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SOME COMPUTATIONS OF

RELATIVE NIELSEN NUMBERS

SEOUNG Ho LEE AND Moo HA Woo

1. Introduction

H. Schinner introduced the relative Nielsen number N(J; X, A) in
[8] which is a lower bound for the number of fixed points for all maps
in the relative homotopy class of f. In [10] the Nielsen number of the
boundary n(J; X, A) is a lower bound for the number of fixed points on
the boundary of A denoted Bd A only when any selfmap of (X, A) has
a minimal fixed point set and the Nielsen number of the complement
NU; X, A), that is, the number of fixed point classes of f : X --t X
which do not assume their index in A, is a lower bound for the number
of fixed points on Cl(X - A).

In the classical setting, where A = <f>, f1r(7f'l(X» c JU) the trace
subgroup of cyclic homotopies and RU) the Reidemeister number of
f introduced in section 3, it follows from LU) 1= 0 that N (J) = RU)
[5, p.33, Theorem 4.2]. It is a purpose of this paper to generalize
this fact to maps of pairs of spaces (Theorem 3.1 and 3.2). In section
2, nU; X - A) will be defined and we will show that maps in the
homotopy class of f which have a NU; X - A) fixed points on X - A
must have at least nU; X - A) fixed points on Bd A, and we will
calculate nU j X - A) in some special cases. In section 3, methods to
compute relative Nielsen numbers with relative Lefschetz numbers are
given. Throughout this paper, f : (X, A) --t (X, A) will be a selfmap
of a pair of compact polyhedra with X connected and we will follow
the notations and terminology of [10].
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2. Relative Nielsen numbers

Let / : (X, A) -+ (X, A) be a selfmap of a pair of compact polyhedra.
We shall write 1: A -+ A for the restriction of / to A and write / :
X -+ X if the condition that /(A) C A is immaterial. Let A= U~ Ak
be the disjoint union of all components of A which are mapped by /
into themselves, and we shall write !k : Ak -+ Ak for the restriction
of / to Ak. We write Fix / for the fixed point set {x E XI/(x) = x}
and F for a fixed point class of / : X -+ X. A fixed point class F
of / : X -+ X is a weakly common fixed point class 0/ / and 1 if
it contains a fixed point class of !k : Ak -+ Ak for some k [13]. H.
Schirmer defined the fixed point class F of f .: X· -+ X assumes its
index in A if

indeX, f, F) = ind(A, 1, F n A).

Also she defined the relative Nielsen number nU; X,A) by the number
of common fixed point classes of f : X -+ X which do not assume their
index in A [10].

DEFINITION 2.1. The number of weakly common fixed point classes
of / : X -+ X which do not assume their index in A is called the relative
Nielsen number of the boundary space Bd A, denoted nU;X - A).

. It is clear n(f;X - A) .~. n(f;X, A) by.the definition. In general,
nU; X -A) is different from nU; X, A). As a simple example, ifwe take
the identity map f : (B2, SI) -+ (B2, SI) of the pair of a 2-dimensional
ball and its boundary, then nU; X, A) = 0, but nU; X - A) = 1. IT all
the fixed point classes of1are essential, then nU; X -A) = nU; X, A).

In [13], NU; X -A) is deffued by the number of essential fixed point
classes of / : X -+ X which are not weakly common fixed point classes,
and EU,I) is defined by the number of essential weakly common fixed
point classes of / and 1

THEOREM 2.1. If/: (X, A) -+ (X, A) is a map, then NU; X, A) =
nU; X - A) + NU) - EU, 1) and hence nU; X - A) = NU; X, A) ­
NU;X -A).

Proof. Let F be a fixed point class of / : X -+ X. A fixed point
class F which is not a weakly common fixed point class of f and 1 is
essential if and only if it does not assume its index in A, and so we
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get n(fj X - A) + [N(f) - E(f, J)] = U { FIF is a weakly common
fixed point class of f and J and does not assume its index in A } +
U { FIF is not a weakly common fixed point class of f and J which
is essential} = U { FIF is a weakly common fixed point class of f
and J and does not assume its index in A } + U{FIF is not a weakly
commo~ fixed point class of f and J and does not assume its index in
A} = N(fjX,A).

N(fj X -A)+E(f, J) = N(f) shows the second part ofthe theorem.

The lower bound property of n(fj X - A) follows immediately from
Theorem 2.1.

THEOREM 2.2(LoWER BOUND). Any map f : (X, A) -+ (X, A)
which has N(fj X - A) fixed points on X - A has at least n(f; X - A)
fixed points on Bd A.

EXAMPLE 2.1. Let X = Bn+l be the unit ball {x E Rn+lll1xll :::; I}
in Rn+l for n ~ 2, A = {x E X11/2 :::; Ilxll :::; 1}, and f : (X, A) -+

(X, A) be the identity, then

NU) = { 0,
1,

if n is odd

if n is even,

N(fjX,A) = n(fjX - A) = l.

