SOME COMPUTATIONS OF RELATIVE NIELSEN NUMBERS

SEOUNG HO LEE AND MOO HA WOO

1. Introduction

H. Schirmer introduced the relative Nielsen number N(f; X, A) in [8] which is a lower bound for the number of fixed points for all maps in the relative homotopy class of f. In [10] the Nielsen number of the boundary $\tilde{n}(f; X, A)$ is a lower bound for the number of fixed points on the boundary of A denoted Bd A only when any selfmap of (X, A) has a minimal fixed point set and the Nielsen number of the complement $\tilde{N}(f; X, A)$, that is, the number of fixed point classes of $f: X \to X$ which do not assume their index in A, is a lower bound for the number of fixed points on Cl(X - A).

In the classical setting, where $A = \phi$, $f_{\pi}(\pi_1(X)) \subset J(f)$ the trace subgroup of cyclic homotopies and R(f) the Reidemeister number of f introduced in section 3, it follows from $L(f) \neq 0$ that N(f) = R(f) [5, p.33, Theorem 4.2]. It is a purpose of this paper to generalize this fact to maps of pairs of spaces (Theorem 3.1 and 3.2). In section 2, n(f; X - A) will be defined and we will show that maps in the homotopy class of f which have a N(f; X - A) fixed points on X - A must have at least n(f; X - A) fixed points on Bd A, and we will calculate n(f; X - A) in some special cases. In section 3, methods to compute relative Nielsen numbers with relative Lefschetz numbers are given. Throughout this paper, $f: (X, A) \to (X, A)$ will be a selfmap of a pair of compact polyhedra with X connected and we will follow the notations and terminology of [10].

Received September 24, 1992.

Supported by a TGRC-KOSEF grant.

2. Relative Nielsen numbers

Let $f:(X,A) \to (X,A)$ be a selfmap of a pair of compact polyhedra. We shall write $\bar{f}:A \to A$ for the restriction of f to A and write $f:X \to X$ if the condition that $f(A) \subset A$ is immaterial. Let $\hat{A} = \bigcup_{1}^{n} A_{k}$ be the disjoint union of all components of A which are mapped by f into themselves, and we shall write $f_{k}:A_{k} \to A_{k}$ for the restriction of f to A_{k} . We write Fix f for the fixed point set $\{x \in X | f(x) = x\}$ and F for a fixed point class of $f:X \to X$. A fixed point class F of $f:X \to X$ is a weakly common fixed point class of f and \bar{f} if it contains a fixed point class of $f_{k}:A_{k} \to A_{k}$ for some k [13]. H. Schirmer defined the fixed point class F of $f:X \to X$ assumes its index in A if

$$ind(X, f, F) = ind(A, \bar{f}, F \cap A).$$

Also she defined the relative Nielsen number $\tilde{n}(f; X, A)$ by the number of common fixed point classes of $f: X \to X$ which do not assume their index in A [10].

DEFINITION 2.1. The number of weakly common fixed point classes of $f: X \to X$ which do not assume their index in A is called the relative Nielsen number of the boundary space Bd A, denoted n(f; X - A).

It is clear $n(f; X - A) \ge \tilde{n}(f; X, A)$ by the definition. In general, n(f; X - A) is different from $\tilde{n}(f; X, A)$. As a simple example, if we take the identity map $f: (B^2, S^1) \to (B^2, S^1)$ of the pair of a 2-dimensional ball and its boundary, then $\tilde{n}(f; X, A) = 0$, but n(f; X - A) = 1. If all the fixed point classes of \bar{f} are essential, then $n(f; X - A) = \tilde{n}(f; X, A)$.

In [13], N(f; X - A) is defined by the number of essential fixed point classes of $f: X \to X$ which are not weakly common fixed point classes, and $E(f, \bar{f})$ is defined by the number of essential weakly common fixed point classes of f and \bar{f}

THEOREM 2.1. If $f:(X,A)\to (X,A)$ is a map, then $\tilde{N}(f;X,A)=n(f;X-A)+N(f)-E(f,\bar{f})$ and hence $n(f;X-A)=\tilde{N}(f;X,A)-N(f;X-A)$.

