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SOME COMPUTATIONS OF
RELATIVE NIELSEN NUMBERS

SEOUNG Ho LEE AND Moo Ha Woo

1. Introduction

H. Schirmer introduced the relative Nielsen number N(f; X, A) in
[8] which is a lower bound for the number of fixed points for all maps
in the relative homotopy class of f. In [10] the Nielsen number of the
boundary 7i( f; X, A) is a lower bound for the number of fixed points on
the boundary of A denoted Bd A only when any selfmap of (X, A) has
a minimal fixed point set and the Nielsen number of the complement
N(f;X,A), that is, the number of fixed point classes of f : X — X
which do not assume their index in A, is a lower bound for the number
of fixed points on CI(X — A).

In the classical setting, where A = ¢, fo(m1(X)) C J(f) the trace
subgroup of cyclic homotopies and R(f) the Reidemeister number of
f introduced in section 3, it follows from L(f) # 0 that N(f) = R(f)
[5, p.33, Theorem 4.2]. It is a purpose of this paper to generalize
this fact to maps of pairs of spaces (Theorem 3.1 and 3.2). In section
2, n(f; X — A) will be defined and we will show that maps in the
homotopy class of f which have a N(f; X — A) fixed points on X — 4
must have at least n(f; X — A) fixed points on Bd A, and we will
calculate n(f; X — A) in some special cases. In section 3, methods to
compute relative Nielsen numbers with relative Lefschetz numbers are
given. Throughout this paper, f : (X,A) — (X, A) will be a selfmap
of a pair of compact polyhedra with X connected and we will follow
the notations and terminology of [10].
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2. Relative Nielsen numbers

Let f : (X, A) — (X, A) be a selfmap of a pair of compact polyhedra.
We shall write f : A — A for the restriction of f to A and write f :
X — X if the condition that f(A4) C A is immaterial. Let A = |J] Az
be the disjoint union of all components of A which are mapped by f
into themselves, and we shall write fx : Ay — Aj for the restriction
of f to Ax. We write Fix f for the fixed point set {z € X|f(z) = =}
and F for a fixed point class of f : X — X. A fixed point class F
of f: X — X is a weakly common fized point class of f and f if
it contains a fixed point class of fx : 4z — Aj for some k [13]. H.
Schirmer defined the fixed point class F of f : X — X assumes its
mmdez in A if

ind(X, f,F) =ind(4, f,F N A).

Also she defined the relative Nielsen number 7i( f; X, A) by the number
of common fixed point classes of f : X — X which do not assume their
index in A [10].

DEFINITION 2.1. The number of weakly common fixed point classes
of f : X — X which do not assume their index in A is called the relative
Nielsen number of the boundary space Bd A, denoted n(f; X — A).

- It is clear n(f; X — A) > fi(f; X, A) by the definition. In general,
n(f; X —A) is different from 7i(f; X, A). As a simple example, if we take
the identity map f : (B%,S) — (B2, S?) of the pair of a 2-dimensional
ball and its boundary, then 7i(f; X, A) =0, but n(f; X —A) =1. If all
the fixed point classes of f are essential, then n(f; X —A4) = #(f; X, A).

In [13], N(f; X — A) is defined by the number of essential fixed point
classes of f : X — X which are not weakly common fixed point classes,
and E(f, f) is defined by the number of essential weakly common fixed
point classes of f and f

THEOREM 2.1. If f : (X, A) — (X, A) is a map, then J\?(f;X,A) =
n(f; X ~ A) + N(f) - E(f, ) and hence n(f; X — A) = N(f; X, 4) -
N(f; X - A).

Proof. Let F be a fixed point class of f : X — X. A fixed point
class F' which is not a weakly common fixed point class of f and f is
essential if and only if it does not assume its index in A, and so we
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get n(f; X — A) + [N(f) — E(f,f)] = § { F|F is a weakly common
fixed point class of f and f and does not assume its index in 4 } +
§ { F|F is not a weakly common fixed point class of f and f which
is essential } = § { F|F is a weakly common fixed point class of f
and f and does not assume its index in A } + § {F|F is not a weakly
common fixed point class of f and f and does not assume its index in
A} =N(f;X,A).

N(f; X—A)+E(f, f) = N(f) shows the second part of the theorem.

The lower bound property of n(f; X — A) follows immediately from
Theorem 2.1.

THEOREM 2.2(LOWER BOUND). Any map f : (X,4) — (X, A)
which has N(f; X — A) fixed points on X — A has at least n(f; X — A)
fixed points on Bd A.

