorem, the corollary is
obtained.

nO.)ID, ....._......•..................••......•.•.••.......••.....•........

IDZ

Fig. I
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Table 1

35 14 35 56 77 98
34 21 42 63 84 105
33 7 28 49 70 91 112
32 14 35 56 77 98
31 21 42 63 84 105
30 7 28 49 70 91 106
29 14 35 56 77 98
28 21 42 63 84 99
27 7 28 49 70 91 91
26 14 35 56 77 92
25 21 42 63 84 84
24 7 28 49 70 85 70
23 14 35 56 77 77
22 21 42 63 78 63
21 7 28 49 70 70 49
20 14 35 56 71 56
19 21 42 63 63 42
18 7 28 49 64 49 28
17 14 35 56 56 35
16 21 42 57 42 21
15 7 28 49 49 28 7
14 14 35 50 35 14
13 21 42 42 21
12 7 28 43 28 7
11 14 35 35 14
10 21 36 21
9 7 28 28 7
8 14 29 14
7 21 21
6 7 22 7
5 14 14
4 15
3 7 7
2 8
1
0 1

Iit..---m; 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 2

51 133 154 175 175 154
50 119 140 161 176 161 140
49 126 147 168 168 147
48 133 154 169 154 133
47 119 140 161 161 140 119
46 126 147 162 147 126
45 133 154 133 112 91
44 119 140 155 140 133 112
43 126 147 147 126 105
42 133 148 133 112 91
41 119 140 140 119 98 77
40 126 141 126 105 84
39 133 133 112 91 70
38 119 134 119 98 77 56
37 126 126 105 84 63
36 127 112 91 70 49
35 119 119 98 77 56 35
34 120 105 84 63 42
33 112 91 70 49 28
32 113 98 77 56 35 14
31 105 84 63 42 21
30 91 70 49 28 7
29 98 77 56 35 14
28 84 63 42 21
27 70 49 28 7
26 77 56 35 14
25 63 42 21
24 49 28 7
23 56 35 14
22 42 21
21 28 7
20 35 14
19 21
18 7
17 14
16

1~1-...--I.'::; 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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