Proof. Let F be a fixed point class of $f: X \to X$. A fixed point class F which is not a weakly common fixed point class of f and \bar{f} is essential if and only if it does not assume its index in A, and so we

get $n(f; X - A) + [N(f) - E(f, \bar{f})] = \sharp \{ F | F \text{ is a weakly common fixed point class of } f \text{ and } \bar{f} \text{ and does not assume its index in } A \} + \sharp \{ F | F \text{ is not a weakly common fixed point class of } f \text{ and } \bar{f} \text{ which is essential } \} = \sharp \{ F | F \text{ is a weakly common fixed point class of } f \text{ and } \bar{f} \text{ and does not assume its index in } A \} + \sharp \{ F | F \text{ is not a weakly common fixed point class of } f \text{ and does not assume its index in } A \} = \tilde{N}(f; X, A).$

 $N(f; X-A)+E(f, \bar{f})=N(f)$ shows the second part of the theorem.

The lower bound property of n(f; X - A) follows immediately from Theorem 2.1.

THEOREM 2.2(LOWER BOUND). Any map $f:(X,A) \to (X,A)$ which has N(f;X-A) fixed points on X-A has at least n(f;X-A) fixed points on Bd A.

EXAMPLE 2.1. Let $X = B^{n+1}$ be the unit ball $\{x \in R^{n+1} | ||x|| \le 1\}$ in R^{n+1} for $n \ge 2$, $A = \{x \in X | 1/2 \le ||x|| \le 1\}$, and $f: (X, A) \to (X, A)$ be the identity, then

$$N(\bar{f}) = \begin{cases} 0, & \text{if } n \text{ is odd} \\ 1, & \text{if } n \text{ is even,} \end{cases}$$

$$\tilde{N}(f;X,A) = n(f;X-A) = 1.$$

By [9, Theorem 4.1], there exists a deformation $g:(X,A)\to (X,A)$ such that if n is odd, then g has N(f;X,A) fixed point on X-A and no further fixed point.

3. Main results

Pick a base point $a_k \in A_k$ for each $A_k \subset \hat{A}$ and a base point $x_0 \in X$. It is well known that the covering translations of universal covering spaces \tilde{A}_k and \tilde{X} of A_k and X form groups $\mathcal{D}_k = \mathcal{D}_k(\tilde{A}_k, p_k)$ and $\mathcal{D} = \mathcal{D}(\tilde{X}, p)$ which are isomorphic to $\pi_1(A_k)$ and $\pi_1(X)$ respectively. Recall that points of \tilde{A}_k and \tilde{X} are respectively in one-to-one correspondence with the path classes in A_k and X starting from a_k and x_0 . Under this identification, let $\tilde{a}_k = \langle e_k \rangle \in \tilde{A}_k$ and $\tilde{x}_0 = \langle e \rangle \in \tilde{X}$ be the constant paths. Pick a path w_k in A_k from a_k to $f_k(a_k)$ for each k and a path

 w_0 in X from x_0 to $f(x_0)$. Then there are unique liftings \tilde{f}_k and \tilde{f} of maps $f_k: A_k \to A_k$ and $f: X \to X$ such that $\tilde{f}_k(\langle e_k \rangle) = \langle w_k \rangle \in \tilde{A}_k$ and $\tilde{f}(\langle e \rangle) = \langle w_0 \rangle \in \tilde{X}$. Let liftings \tilde{f}_k and \tilde{f} be chosen as references, then the endomorphism $\tilde{f}_{\pi}: \mathcal{D} \to \mathcal{D}$ determined by a lifting \tilde{f} of f is defined by

$$\tilde{f}_{\pi}(\alpha) \circ \tilde{f} = \tilde{f} \circ \alpha, \alpha \in \mathcal{D},$$

and the \tilde{f}_{π} -conjugacy class of $\gamma \in \pi$ is said to be the coordinate of a fixed point class $pFix(\gamma \circ \tilde{f})$ [5]. The coordinate of a fixed point class can be obtained geometrically.

LEMMA 3.1. The coordinate for the class of a fixed point x of f is the \tilde{f}_{π} -conjugacy class of $\gamma = \langle c(f \circ c)^{-1}w_0^{-1} \rangle \in \pi$, where c is any path from x_0 to x. In other words, $x \in pFix(\gamma \circ \tilde{f})$.