By [9, Theorem 4.1], there exists a deformation 9 : (X, A) -+ (X, A)
such that if n is odd, then 9 has N(fj X, A) fixed point on X - A and
no further fixed point.

3. Main results

Pick a base point ak E Ak for each Ak C Aand a base point Xo EX.
It is well known that the covering translations of universal covering
spaces Ak and X of Ak and X form groups 'Dk = 'Dk(Ak,Pk) and 'D =
'D(X,p) which are isomorphic to 1l"l(Ak) and 1l"l(X) respectively. Recall
that points of Ak and X are respectively in one-to-one correspondence
with the path classes in Ak and X starting from ak and xo. Under this
identification, let (zk = (ek) E Ak and Xo = (e) E X be the constant
paths. Pick a path Wk in A k from ak to h(ak) for each k and a path
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l i l<.FPC

----+1 FPC(f).

Wo in X from Xo to I(xo). Then there are unique liftings fk and f of
maps !Ie : Ak ---+ Ak and I : X ---+ X such that fk( (ek») = (Wk) E .th
and f( (e») = (wo) E X. Let liftings fk and f be chosen as references,
then the endomorphism }1r : 1) ---+ 1) determined by a lifting f of I is
defined by

f1r(a) 0 f = f 0 a,a E 1),

and the f1r-conjugacy class of , E 71" is said to be the coordinate of a
fixed point class pFix(, 0 f) [5]. The coordinate of a fixed point class
can be obtained geometrically.

LEMMA 3.1. The coordinate for the class of a fixed point x of I is
the f1r-conjugacy class of, = (c(f 0 c)-lwOI) E 71", where c is any path
from Xo to x. In other words, x E pFix(, 0 f).

Proof. Let x = (c) E p-I(x). Since j(xo) = j(e») = (wo), we
have j(x) = i(c») = (wo(J 0 c). Hence (1 0 f)(x) = ,(wo(f 0 c) =
(c(f 0 C)-lwOI)(wo(f 0 c) = x.

Let f : X ---+ X be a givn selfmap. The set of fixed points of f is
denoted by ~(f) instead of Fix f. Two fixed points x, y E cp(f) are
said to be equivalent if x and y belong to the same fixed point class,
i.e., if there exists a path oX : 1---+ X such thatA(O) = x,A(l) = y
and >. is homotopic to lOA reI. end points . We denote by cp(f) / '"
the set of equivalence classes of CP(f) by this equivalence relation. Let
F E ip(f)/ '" and x E F be given. Define T(F) as the unique class
of FPC(J) determined by x where FPC(f) is the fixed point class
data of f, the weighted set of lifting classes of I, the weight of a class
[I] being ind(X,f,pFix}) [5, Ch. Ill, Sec. 1]. This correspondence
gives a well-defined function T ; CP(f)/ '" ---tFPC(f). Also we can
define f'k : CP(fk)/ '" ---t ip(f)/ '" by f'k(Fk) = F determined by
x k E Fk C F, and thus we have a commutative diagram

1"1<
~(!Ie)/ '" ----+) FPC(fk)

PI<1
~(f)/ '"
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Note that we shall fail to distinguish between a path in X and its
class in the fundamental groupoid of X. In [4], the group homomor­
phism P»o : 1t"l(X,XO) -+ 1t"l(X,XO) defined by f"'o(a) = wof(a)w;l
for every a E 1t" defines an equivalence relation on 1t" by setting a '" a' if
there exists a f3 E 1t" such that a = f3a'f"'0(f3- 1). Let Coker (1- f"'o)
be the quotient set of 1t" by this equivalence relation. The Reidemeister
number of f is the number R(f) = UCoker (1- f"'o). In what follows,
j : 1t" -+ Coker (1- f"'o) denotes the quotient funtion: if (a) E 1t", then
j«a) = [(a)] E Coker (1- f"'O).

Pick a path Uk from Xo to ak and take a lifting ik of ik such that
h«ek) = (Uk)' Define a function Vk,lr: 1t"l(Ak,ak) -+ 1t"l(X,XO) by

Vk,lr(a) = (uk(ik 0 a)wk(f 0 Uk)-lw;l).

LEMMA 3.2. Tbe function Vk 11' induces a transformation,

Vk : Coker (1- Fto
) -+ Coker (1- f"'O)

and Vk is independent of tbe choice of tbe patb Uk.

Proof. See [12, Lemma 1.2].

LEMMA 3.3. Tbe diagram

Cf!(fk)/ '" A Coker (1 - ff")

1 Jl-k ! Vk
Cf!(f)/ '" -t Coker (1 - j'00)

p

commutes, wbere p(F) = [(c(foC)-lW;l)], C is any patb in X witb
c(O) = xo,c(l) = x, for any x E F.

