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A FOCAL MYERS-GALLOWAY

THEOREM ON SPACE-TIMES

SEON-Bu KIM, DONG-SOO KIM

1. Introduction

Let Mn be a Riemannian manifold and , a geodesic joining two
points of Mn. Recall that Myers[13] actually showed that if along,
the Ricci curvature, Ric, satisfies

Ric(T, T) ?: a > 0

and the length of, exceeds 1f~/JO, where T is the unit tangent
to " then, is not minimal.

Moreover, there have been several applications of Myers method to
general relativity. T. Frankel[7] has used Myers theorem to obtain a
bound on the size of a fluid mass in stationary space-time universe.
In [8], G. Galloway made use of Frankel's method to obtain a closure
theorem which has as its conclusion the "finiteness" of the "spatial
part" of a space-time obeying certain cosmological assumptions for
cosmological models more general than the classical Friedmann models.
To prove the closure theorem he generalized the Myers theorem on a
Riemannian manifold. S. Markvorsen[12] obtained another extension
of the Myers theorem.

On the other hand, J. K. Beem and P. E. Ehrlich[1,2] proved that
if (M, g) is a globally hyperbolic space-time with all Ricci curvature
positive and bounded away from zero, then (M, g) has finite timelike
diameter.

In this paper, we used the generalized Myers theorem on Riemann­
ian manifolds given by G. Galloway[8] to extend the Lorentzian version
of Myers theorem given by J. K. Beem and P. E. Ehrlich. Moreover,
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we compute the upper bound of Lorentzian arc lengths of all future­
directed nonspacelike curves starting from a compact spacelike sub­
manifold K to any chronologically related point q of M for the suitable
curvature tensor and second fundamental tensor conditions.

2. Preliminaries

Let (M, g) be an arbitrary space-time. Givenp,q E M, p ~ q means
that p = q or there is a piecewise smooth future directed nonspacelike
curve from p to q. Let 11p ,q denote the path space of all piecewise
smooth future directed nonspacelike curves "'( : [0,1] ---t M with "'((0) =
P and "'((1) = q. The Lorentzian arc length L : 11p ,q ---t R is then defined
as follows. Given a piecewise smooth curve "'( E 11p ,q, choose a partition
0= to < t 1 < t2 < ... < t n = 1 such that il(tj, tj+l) is smooth for each
i = 0,1,2, ... , n - 1, and set

L("'() = ~1~~1 vi-gb'(t), "'('(t»dt.
z=o t-t,

Moreover, the Lorentzian distance d: M x M ---t RU {co} of (M,g) is
defined as follows. Given pE M, ifg E J+(p) ={9 E Mlp::; q}, set
d(p, q) = sup{L("'() ; "'( E np,q}, and zero otherwise. Now, we define the
timelike diameter, diam(M, g), of the space-time by

diam(M,g) = sup{d(p,q)lp,q EM}.

A space-time (M,g) is strongly causal if (M, g) does not contain any
point p of M such that there are future-directed nonspacelike curves
leaving arbitrarily small neighborhood of p and then returning. More­
over, a strong causal space-time (M, g) is said to be glo bally hyperbolic
if J+(p) n J-(q) is compact for all p,q E M where J-(p) = {q E
Mlq ::; p}. It should be noted that global hyperbolicity does not im­
ply any of geodesic completeness. This may be seen by fixing points
p and q in the Minkowski space L2 with p « q (p « q means that
there is a future-directed piecewise smooth timelike curve from p to
q). Now set M = J+(p) n J-(q) (here J+(p) = {q E L 21p « q}
and J-(q) = {p E L2 Ip« q}) equipped with the induced Lorentzian
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metric as an open subset of L2. Clearly, M is totally geodesic and
globally hyperbolic. Therefore, a geodesic joining any pair of causally
related points in M is a geodesic segment in L 2 defined on a finite time
interval.

However, the global hyperbolicity still guarantees the existence of a
maximal geodesic, E np,q, i.e., a future directed nonspacelike geodesic
, from p to q with Lh) = d(p, q). c.f. [2, Theorem 5.1]. This fact
makes Theorem 4.2 available for the globally hyperbolic space-times.

With respect to the conjugate points it is well known that a time­
like geodesic is not maximal beyond the first conjugate point (cL [2.
p.228]).