Proof. Let $\tilde{x} = \langle c \rangle \in p^{-1}(x)$. Since $\tilde{f}(\tilde{x}_0) = \tilde{f}(\langle e \rangle) = \langle w_0 \rangle$, we have $\tilde{f}(\tilde{x}) = \tilde{f}(\langle c \rangle) = \langle w_0(f \circ c) \rangle$. Hence $(\gamma \circ \tilde{f})(\tilde{x}) = \gamma \langle w_0(f \circ c) \rangle = \langle c(f \circ c)^{-1}w_0^{-1} \rangle \langle w_0(f \circ c) \rangle = \tilde{x}$.

Let $f: X \to X$ be a givn selfmap. The set of fixed points of f is denoted by $\Phi(f)$ instead of Fix f. Two fixed points $x,y \in \Phi(f)$ are said to be equivalent if x and y belong to the same fixed point class, i.e., if there exists a path $\lambda: I \to X$ such that $\lambda(0) = x, \lambda(1) = y$ and λ is homotopic to $f \circ \lambda$ rel. end points. We denote by $\Phi(f)/\sim$ the set of equivalence classes of $\Phi(f)$ by this equivalence relation. Let $F \in \Phi(f)/\sim$ and $x \in F$ be given. Define $\tau(F)$ as the unique class of FPC(f) determined by f where FPC(f) is the fixed point class data of f, the weighted set of lifting classes of f, the weight of a class f being f be a given being f being f

$$\Phi(f_k)/\sim \xrightarrow{\tau_k} \operatorname{FPC}(f_k)$$
 $\downarrow^{i_k,\operatorname{FPC}}$
 $\Phi(f)/\sim \xrightarrow{\tau} \operatorname{FPC}(f).$

Note that we shall fail to distinguish between a path in X and its class in the fundamental groupoid of X. In [4], the group homomorphism $f^{w_0}: \pi_1(X, x_0) \to \pi_1(X, x_0)$ defined by $f^{w_0}(\alpha) = w_0 f(\alpha) w_0^{-1}$ for every $\alpha \in \pi$ defines an equivalence relation on π by setting $\alpha \sim \alpha'$ if there exists a $\beta \in \pi$ such that $\alpha = \beta \alpha' f^{w_0}(\beta^{-1})$. Let $Coker\ (1 - f^{w_0})$ be the quotient set of π by this equivalence relation. The Reidemeister number of f is the number $R(f) = \# Coker\ (1 - f^{w_0})$. In what follows, $f: \pi \to Coker\ (1 - f^{w_0})$ denotes the quotient funtion: if $\{\alpha\} \in \pi$, then $f(\alpha) = f(\alpha) = f(\alpha) \in Coker\ (1 - f^{w_0})$.

Pick a path u_k from x_0 to a_k and take a lifting \tilde{i}_k of i_k such that $\tilde{i}_k(\langle e_k \rangle) = \langle u_k \rangle$. Define a function $\nu_{k,\pi} : \pi_1(A_k, a_k) \to \pi_1(X, x_0)$ by

$$\nu_{k,\pi}\langle\alpha\rangle=\langle u_k(i_k\circ\alpha)w_k(f\circ u_k)^{-1}w_0^{-1}\rangle.$$

LEMMA 3.2. The function $\nu_{k,\pi}$ induces a transformation

$$\nu_k : Coker (1 - f_k^{w_k}) \rightarrow Coker (1 - f^{w_0})$$

and ν_k is independent of the choice of the path u_k .

Proof. See [12, Lemma 1.2].

LEMMA 3.3. The diagram

$$\Phi(f_k)/\sim \xrightarrow{\rho_k} Coker \ (1-f_k^{w_k})$$

$$\downarrow \mu_k \qquad \qquad \downarrow \nu_k$$

$$\Phi(f)/\sim \xrightarrow{\rho} Coker \ (1-f_k^{w_0})$$

commutes, where $\rho(F) = [\langle c(f \circ c)^{-1}w_0^{-1} \rangle]$, c is any path in X with $c(0) = x_0, c(1) = x$, for any $x \in F$.