Proof. Let Xk E Fk E Cf!(!k)/ '" and pick a path Ck from ak to
x k in Ak. Since p is independent of the choice of the path c, pick
a path c from Xo to Xk E F (as Fk C F) in X. By Lemma 3.2,
vk[(a)] = [(uk(ikoa)Wk(foUk)-lw;l)],wehave

VkPk(Fk) = Vk [(Ck(!k 0 Ck)-lW;l)]

= [(UkCk(!k 0 Ck)-lw;lwk(f 0 Uk)-lwo1
)]

= [(UkCfc(f 0 (UkCk»-lW;l)]

= p(F)

= pJl-k(Fk).
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We recall two lemmas (see [4, Lemma A.1, A.2]).

LEMMA 3.4. Let f: X -+ X,xo E X and Wo and.,., be paths in X
connecting Xo to f(xo). Then, there is an index preserving bijection
rWo,f/ : Coker (1 - fWo) -+ Coker (1 - ff/) given byrwo,f/[(a)] =
[(awO.,.,-l)] .

LEMMA 3.5. Let f : X -+ X, Xo E X and Wo : I -+ X be given,
with wo(O) = Xo, wo(l) = f(xo). Let ak E Ak C X be another base
point and let Uk : I -+ X be a path in X connecting Xo to ak. Then,
Uh -= U* : Coker (1 - fWo) -+ Coker (1 - f u ;;l wo(foUlc» defined by
u* [(a)] = [(u;l auk )] is an index preserving bijection.

Consider the commutative diagram

1r1(Ak, ak)
f;:'lc

) 1r1(Ak,ak)

i lc ,...l 1ilc, ...

1r1(X,ak) ) 1r1 (X, ak).
f Wlc

IT ik,rr is surjective, then we have an exact sequence

LEMMA 3.6. H ik,rr is surjective and the restriction r;:lc IKer ilc .... of
r;:lc to K er ik,rr is nilpotent, then

is bijective.

Proof. Applying [3, Proposition 1.11], ik,rr induces a bijection

defined by i k [ (a )] = [(i k 0 a)].
With Uk as above, define.,., = u;lwoU 0 Uk). Then, by Lemma 3.4

and 3.5, it suffices to check that the diagram
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commutes.
Let [(a)] E Coker (1 - 1':k), then

rWk,71 id(a)] = rWk,71[(ik 00')]

= [((i k 0 a )w k 7] -1)]

= [((ik 0 a)Wk(f 0 Uk)-1 W0 1Uk )]

and

ukvd(a)] = Uk[(Uk(ik 0 a)Wk(f 0 Uk)-1 WO I)]

= [(u;1 Uk (i k 0 a)Wk(f 0 Uk)-IWOIUk)]

= [((ikoa)Wk(foUk)-lwoIUk)].

75

Then we have rWk,71id(a)] = ukvd(a)].

Recall the relative Lefschetz number L(fI(x,A») = L(f) - L(/) of
f: (X, A) -? (X, A) and the trace subgroup of cyclic homotopies

J(f, xo) ={ ~ E 7rl (X,J(xo)) I there exists a homotopy

H : f ~ f : X X I -? X ~ (H(xo, )) = 0·

In [5, p.33, Theorem 4.2] where f.lI·(7rI(X)) c J(f), it follows from
L(f) =1= 0 that N(f) = R(f). We prove the main theorems.

THEOREM 3.1. Let f : (X, A) -? (X, A) be a selfmap of a pair of
compact polyhedra with A = Uk=IA k. H f7f(7rI(X)) c J(f), fk,7f(7r1
(A k)) C J(fk), ik,7f is surjective and f;:k IKer ik,r is nilpotent for all k,
then

n(f;X _ A) = { ~ Coker (1- fWo), if L(f!(.X,A») =1= 0
0, otherwIse.
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Proof. H L(ik) = 0 for all k, then this theorem is clear. We can
assume that L(fK) =I 0 for all k, 1 ~ k ~ m for some m ~ n. By [5,
p.33, Theorem 4.2], when ik,1l'(1l"l(Ak» c J(fk) for all k, 1 ~ k ~ m,
the correspondence Pk is bijective. Let F be a fixed point class of
f : X --+ X. Then

ind(A, f, F n A) = ind(A, f, Uk=l(F n A k»
n

= Lind(Ak,fk,FnAk)
k=l

m

= L ind(Ak' fk' Fk) (by Lemma 3.3,3.6)
k=l

for some fixed Fk E if?(fk)/ "'.
Case 1) Suppose L(f) = O. Then all the fixed point classes of

f : X --+ X are inessential. H L(fI(x,A» =I 0, then there exists a
component Ak such that

m

ind(A,!, F n A) = L ind(Ak' fk, Fk) = L(/)/N(ik) =I O.
k==l

Hence all the fixed point classes of f do not assume their index in A.
H L(fI(x,A» = 0, then L(f) = 0, and so

m

ind(A,f,FnA) = Lind(Ak'!k,Fk) = 0 = ind(X,!,F)
k==l

because F is inessential. Thus all the fixed point classes of f assume
their index in A.