Let, : [0, b] --t (M, g) be a unit timelike geodesic segment. One
considers an R-vector space V1.(,) of continuous piecewise smooth
vector fields Y along , perpendicular to " and let Vo.L(,) = {Y E
V1.(r)IY(O) = Y(b) = O}. Then, from the second variation formula of
" the Lorentzian index form I : V.L(,) X V.L(,) --t R is given by, for
X, YE V1.(r)

I(X, Y) =-lb

[g(X', Y') - g(R(X, ,'h',Y)] dt

where R is the curvature tensor with respect to the Levi-Civita con­
nection V7 on (M, g). Moreover, t l , t 2 E [0, b] with t 1 i= t 2 are conjugate
with respect to the timelike geodesic , if there is a nontrivial J acobi
field J (i.e., J" + R( J, ,'h' = 0) along, with J(td = J(t2) = O. Then
we have the following maximality property of Jacobi fields with respect
to the index form, cf. [1,2].

PROPOSITION 2.1. Let,: [0, b] --t (M, g) be a unit speed timelike
geodesic with no conjugate points and let J E V1.(r) be any Jacobi
field. Then, for any Y E V 1.(r) with Y i= J and Y(O) = J(O), Y( b) =
J(b), we have I(J, J) > I(Y, Y).

COROLLARY 2.2. Let, : [0, b] -4 M have no conjugate points.
Then the index form I is negative definite on Vo.L(r) x Vo1.(r).

In [1,2], J. K. Beem and P. E. Ehrlich used Corollary 2.2 to prove the
Lorentzian version of Myers theorem for complete Riemannian mani­
folds given in [3,9] as follows.



100 Seon-Bu Kim, Dong-Soo Kim

THEOREM 2.3. Let (M,g) be a globally hyperbolic space-time of
dimension n ;:::: 2 satisfying

Rich', ,') ;:::: (n - l)k > 0

for any unit timelike geodesic,. Then

diam( M, g) ~ 1r/ vIk.

In fact, if (n - l)k = a, we may check that this theorem reduces to
Myers result on complete Riemannian manifolds.

THEOREM 2.4(MYERs-GALLOWAY). Let Mn be a complete Riema­
nruan manifold. Suppose there exist constants a > 0 and c ;:::: 0 such
that for every pair of points in M n and unit minimal geodesic, joining
those points, the Ricci curvature satisfies

Ric(,',,');:::: a+ 1
along" where 1 is some function of arc lengths satisfying 11(s)1 ~ c
along,. Then Mn is compact and

In above Myers-Gallowaytheorem on a Riemannian manifold we
may find a differentiable function 1 of arc length s such that 11(s) I ~ c
for some c > o. Such a function may be applied to prove a closure
theorem of a more generalized model (M4, <, » than the Friedma.nn
model of general relativity. More in detail, let s be the arc length
of a geodesic , with unit tangent X in the "spatial part" V 3 of M 4

and let U be a smooth unit future-directed timelike vector field on
M4 orthogonal to V 3 • Extend X along the flow lines through , by
making it invariant under the flow generated by U. Then we may set
1(s) =< X, \luU > (s) (c.£. [8]).

Now, we may prove the Lorentzian version of Myers-Galloway the­
orem as follows.
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PROPOSITION 2.5. Let (M,g) be an arbitrary space-time of dimen­
sion n ~ 2 and, let I : [0, b] ---+ (M, g) be any unit timelike geodesic
joining any pair of causally related points ofM witb lengtb L. Suppose
tbat

Ric(,',,') ~ a + ~

wbere a > 0, f is a differentiable function ofarc1engtb s witb If( s)1 :0:; C

along " and L > .; (c + ';c2 + a(n - 1)). Tben I can not be maxi­

mal.

The proof is similar to Theorem 2.3 (c.f. [2]). Note that if f = c = 0
then Proposition 2.5 reduces to Theorem 2.3 (Myers theorem on space­
times). Moreover, in this Proposition 2.5 the Ricci curvature does not
require positiveness along I' Similarly, we have the Lorentzian ana­
logue of Myers-Galloway diameter theorem for complete Riemannian
manifolds.

THEOREM 2.6. Let (M,g) be a globally byperbolic space-time of
dimension n ~ 2 and suppose tbere exist constants a > 0 and c ~ 0
such tbat for every pair of causally related points in M and any unit
maximal timelike geodesic I joining tbose points, .

Ric(,', I') ~ a + ~

wbere f is some function of arc lengtbs satisfying If(s) I :0:; c along I'
Tben

diam(M,g) :0:; ~ (c + ';c2 + a(n -1)) .