Proof. Let $x_k \in F_k \in \Phi(f_k)/\sim$ and pick a path c_k from a_k to x_k in A_k . Since ρ is independent of the choice of the path c, pick a path c from x_0 to $x_k \in F$ (as $F_k \subset F$) in X. By Lemma 3.2, $\nu_k[\langle \alpha \rangle] = [\langle u_k(i_k \circ \alpha) w_k(f \circ u_k)^{-1} w_0^{-1} \rangle]$, we have

$$\begin{split} \nu_{k}\rho_{k}(F_{k}) &= \nu_{k} \big[\langle c_{k}(f_{k} \circ c_{k})^{-1}w_{k}^{-1} \rangle \big] \\ &= \big[\langle u_{k}c_{k}(f_{k} \circ c_{k})^{-1}w_{k}^{-1}w_{k}(f \circ u_{k})^{-1}w_{0}^{-1} \rangle \big] \\ &= \big[\langle u_{k}c_{k}(f \circ (u_{k}c_{k}))^{-1}w_{0}^{-1} \rangle \big] \\ &= \rho(F) \\ &= \rho\mu_{k}(F_{k}). \end{split}$$

We recall two lemmas (see [4, Lemma A.1, A.2]).

LEMMA 3.4. Let $f: X \to X, x_0 \in X$ and w_0 and η be paths in X connecting x_0 to $f(x_0)$. Then, there is an index preserving bijection $r_{w_0,\eta}: Coker\ (1-f^{w_0}) \to Coker\ (1-f^{\eta})$ given by $r_{w_0,\eta}[\langle \alpha \rangle] = [\langle \alpha w_0 \eta^{-1} \rangle]$.

LEMMA 3.5. Let $f: X \to X, x_0 \in X$ and $w_0: I \to X$ be given, with $w_0(0) = x_0, w_0(1) = f(x_0)$. Let $a_k \in A_k \subset X$ be another base point and let $u_k: I \to X$ be a path in X connecting x_0 to a_k . Then, $u_{k*} = u_*: Coker (1 - f^{w_0}) \to Coker (1 - f^{u_k^{-1}w_0(f \circ u_k)})$ defined by $u_*[\langle \alpha \rangle] = [\langle u_k^{-1} \alpha u_k \rangle]$ is an index preserving bijection.

Consider the commutative diagram

$$\begin{array}{ccc} \pi_1(A_k,a_k) & \xrightarrow{f_k^{w_k}} & \pi_1(A_k,a_k) \\ & & \downarrow^{i_{k,\pi}} & & \downarrow^{i_{k,\pi}} \\ & & \pi_1(X,a_k) & \xrightarrow{f_{w_k}} & \pi_1(X,a_k). \end{array}$$

If $i_{k,\pi}$ is surjective, then we have an exact sequence

$$0 \longrightarrow Ker \ i_{k,\pi} \longrightarrow \pi_1(A_k, a_k) \xrightarrow{i_{k,\pi}} \pi_1(X, a_k) \longrightarrow 0.$$

LEMMA 3.6. If $i_{k,\pi}$ is surjective and the restriction $f_k^{w_k}|_{Ker\ i_{k,\pi}}$ of $f_k^{w_k}$ to $Ker\ i_{k,\pi}$ is nilpotent, then

$$\nu_k : Coker (1 - f_k^{w_k}) \longrightarrow Coker (1 - f_k^{w_0})$$

is bijective.

Proof. Applying [3, Proposition 1.11], $i_{k,\pi}$ induces a bijection

$$i_k: Coker\ (1-f_k^{w_k}) \to Coker\ (1-f^{w_k})$$

defined by $i_k[\langle \alpha \rangle] = [\langle i_k \circ \alpha \rangle].$

With u_k as above, define $\eta = u_k^{-1} w_0(f \circ u_k)$. Then, by Lemma 3.4 and 3.5, it suffices to check that the diagram

$$Coker (1 - f_k^{w_k}) \xrightarrow{i_k} Coker (1 - f^{w_k})$$

$$\downarrow \nu_k \qquad \qquad \downarrow r_{w_k, \eta}$$

$$Coker (1 - f^{w_0}) \xrightarrow{u_*} Coker (1 - f^{u_k^{-1}w_0(f \circ u_k)})$$

commutes.