EXAMPLE 2.1. Let X = B"*! be the unit ball {z € R**!|||z|| < 1}
in R"*! forn > 2, A = {z € X|1/2 < ||z|] €1}, and f : (X,A) —
(X, A) be the identity, then

0, ifnisodd

1, ifniseven,

N(f) = {

N(f;X,A)=n(f;X - 4)=1.

By [9, Theorem 4.1], there exists a deformation g : (X,4) — (X, 4)
such that if n is odd, then g has N(f; X, A) fixed point on X — A and
no further fixed point.

3. Main results

Pick a base point a; € A for each A; C A and a base point zo € X.
It is well known that the covering translations of universal covering
spaces Ax and X of A; and X form groups Dy = Di(Ax,pi) and D =
D(X, p) which are isomorphic to 71 (Ax) and 71 (X) respectively. Recall
that points of A; and X are respectively in one-to-one correspondence
with the path classes in A; and X starting from a; and z(. Under this
identification, let a; = (ex) € A; and F9 = (e) € X be the constant
paths. Pick a path wy in Ax from ax to fi(ax) for each k and a path
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wg in X from x4 to f(z¢). Then there are unique liftings fx and f of
maps fi : Ax — Ap and f : X — X such that Frl(er)) = (wr) € A
and f({e)) = (wo) € X. Let liftings fx and f be chosen as references,
then the endomorphism fr : D — P determined by a lifting fof fis
defined by

f,,(a)of:foa,aeD,

and the f,-conjugacy class of ¥ € 7 is said to be the coordinate of a
fixed point class pFiz(y o f) [5]. The coordinate of a fixed point class
can be obtained geometrically.

LEMMA 3.1. The coordinate for the class of a fixed point = of f is
the f,,-con_]uga,cy class of v = (e(foc) 1w 1) € =, where c is any path
from zy to z. In other words, z € pFiZ(’y o f).

Proof. Let & = (c) € p~'(z). Since f(a:o) = f({e)) = (wo), we
have f(%) = ((C)) = (wo(f 0 c)). Hence (y0 f)(&) = y(wo(f o ¢)) =
{e(f o )" wg " Y wo(f o)) = Z.

Let f: X — X be a givn selfmap. The set of fixed points of f is
denoted by ®(f) instead of Fix f. Two fixed points z,y € ®(f) are
said to be equivalent if £ and y belong to the same fixed point class,
ie., if there exists a path A : I — X such that ‘A(0) = z,A(1) = y
and A is homotopic to f o A rel. end points . We denote by ®(f)/ ~
the set of equivalence classes of ®(f) by this equivalence relation. Let
F € ®(f)/ ~ and ¢ € F be given. Define 7(F) as the unique class
of FPC(f) determined by = where FPC(f) is the fixed point class
data of f, the weighted set of lifting classes of f, the weight of a class
[ f] being ind(X, f,pFizf) [5, Ch. III, Sec. 1]. This correspondence
gives a well-defined function 7 : &(f)/ ~ —FPC(f). Also we can
define pi : ®(fx)/ ~ — @¥(f)/ ~ by pi(Fi) = F determined by
z € Fi C F, and thus we have a commutative diagram

&(fi)/ ~ —— FPC(fi)

I‘k‘l lik,FPC

%(f)/ ~ —— FPC(f).
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Note that we shall fail to distinguish between a path in X and its
class in the fundamental groupoid of X. In [4], the group homomor-
phism f* : 71(X,zo) — m1(X,zo) defined by f*°(a) = wof(a)wy’
for every a € m defines an equivalence relation on # by setting & ~ o' if
there exists a 8 € 7 such that a = Ba’f*¢(8~1). Let Coker (1 — f*°)
be the quotient set of w by this equivalence relation. The Reidemeister
number of f is the number R(f) = § Coker (1— f*°). In what follows,
7 :® — Coker (1~ f*0) denotes the quotient funtion: if (a) € =, then
((2)) = [{ed] € Coker (1~ f*0) ~
_ Pick a path ui from z¢ to a; and take a lifting i; of ¢; such that
tx({ex)) = (ux). Define a function vk » : m1(Ag,ar) — 71(X,z¢) by

vix{a) = (ur(ix 0 @)wi(f o ux) " wg?).

LEMMA 3.2. The function v} » induces a transformation

vy : Coker (1 — f’*) — Coker (1 — f*°)
and v; is independent of the choice of the path uy.

Proof. See [12, Lemma 1.2].

LEMMA 3.3. The diagram

®(fi)/ ~ <5 Coker (1~ fi™*)

Ay vk
®(f)/ ~ — Coker (1 — f*°)
P
commutes, where p(F) = [(c(f o ¢)*wy?)], ¢ is any path in X with
¢(0) = zg,e(1) =z, forany z € F.