3. Existence of Maximal Geodesics orthogonal to the Spa­
celike Submanifolds

Let K be a spacelike submanifold of dimension k ~ 0 and let for
q E M, K « q if there exists p E K such that p « q. K :0:; q if
there exists p E K with p :0:; q. And let [+(K) = {q E MIK « q}
chronological future of K, [-(K) = {q E Mlq « K} chronological
past of K, J+(K) = {q E MIK :0:; q} causal future of K, J-(K) =
{q E Mlq :0:; K} causal past of K. Clearly, [+(K) = UpEK[+(p).
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Now, let ilK,q be the path space of all piecewise smooth future
directed nonspacelike curves, : [0, b] --t (M,g) with ,(0) E K and
,(b) = q. The Lorentzian arc length L : ilK,q ---t R is defined as in
Section 2.

Now we define the Lorentzian distance from K to q by

d(K, q) = { 0, if q tj. J+(K);
sup{L(r)IJ E ilK,q}, if q E J+(K).

Clearly, d(K, q) > 0 iff q E I+(K). q E J+(K) - I+(K) implies that
d(K, q) = O. But the converse does not hold, since d(K, q) = 0 for
q tj. J+(K).

Given a timelike curve , from K to q, we have a variation a of ,(t)
and define the variation vector filed V of a along , by

V(t) = %sa(t,s)!s=o, V(b) = 0, V(O) E T-y(o)K.
Then we have some facts:
if , : [0, b] --t (M, g) is a unit speed timelike geodesic from K to q,

then L'(O) = g(V(O), ,'(0)). Thus, , is extremal iff, is orthogonal at
,(0) to K.

Moreover, if , : [0, b] --t (M, g) is a unit timelike geodesic which
is orthogonal at ,(0) to the spacelike submanifold K and if V is a
piecewise smooth vector field along , orthogonal to ,', then we have

L"(O) = g(5"('(0)V(O), V(O)) + I(V, V)

where I(V, V) = - J: [g(V', V') - g(R(V,,'h', V)] dt and, 5-y'(0) is the
second fundamental tensor given by 5"('x = -(Vx,'(O))T for x E TpK
where T means "tangential part".

Hence we may define the Lorentzian submanifold index form

on V.L(" K) the vector space of piecewise smooth vector fields Y with
Y 1..,',Y(O) E TpK as follows; for X, YE V.L(r, K),

I(b,K)(X, Y) = 9 (5-y'(0)X(0), Y(O)) + I(X, Y)

where I is the index form on V.L(,).
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l'ow a smooth vector field J E V1..(-Y,K) is called a K-Jacobi field
along, if J satisfies

(1) J'(O) + 5,/(0)J(0) E (Tp K)1..,
(2) JII + R( J, ,'h' = O.
Hence we may define a K -focal point ,(to), to E (0, b] if there is

a nontrivial K-Jacobi field with J(t o) = O. Now, we may prove the
maximality theorem of K-Jacobi fields among piecewise smooth vector
fields in F 1..(r ,I{) (c.f. [6]).

THEOREM 3.1. (Maximaity of K -Jacobi fields) Let I : [0, b] ---+ M
be a timelike geodesic orthogonal at ,(0) to the spacelike submanifold
K with no K-focal points and let X E V1..(-y,K). If J E V1..(-y,K) is
a K-Jacobi field along, with J(b) = X(b), then

and equality holds if and only if X = J.

Let Vo1..(r,K)be the subspace ofV1..(-y,K) with Y(b) = O.

COROLLARY 3.2. If such a, in Theorem 3.1 has no K -focal points.
Then the index form I(b,r;) is negative definite on Vo1..(r, K) X Vo1..(r, K).

Recently in [4,5], P. E. Ehrlich and S. B. Kim used the maximality
theorem of K -Jacobi fields to extend the Morse index theorem and
the Rauch comparison theorem to the K -focal sense for nonspacelike
geodesics.

Using the index form I(b,r:) it is well known that a timelike geodesic
orthogonal to a spacelike hypersurfaces K fails to maximize arc length
after the first K-focal point (c.f. [2,10]). Moreover, even if K is a
spacelike submanifolds of codimension arbitrary, we can easily show
the proof of the following proposition as in [2J by using the fact that
given a I{-Jacobi field J 1 , there is a vector n E (Tp K)1.. such that
JUO) = -Sc'(0)J1(0) + n with g(n, J 1(0)) = O.