Case 2) Suppose L(f) =I O. By using [5, p.33, Theorem 4.2] again,
N (f) > O. Thus we have

ind(A,!, F n A) = L(!)/N(f)

and
indeX'!, F) = L(f)/N(f).

This completes the theorem.

H n = 1, i.e. Ais connected, we can take Wo = Wl and Xo = al' Then
vd(a)] = [(il 0 a)] and VI = i* : Coker (1- f:"O) --+ Coker (1- fWo).
We shall get
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COROLLARY 3.1. Let f : (X, A) ~ (X, A) be a selfmap of a pair
of compact polybedra witb A connected. H f.,r( 1rl (X)) c J(f), h,7r(1rl

(AI)) c J(fl)' i 1,7r is surjective and f;o°IKer it, .. is nilpotent, tben

n(f;X _ A) = { ~ Coker (1- f Wo ), if L(fd. =1= L(f)
0, otbel'Wlse.

In [13], X.Zhao showed that if there is a component Ak of A such
that ik ,7r is surjective, then N(f; X - A) = O. By Theorem 2.1 and
Theorem 3.1, we have

THEOREM 3.2. Let f : (X, A) ~ (X, A) be a selfmap of a pair of
compact polybedra witb A = Uk=lAk. Suppose f7r(1rl(X)) c J(f),
ik,7r(1rl(Ak)) c J(ik), ik,7r is surjective and r;:-!Ker it, .. is nilpotent
for all k, tben

N(f; X, A) = { ~ Coker (1 - fWo), if LUI<.X,A») =1= 0
0, otbel'Wlse.

COROLLARY 3.2. Let f : (X, A) ~ (X, A) be a selfmap of a pair
of compact polybedra witb A connected. If f7r(1rl(X)) C J(f),h,7r( 1rl
(Ad) C J(h), i 1 ,7r is surjective and f;O° !Ker it, .. is nilpotent, tben

N(f;X,A) = { ~ Coker (1- f
Wo

), if L(h~ =1= L(f)
0, otbel'Wlse.

EXAMPLE 3.1. Let X = {x E R2 11/2 ~ IIxll ~ I} be an annulus
in R 2 and let A = U~=l Ak be the boundary of X where Ak = {x E
Xlllxll = Ilk}. Define f : (X,A) ~ (X,A) by f(re i8

) = re i38 for
112 ~ r ~ 1. Take eiO = 1 as base point of X and choose the path Wo

to be constant. Then, for all n, 1 - fn : Z ~ Z is multiplication by
1 - 3n and

Coker (1 - fn) = Z3n-l.

Since A~s are H-spaces, LUr) = L(fn) for each k. Then we have

N(fn;X,A) = nUn;X - A) = 13n -11
for all n. Also we have

for all n.
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EXAMPLE 3.2. Let X be the solid torus in Euclidean 3-space R3
which is obtained by rotating the 2-disk in the Xlx3-plane of radius
1 and centered at (2,0,0) about the xa-axis, and let A be the 2­
dimensional torus which bounds X. We consider R3 as C x RI, where
C is the complex plane, and label the points of X as (rei8 ,t), where
rei8 E C andt E RI, with 1 :$ () < 27r and -1 :$ t < 1. Let
f : (X, A) -? (X, A) be the map given by

where d =1= 1 is an integer. As any circle of latitude is a deformation
retract of X we have NU) = Id - 11 [1, Ch. VIII, p.l07; 5, p.21, The­
orem 5.4 and p.33, Example 1], and it follows from [5, p.33, Example
2] that N(J) = Id - 11. The fixed point set of f lies in t :$ 0 and
consists of Id - 11 half-disks. Each half-disk forms an essential fixed
point class of f and contains one essential fixed point class of J on its
boundary because the arcs of the boundary SI of the rotated 2-disk

i2nr i2nw
from (e~ ,0) to (3e cl-1 ,0) for n = 0,1,2" .. ,d - 2, passing through
the south pole show this. Hence

NU; X, A) = Id - 11.

K eri1r ~ Z is generated by the loop a obtained by travelling the
boundary SI of the 2-disk once, starting (e iO , 0) = Xo, in the eounter­
clockwise direction. Now select the path Wo to be the constant path
at Xo. Then we have

JWO(a) = !Ca) = O.

It is easy to see that NU; X, A) = nU; X - A) = 0 by Theorem 3.1,
Theorem 3.2 and thus, each essential fixed point class of f assumes its
index in A.
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