Proof. Let zx € Fy € ®(fr)/ ~ and pick a path ¢; from a; to
z) in Ag. Since p is independent of the choice of the path ¢, pick
a path ¢ from z¢ to zx € F (as F; C F) in X. By Lemma 3.2,
vi[(@)] = [(ur(ix 0 @)wi(f o uk)"lwa'l)], we have

vipk(Fr) = vk [{cx(fi 0 ck) 'wi )]
= [(ukck(fk ) ck)"lw;'lwk(f ) uk)"lwa'l)]
= [(urer(f o (urer)) 7 wg)]
= p(F)
= ppr(Fi).
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We recall two lemmas (see [4, Lemma A.1, A.2]).

LEMMA 3.4. Let f : X — X,z¢ € X and wo and 7 be paths in X
connecting =g to f(z¢). Then, there is an index preserving bijection
Twey : Coker (1 — f*0) — Coker (1 — f7) given by ru,q[(a)] =

[{awon™)].

LEMMA. 3.5. Let f: X — X,z0 € X and wg : I — X be given,
with wg(0) = zq,we(1) = f(z¢). Let ar € Ax C X be another base
point and let ug : I — X be a path in X connecting ¢ to ay. Then,
Uke = Uy : Coker (1 — f¥0) — Coker (1 — fu wolfous)y defined by
uy [(@)] = [(u;'auk)] is an index preserving bijection.

Consider the commutative diagram

W

71( Ak, ar) = 71( Ak, ax)

ik,rl lik,t

™1 (X, ax) B w1 (X, ag).

If it » is surjective, then we have an exact sequence

0 — Ker Tk — n1(Ar, ax) fs, (X, ar) — 0.

LEMMA 3.6. If iz r is surjective and the restriction fi*|ker i\ , Of
¥ to Ker i . is nilpotent, then

vi : Coker (1 — fi*) — Coker (1 — f*°)
is bijective.
Proof. Applying [3, Proposition 1.11], ik » induces a bijection
ix : Coker (1 — fi’*) — Coker (1 — f**)
defined by i [(@)] = [(iz 0 @)].

With ux as above, define n = uzlwo(f o ug). Then, by Lemma 3.4
and 3.5, it suffices to check that the diagram
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Coker (1— f*) 2% Coker (1 — f™*)
1 Vk lrunnﬂ
Coker (1 — f*°) 2% Coker (1 — f“;lwo(f°“k))

commutes.

Let [(@)] € Coker (1 — f{*), then

Twy,nlk {(‘1)] = Twi,n [(Zk 0 a)]
= [((ik 0 0)win™")]

= [{(ix 0 c)wr(f 0 ue) g )]

ULV [(a)] = uk[(uk(ik oa)wi(fo uk)'lwo_l)]
= [(u;Iuk(ik o] a)wk(f o) uk)_lwo‘luk)]

= [{(ix 0 a)wi(f 0 )My ug)].

Then we have r,,, .tz [(a)] = UpVk [(a)]

Recall the relative Lefschetz number L(f|x a)) = L(f) — L(f) of
f:(X,A) = (X, A) and the trace subgroup of cyclic homotopies

J(f,zo) ={€ € m(X, f(z0)) | there exists a homotopy
H:fof:XxI—-X5> (H(zo, ))=¢}.

In [5, p.33, Theorem 4.2] where fn(m1(X)) C J(f), it follows from
L(f) # 0 that N(f) = R(f). We prove the main theorems.

THEOREM 3.1. Let f : (X,A) — (X, A) be a selfmap of a pair of
compact polyhedra with A = UR_,Ax. If fo(71(X)) C J(f), fe,x(71
(Ax)) C J(fx), ik = is surjective and fi™* |ker i, , Is nilpotent for all k,
then

§ Coker (1 — f*°), if L(f|(x,a)) #0

0, otherwise.

n(f;X—A)={
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Proof. f L(f) = 0 for all k, then this theorem is clear. We can
assume that L(fx) # 0 for all k,1 < k < m for some m < n. By [5,
p.33, Theorem 4.2], when fi »(71(Ax)) C J(fi) for all k, 1 < k < m,
the correspondence pi is bijective. Let F be a fixed point class of
f:X — X. Then

ind(A, f,F N A) = ind(4, f,Ur_,(F N A;))