PROPOSITlO:'i' 3.3. Let, : [0, b] ---+ M be a unit speed timelike
geodesic segment orthogonal to a spacelike submanifold K at ')'(0) =
pE K. If there exists to E (O,b) such that ')'(to) is a K-focal point
along')', then there exists a variation vector field Z E V 1..( ')', K) such
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that J(b,K)( Z, Z) > 0, i.e., there exists a timelike curve from K to q
longer than ,.

Let K be a spacelike submanifold of a space-time (M,g). If (M, g)
is a globally hyperbolic space-time, we know that there is a future
directed maximal nonspacelike geodesic between any causally related
two points. However, we can not guarantee the existence of the future
directed maximal nonspacelike geodesic from K to a point in M (even if
K is closed). It may be seen by fixing points p = (0, -1) and q = (2,3)
in Minkowski space L 2 , and by setting K = {(x, y)I-1 < x < 1, y = O}.
Then M = J+(p) n J-(q) is globally hyperbolic and K is closed in M.
Thus, we can not find any future directed maximal timelike geodesic
from K to the point r = (2,2). Moreover, we need to find such a
geodesic, orthogonal at ,(0) to K as follows (c.f. [14]).

If M is globally hyperbolic and if J-(q) n K is compact, then the
function x ~ d(x,q) is continuous on the compact set J-(q) n K.
Hence, it has a maximum at p E J-(q) n K. Thus, d(K, q) ::= d(p, q).
Therefore, there is a geodesic, from p to q of length d(K, q) = d(p, q).
We may assume that q rf. K and p «q. From the first variation
formula, it is normal.

PROPOSITION 3.4. Let (M,g) be a globally hyperbolic space-time
and letK be a spacelike subIIlanifold of (M,g). Then for any q E
J+(K) with J-(q) n K compact, there is a future directed maximal
timelike geodesic, perpendicular at ,(0) to K in OK,q.

4. The Main Results

Now, we generalize Proposition 2.5 to the K-focal sense.

THEOREM 4.1. Let (M,g) be a space-time of dimension ~ 2 and 'Y
any unit speed timelike geodesic with length L in ilK,q perpendicular
at ,(0) to the spacelike submanifold K of dimension k ~ 0 for any
point q EM. Suppose

g(R(u,,'(t)),'(t),u) ~ n~ 1 (a+ :)
for all u E Cl' (t))..l with g(u, u) = 1 along" and suppose
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f(O)
g(S'"(,(O)W,w) ~ -­

n-1

for all W E T'"(o)K with g( w, w) = 1, where a > 0, c ~ 0 and f is a
differentiable function with If(t)1 ::.; c.

Assume

L(-y) >

7r (( k)- 1- c+
a 2(n - 1) (

1 _ k )2 c2 +a(n _1 _ 3k)
2(n - 1) 4

Then "I can not be maximal.

Proof. Suppose that "I : [0, L] -+ M be a unit speed timelike geo­
desic with length L orthogonal at "1(0) to the spacelike submanifold K.
Set En(t) = -y'(t) and let {E}, E 2 , , En-d be n - 1 spacelike par-
allel fields such that {E1(O), E2(O), ,Ek(O)} forms an orthonormal
basis of T'"(o)K and {E1(t), E 2(t), , En(t)} the orthonormal basis of
T'"(t)M. Set

Then

{
cos( ;1 )Ei,W,-

a - • (7rt)Esm L i,

i=1,2, ,k

i = k+ 1, ,n-1.

i = 1,2, , k

i = k + 1, , n - 1.

Since Wi(L) = 0, i = 1,2, ...... ,n - 1, we have Wi E Vo.L(-y,K).
Moreover, If(t)l ::.; c implies -c ::.; sinp(t)f(t) ::.; c for any function p.
Now, we compute the Lorentzian submanifold index form

I(b,h")(Wi , Wi) =g (S'"('(O)Wi(O), Wi(O))

+1L

[g(R(Wi, "1')"1', Wi) - g(W!, Wf)]dt

as follows.
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For i=1,2,..... ,k,
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I(b,K)(Wi,Wi)

=g (Sy(o)Ei(O), Ei(O»)

+1L

[cos2(;l)g(R(Ei"'h"Ei)-(2~r sin
2
(;l)g(Ei, Ei)] dt,

?l!&+ fL [cos2(7rt)_1 (a+ df) _ (.!!-)2 Sin2(7rt)]dt
n - 1 J0 2L n - 1 dt 2L 2L

= f(O) + _a_ fL cos2(7rt )dt + _1_ fL cos2 (7rt) dfdt
n - 1 n - 1 Jo 2L n - 1 Jo 2L dt