Let
$$\left[\langle \alpha \rangle\right] \in Coker \ (1 - f_k^{w_k})$$
, then

$$\begin{aligned} r_{w_{k},\eta}i_{k}\big[\langle\alpha\rangle\big] &= r_{w_{k},\eta}\big[\langle i_{k}\circ\alpha\rangle\big] \\ &= \big[\langle(i_{k}\circ\alpha)w_{k}\eta^{-1}\rangle\big] \\ &= \big[\langle(i_{k}\circ\alpha)w_{k}(f\circ u_{k})^{-1}w_{0}^{-1}u_{k}\rangle\big] \end{aligned}$$

and

$$\begin{aligned} u_k \nu_k \big[\langle \alpha \rangle \big] &= u_k \big[\langle u_k (i_k \circ \alpha) w_k (f \circ u_k)^{-1} w_0^{-1} \rangle \big] \\ &= \big[\langle u_k^{-1} u_k (i_k \circ \alpha) w_k (f \circ u_k)^{-1} w_0^{-1} u_k \rangle \big] \\ &= \big[\langle (i_k \circ \alpha) w_k (f \circ u_k)^{-1} w_0^{-1} u_k \rangle \big]. \end{aligned}$$

Then we have $r_{w_k,n}i_k[\langle \alpha \rangle] = u_k \nu_k[\langle \alpha \rangle].$

Recall the relative Lefschetz number $L(f|_{(X,A)}) = L(f) - L(\bar{f})$ of $f:(X,A) \to (X,A)$ and the trace subgroup of cyclic homotopies

$$J(f,x_0) = \big\{ \xi \in \pi_1(X,f(x_0)) \mid \text{ there exists a homotopy} \\ H: f \simeq f: X \times I \to X \ni \langle H(x_0, \cdot) \rangle = \xi \big\}.$$

In [5, p.33, Theorem 4.2] where $f_{\pi}(\pi_1(X)) \subset J(f)$, it follows from $L(f) \neq 0$ that N(f) = R(f). We prove the main theorems.

THEOREM 3.1. Let $f:(X,A) \to (X,A)$ be a selfmap of a pair of compact polyhedra with $\hat{A} = \bigcup_{k=1}^n A_k$. If $f_{\pi}(\pi_1(X)) \subset J(f)$, $f_{k,\pi}(\pi_1(A_k)) \subset J(f_k)$, $i_{k,\pi}$ is surjective and $f_k^{w_k}|_{Ker\ i_{k,\pi}}$ is nilpotent for all k, then

$$n(f; X - A) = \begin{cases} \sharp Coker (1 - f^{w_0}), & \text{if } L(f|_{(X,A)}) \neq 0 \\ 0, & \text{otherwise.} \end{cases}$$

Proof. If $L(f_k) = 0$ for all k, then this theorem is clear. We can assume that $L(f_K) \neq 0$ for all $k, 1 \leq k \leq m$ for some $m \leq n$. By [5, p.33, Theorem 4.2], when $f_{k,\pi}(\pi_1(A_k)) \subset J(f_k)$ for all $k, 1 \leq k \leq m$, the correspondence ρ_k is bijective. Let F be a fixed point class of $f: X \to X$. Then

$$\begin{split} ind(A,\bar{f},F\cap A) &= ind(A,\bar{f},\cup_{k=1}^n (F\cap A_k)) \\ &= \sum_{k=1}^n ind(A_k,f_k,F\cap A_k) \\ &= \sum_{k=1}^m ind(A_k,f_k,F_k) \quad \text{(by Lemma 3.3,3.6)} \end{split}$$

for some fixed $F_k \in \Phi(f_k)/\sim$.