= ind(Ag, fx, F 0 Ag)

k=1

= ind(Ax, fi,Fx) (by Lemma 3.3,3.6)
k=1
for some fixed Fy € ®(fx)/ ~.
Case 1) Suppose L(f) = 0. Then all the fixed point classes of
f : X — X are inessential. H L(f|(x,4)) # 0, then there exists a
comaponent A; such that

ind(4, f,F N A) = ind(Ay, fx, F) = L(f)/N(fi) #0.
k=1
Hence all the fixed point classes of f do not assume their index in A.
If L(fl(x,4)) =0, then L(f) = 0, and so
- ‘
ind(A, f,F N A) = _ind(Ay, fi, Fi) = 0 = ind(X, f, F)
k=1
because F is inessential. Thus all the fixed point classes of f assume
their index in A.
Case 2) Suppose L(f) # 0. By using [5, p.33, Theorem 4.2] again,
N(f) > 0. Thus we have

ind(4, f,F 0 A) = L(f)/N(f)
and
ind(X, f, F) = L(f)/N(f).
This completes the theorem.

Kn=1ie Ais connected, we can take wg = w; and ¢ = @;. Then
u [{a)] = [(!10@)] and v =i, : Coker (1 — f;*°) — Coker (1— f*°).
We shall get
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COROLLARY 3.1. Let f : (X,A) — (X, A) be a selfmap of a pair
of compact polyhedra with A connected. If f(m1(X)) C J(f), f1,x(m1
(A1)) C J(f1), i1, Is surjective and fi*°|ker s, , is nilpotent, then

a(rix -ay={ § ° (1= %), # L(fi) # L)

0, otherwise.

In [13], X.Zhao showed that if there is a component Ay of A such
that i » is surjective, then N(f; X — A) = 0. By Theorem 2.1 and
Theorem 3.1, we have

THEOREM 3.2. Let f : (X,A) — (X, A) be a selfmap of a pair of
compact polyhedra with A = UR_,Ax. Suppose fx(71(X)) C J(f),
frx(71(Ax)) C J(fx), ik x is surjective and f’*|ker iy . is nilpotent
for all k, then

N Coker (1 — fwo), ifL 0
0 = {00 (=) i o)

0, otherwise.

COROLLARY 3.2. Let f : (X,A) — (X, A) be a selfmap of a pair
of compact polyhedra with A connected. If fr(m1(X)) C J(f), f1,x(m1
(A1)) C J(f1), i1,x is surjective and fi*°|Ker i, , is nilpotent, then

§ Coker (1— f*°), if L(f1) # L(f)

0, otherwise.

N(f;X,A)={

ExAMPLE 3.1. Let X = {z € R%|1/2 < ||z|| € 1} be an annulus
in R? and let A = U}_, A be the boundary of X where A = {z €
X||lz|l = 1/k}. Define f : (X,A) — (X, A) by f(re*®) = re*? for
1/2 < r < 1. Take €** = 1 as base point of X and choose the path wp
to be constant. Then, for all n, 1 — f* : Z — Z is multiplication by
1-3"and

COICET (1 - f") = Z3n_.1.

Since A}s are H-spaces, L(fi*) = L(f") for each k. Then we have
N(f™ X, A) =n(f" X - 4) = 3" - 1
for all n. Also we have
N(f* X, A)=2[3" - 1|
for all n.
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EXAMPLE 3.2. Let X be the solid torus in Euclidean 3-space R3
which is obtained by rotating the 2-disk in the zyz3-plane of radius
1 and centered at (2,0,0) about the z3-axis, and let A be the 2-
dimensional torus which bounds X. We consider R as C x R!, where
C is the complex plane, and label the points of X as (re'?,t), where
re* € Candt € R, with1 < 6 < 2rand —1 < ¢t < 1. Let
f:(X,A) - (X, A) be the map given by

f('rew, t) = (reido, —-lt|) ,

where d # 1 is an integer. As any circle of latitude is a deformation
retract of X we have N(f) = |d — 1| [1, Ch. VIII, p.107; 5, p.21, The-
orem 5.4 and p.33, Example 1], and it follows from [5, p.33, Example
2] that N(f) = |d — 1|. The fixed point set of f lies in ¢ < 0 and
consists of |d — 1] half-disks. Each half-disk forms an essential fixed
point class of f and contains one essential fixed point class of f on its
boundary because the arcs of the boundary S of the rotated 2-disk
from (e%,()) to (36'%11, 0) forn =0,1,2,--- ,d — 2, passing through
the south pole show this. Hence ’

N(f; X, 4)=|d- 1.

Keri, ~ Z is generated by the loop o obtained by travelling the
boundary S! of the 2-disk once, starting (e°,0) = z,, in the counter-
clockwise direction. Now select the path wq to be the constant path
at zg. Then we have '

fo(a) = f(e) =0.

It is easy to see that N(f;X,A) = n(f; X — A) = 0 by Theorem 3.1,
Theorem 3.2 and thus, each essential fixed point class of f assumes its
index in A.
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