-lL

(2~)\in2(;1)dt
= f(O) + _a_L
n-l n-12

+ n~1[cos2 (;1)f(tl1t +t (2~) sin(~)f(tldt] _(~) 2~
a L 1 7r ( 7r )2L

? n - 1 "2 + n - 1 2L (- Le) - 2L "2.
For i=k+l, ,n-1,

I(b,K)(Wi,Wi)

1
L . rl 7r rl

= 0 [sm2(L )g(R(Ei, ,'h', Ei) - (L)2 cos2(L )g(Ei, Ei)]dt

1
L . 2 1rt 1 df 1r 2 2 1rt

? [sm (-)--(a +-) - (-) cos (- )]dt
o L n-l dt L L

a 1L
. 2 1rt 1 1L

. 1rt df=-- sm (- )dt +-- sm2(- )-dt
n-1 0 L n-1 0 Ldt

1
L

1r 2 2 7rt
- (-) cos (- )dt

o L L

a L 1 . 2 1rt IL 1L
1r • 21rt ()] 1r 2L=---+--[sm (-)f(t) 0 - (-)sm(-)f t dt -(-)-

n-12 n-1 L 0 L L L 2
a L 1 1r 1r 2L

>--+-(-(-)Le)-(-) -.
-n-12 n-1 L L 2
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Therefore, we have

n-l

L I(b,K)(Wj , W i )

i=l

> aL k7rc (n - 1)7r
z 3k7rz

-"2 - 7rC + 2(n -1) - 2L + 8L

=2. [aL Z _ 2(1 _ k ) 7rcL _ (n _1_3k) 7r Z]
2£ 2(n - 1) 4

> O.

The last inequality is given by our hypothesis:

L>

107

7r (( k)- 1- c+
a 2(n -1) ( 1- k )Zcz+a(n_1_3k)

2(n - 1) 4

By Corollary 3.2, I has a K -focal point. By Proposition 3.3, I can
not be maximal.

The following theorem is a Myers type diameter theorem. Set
diamldM,g) = sup{d(K,q)lq E I+(K)}.

THEOREM 4.2. Let (M,g) be a globally hyperbolic space-time of
dimension n ~ 2 and K the compact spacelike submanifold of dimen­
sion k ~ O. Suppose there exist constants a > 0 and c ~ 0 such that
for any point q E M, and any unit maximal timelike geodesic I in nK,q

with length L perpendicular at 1(0) to K,

g(R(u'I'(t)h/(t),u) ~ n~ 1 (a + ~)

for all u E Ci/(t))J. with g(u, u) = 1 along I

g(S-y/(O)W,W) ~ f(O)
n-1

for all W E T-y(o)K with g( w, w) = 1, where f is some function with
Ij(t)1 s c along I' Then
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7r (( k)- 1- c+
a 2(n - 1)

Proof. Suppose

diamK(M,g) >

7r (( k)- 1- c+
a 2(n -1)

(
1 _ k )2 c2+a(n _1 _ 3k)

2(n -1) 4

(
1 _ k )2 c2 +a(n _1 _ 3k)

2(n -1) 4

Then there exist a point q of M with K << q such that

d(K,q) >

7r (( k)- 1- c+
a 2(n -1) (

1 _. k )2 c2+a(n -1- 3k)
2(n -1) 4

by definition of diamK(M, g).
Since M is a globally hyperbolic space-time, d(K, q) > 0 iff q E

[+(K), and since J-(q) n K is compact, by Proposition 3.4, thereis a
timelike maximal geodesic 'Y perpendicular to K starting from K to q
with

L = d(K,q) >

7r (( k)- 1- c+
a 2(n -1) (

1 _ k )2 c2 +a(n _1- 3k)
2(n -1) 4

By Theorem 4.1, 'Y can not be maximal, in contradiction.
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REMARK 4.3. (1) If k = 0, we obtain the same result of Theorem
2.6 and some-what a generalization of Theorem 4.1 in [ ].

(2) If K is any compact spacelike hypersurface of M, we have

diamK(M,g):S 2: (c+ vc2 +(n-1)a),

which is exactly a half of the upper bound of diam( M, g) given 1ll

Theorem 2.6 and some-what a generalization of Theorem 4.1 in [ ].
(3) If K is a Cauchy hypersurface, i.e., a subset of M which every

inextendible timelike curve intersects exactly once, Theorem 4.2 still
holds.
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