Case 1) Suppose L(f)=0. Then all the fixed point classes of $f:X\to X$ are inessential. If $L(f|_{(X,A)})\neq 0$, then there exists a component A_k such that

$$ind(A, \bar{f}, F \cap A) = \sum_{k=1}^{m} ind(A_k, f_k, F_k) = L(\bar{f})/N(f_k) \neq 0.$$

Hence all the fixed point classes of f do not assume their index in A. If $L(f|_{(X,A)}) = 0$, then $L(\bar{f}) = 0$, and so

$$ind(A, \bar{f}, F \cap A) = \sum_{k=1}^{m} ind(A_k, f_k, F_k) = 0 = ind(X, f, F)$$

because F is inessential. Thus all the fixed point classes of f assume their index in A.

Case 2) Suppose $L(f) \neq 0$. By using [5, p.33, Theorem 4.2] again, N(f) > 0. Thus we have

$$ind(A, \bar{f}, F \cap A) = L(\bar{f})/N(f)$$

and

$$ind(X, f, F) = L(f)/N(f).$$

This completes the theorem.

If n=1, i.e. \hat{A} is connected, we can take $w_0=w_1$ and $x_0=a_1$. Then $\nu_1\left[\langle \alpha \rangle\right]=\left[\langle i_1\circ \alpha \rangle\right]$ and $\nu_1=i_*:Coker\ (1-f_1^{w_0})\to Coker\ (1-f^{w_0})$. We shall get

COROLLARY 3.1. Let $f:(X,A) \to (X,A)$ be a selfmap of a pair of compact polyhedra with \hat{A} connected. If $f_{\pi}(\pi_1(X)) \subset J(f), f_{1,\pi}(\pi_1(A_1)) \subset J(f_1), i_{1,\pi}$ is surjective and $f_1^{w_0}|_{Ker\ i_{1,\pi}}$ is nilpotent, then

$$n(f; X - A) = \begin{cases} \# Coker (1 - f^{w_0}), & \text{if } L(f_1) \neq L(f) \\ 0, & \text{otherwise.} \end{cases}$$

In [13], X.Zhao showed that if there is a component A_k of \hat{A} such that $i_{k,\pi}$ is surjective, then N(f; X - A) = 0. By Theorem 2.1 and Theorem 3.1, we have

THEOREM 3.2. Let $f:(X,A) \to (X,A)$ be a selfmap of a pair of compact polyhedra with $\hat{A} = \bigcup_{k=1}^n A_k$. Suppose $f_{\pi}(\pi_1(X)) \subset J(f)$, $f_{k,\pi}(\pi_1(A_k)) \subset J(f_k)$, $i_{k,\pi}$ is surjective and $f_k^{w_k}|_{Ker\ i_{k,\pi}}$ is nilpotent for all k, then

$$\tilde{N}(f;X,A) = \left\{ egin{array}{ll} \sharp \ Coker \ (1-f^{w_0}), & if \ L(f|_{(X,A)})
eq 0, & otherwise. \end{array}
ight.$$

COROLLARY 3.2. Let $f:(X,A) \to (X,A)$ be a selfmap of a pair of compact polyhedra with \hat{A} connected. If $f_{\pi}(\pi_1(X)) \subset J(f), f_{1,\pi}(\pi_1(A_1)) \subset J(f_1), i_{1,\pi}$ is surjective and $f_1^{w_0}|_{Ker\ i_{1,\pi}}$ is nilpotent, then

$$\tilde{N}(f;X,A) = \begin{cases} \# Coker (1-f^{w_0}), & \text{if } L(f_1) \neq L(f) \\ 0, & \text{otherwise.} \end{cases}$$

EXAMPLE 3.1. Let $X = \{x \in R^2 | 1/2 \le ||x|| \le 1\}$ be an annulus in R^2 and let $A = \bigcup_{k=1}^2 A_k$ be the boundary of X where $A_k = \{x \in X | ||x|| = 1/k\}$. Define $f: (X,A) \to (X,A)$ by $f(re^{i\theta}) = re^{i3\theta}$ for $1/2 \le r \le 1$. Take $e^{i0} = 1$ as base point of X and choose the path w_0 to be constant. Then, for all $n, 1 - f^n : \mathbf{Z} \to \mathbf{Z}$ is multiplication by $1 - 3^n$ and

$$Coker (1-f^n) = \mathbf{Z}_{3^n-1}.$$

Since A'_k s are H-spaces, $L(f_k^n) = L(f^n)$ for each k. Then we have

$$\tilde{N}(f^n; X, A) = n(f^n; X - A) = |3^n - 1|$$

for all n. Also we have

$$N(f^n; X, A) = 2|3^n - 1|$$

for all n.

EXAMPLE 3.2. Let X be the solid torus in Euclidean 3-space R^3 which is obtained by rotating the 2-disk in the x_1x_3 -plane of radius 1 and centered at (2,0,0) about the x_3 -axis, and let A be the 2-dimensional torus which bounds X. We consider R^3 as $\mathbb{C} \times R^1$, where \mathbb{C} is the complex plane, and label the points of X as $(re^{i\theta}, t)$, where $re^{i\theta} \in \mathbb{C}$ and $t \in R^1$, with $1 \leq \theta < 2\pi$ and $-1 \leq t \leq 1$. Let $f: (X,A) \to (X,A)$ be the map given by

$$f \big(r e^{i\theta}, t \big) = \big(r e^{id\theta}, -|t| \big),$$

where $d \neq 1$ is an integer. As any circle of latitude is a deformation retract of X we have N(f) = |d-1| [1, Ch. VIII, p.107; 5, p.21, Theorem 5.4 and p.33, Example 1], and it follows from [5, p.33, Example 2] that $N(\bar{f}) = |d-1|$. The fixed point set of f lies in $t \leq 0$ and consists of |d-1| half-disks. Each half-disk forms an essential fixed point class of f and contains one essential fixed point class of f on its boundary because the arcs of the boundary S^1 of the rotated 2-disk from $(e^{\frac{i2n\pi}{d-1}},0)$ to $(3e^{\frac{i2n\pi}{d-1}},0)$ for $n=0,1,2,\cdots,d-2$, passing through the south pole show this. Hence

$$N(f;X,A) = |d-1|.$$

 $Keri_{\pi} \simeq \mathbf{Z}$ is generated by the loop α obtained by travelling the boundary S^1 of the 2-disk once, starting $(e^{i0},0)=x_0$, in the counter-clockwise direction. Now select the path w_0 to be the constant path at x_0 . Then we have

$$\bar{f}^{w_0}(\alpha) = \bar{f}(\alpha) = 0.$$

It is easy to see that $\tilde{N}(f; X, A) = n(f; X - A) = 0$ by Theorem 3.1, Theorem 3.2 and thus, each essential fixed point class of f assumes its index in A.

References

- R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman and Co. Glenview. Ill., 1971.
- R. F. Brown, R. E. Green and H. Schirmer, Fixed points of map extentions, Topological Fixed Point Theory and Applications, Lecture Notes in Math., vol. 1411, 1988, pp. 23-45.

- P. R. Heath, Product formulae for Nielsen numbers of fibre maps, Pacific J. Math., 117 (1985), 267-289.
- P. R. Heath, Renzo Piccinini and Chengye You, Nielsen-type numbers for periodic points; I, Topological Fixed Point Theory and Applications, Lecture Notes in Math., vol. 1411, 1988, pp. 88-106.
- 5. Boju Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Math., vol. 14, Amer. Math. Society. Providence, RL, 1983.
- On the least number of fixed points, Amer. J. Math., 102 (1980), 749-763.
- 7. H. Schirmer, Mappings of polyhedron with prescribed fixed points and fixed point indices, Pacific J. Math., 63 (1976), 521-530.
- 8. _____, A relative Nielsen number, Pacific J. Math., 122 (1986), 459-473.
- 9. _____, Fixed point sets of deformation of pairs of spaces, Topology Appl., 23 (1986), 193-205.
- 10. _____, On the location of fixed points on pairs of spaces, Topology Appl., 30 (1988), 253-266.
- 11. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1986.
- C. Y. You, Fixed point classes of a fiber map, Pacific J. Math., 100 (1982), 217-241.
- X. Zhao, A relative Nielsen number for the complement, Topological Fixed Point Theory and Applications, Lecture Notes in Math., vol. 1411, Springer-Verlag, New York, 1988, pp. 189-199.

Department of Mathematics Education Korea University Seoul 136-701, Korea