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A GENERALIZATION OF THE CARlSTI-KIRK

FIXED POINT THEOREM AND ITS

APPLICATIONS TO MAPPING THEOREMS

J.S. BAE, E.W. eRO AND S.H. YEOM

o. Introduction

Let P be a nonlinear operator mapping a Banach space X into a
Banach space Y. There are many approches to the study of solvability
of the equation Px = y for yE Y. One of them is a mapping theoretic
method in order to obtain precise ranges of operators. Also we are
interested in prediction, by looking at local or infinitesimal assumptions
on the operator P, whether P is a homeomorphism, is surjective, or
has fixed points.

The original investigation for these works came from the fixed points.
Fixed point theorems having local hypotheses have been widely stud
ied, including local contractions, local expansions and differentiable
mappings. Also fixed point theorems are good tools for our purposes.

The purpose in this paper is to study several mapping theorems. The
idea of our method is based on the Caristi-Kirk fixed point theorem
[11], which is also equivalent to the minimization theorem of Ekelend
[13,14]. In [8], Brezis and Browder gave an ordering principle which can
be applied to prove the Caristi-Kirk fixed point theorem [11]. Our main
point of view is to extend the Brezis-Browder ordering principle to a
more suitable form, and we apply it to obtain our mapping theorems.
In fact, many authors, Cramer and Ray [12], Kirk and Caristi [15], Ray
[19], Ray and Walker [20], and Rosenholtz and Ray [21] proved their
mapping theorems by using the Caristi-Kirk fixed point theorem or the
idea contained in the Brezis-Browder ordering principle. Our ordering
principle enables us to extend the above mentioned authors' results to
more general settings.
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We investigate an ordering principle in Section 1 and in Section 2,
we apply it to obtain several fixed point theorems in complete metric
spaces.

Section 3 deals with Altman's weak contractor directions and weak
directional contractions, and we give theorems concerning the solvabil
ity of the equation Px = y. In Section 4, we will give mapping theorems
for Gateaux differentiable operators and we estimate the precise range
of the given operator. .

§1. An ordering principle

The basic technique for our fixed point theorems and mapping the
orems is based on the following theorem which is similar to the Brezis
Browder ordering principle [8].

THEOREM 1. Let <I be a re:Bexive relation on a nonempty set M
and t/J : M -+ R a function bounded from below, which satisfies the
following two conditions;

(1) ifx <ly and x =1= y, then t/J(x) > t/J(y) ; and
(2) for any sequence {xn} with Xn <I Xn+l for n = 1,2,'" , there is

a z E M such that for any positive integer k, there is a positive
integer m ~ k with X m <I z.

Then for any given Xo EM, there exists a z E M such that
(3) there is a finite number of elements XI,'" ,Xn E M satisfying

Xi-l <I Xi for 1 ~ i ~ n and Xn <I z ; and
(4) z <I x implies z = x.

Proof For any x E M, we put

Sex) ={y E MI there are finite elements Xl,'" ,Xn EM

such that x <I XI, Xn <I Y and Xi-l <I Xi for 2 ~ i ~ n}.

Then we know that if y E Sex), then S(y) ~ Sex). Starting at the
given point Xo, we can obtain a sequence {xn} in M with Xn E S(Xn-l)
and

t/J(Xn) ~ inf{ t/J(y)ly E S(Xn-l)} + .!..
n

for all n ~ 1 by using induction, sinc€< t/J is bounded from below. Then
the condition (2) yields that there is an element z E M with z E S(xn )
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for all n ~ O. Therefore by (1) we know that the sequence {</l(x n)} is
nonincreasing and </l( z) ::; </l(xn) ::; </l(z) + ~ for all n ~ 1, and hence
lim</l(xn ) = </l(z). Now suppose that z <l y for some y E M. Then
clearly we have y E S(xn ) for all n ~ 0, so that

1
</l(Y) ::; </l(xn ) ::; </l(y) + -, n = 1,2,'" .

n

Therefore we have </l(y) = lim </l(x n) = </l( z ), and hence by (1) we see
that y = z. Also since z E S(xo), (3) holds trivially by the definition
of S(xo). This completes the proof.

Theorem 1 is different from Lemma 3.1 of [5] since Lemma 3.1 of [5]
does not state the conclusion (3). Also we remark that in Theorem 1,
the relation <l need not be an order relation since it is not assumed to
be transitive. However, this relation has transitivity implicitly. We can
obtain the Brezis-Browder's result as a direct application of Theorem
1.

COROLLARY 2. Let::; be an order relation on a nonempty set M
and </l : M - R a function bounded from below, which satis:B.es the
following two conditions;
(1)' ifx ::; y and x # y, then </lex) > </l(y) ; and
(2)' any nondecreasing sequence in M has an upper bound in M.

Then for any given Xo E M, there is a maximal element z E M with
Xo ::; z.

§2. Fixed point theorems

We recall that a function </l : X - R is upper semicontinuous
(u.s.c.), where X is a topological space if for any t E R, the set
{x E XI</l(x) < t} is open in X. Also </l : X - R is said to be
lower semicontinuous (l.s.c) if for any t E R, the set {x E XI</l(x) > t}
is open in X. We note that if X is a metric space, then </l : X - R
is u.s.c (resp. l.s.c.) if and only if for any sequence {x n } in X with
X n -x,

limsup</l(xn ) ::; </lex) (resp. liminf </l(xn ) ~ </lex»).

By applying Theorem 1, we first obtain the following fixed point the
orem.
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THEOREM 3. Let X be a complete metric space, </> : X ---+ [0,(0)
a l.s.c. function and C : [0,(0) ---+ [0,(0) an u.s.c. function. Let
9 : X ---+ X be a mapping such that for each x EX,

(5) d(x, gx) ~ max{c(</>(x», c(</>(gx» }{ </>(x) - </>(gx)}

holds. Then 9 has a fixed point in x.
Proof Define a relation <J on X such that for x, y EX,

X <J y iff d(x, y) 5 max{c(</>(x», c(</>(y»}{ </>(x) - </>(y)}.

Then clearly <J is reflexive and satisfies the condition (1). Let {x n } be a
sequence in X with X n <J X n+l for n = 1,2,··· . Then the condition (1)
implies that {<p( x n)} is nonincreasing. Therefore, lim </>( xn) = a(~ 0)
exists. Since c is u.s.c., we have limsupc(</>(xn »5 c(a). Therefore we
can choose a natural number N such that c(</>(xn») 5 c(a) + 1 for any
n ~ N. For n ~ N, Xn <J Xn+l implies

d(Xn,Xn+l) 5 max{c(</>(xn»,c(</>(Xn+l»}{</>(Xn) - </>(xn+d}

5 {c(a) + 1}{</>(xn) - </>(Xn+l)},

so that for m > n ~ N, we have

Therefore we conclude that {x n } is a Cauchy sequence in X. Since X
is complete, lim X n = z( E X) exists.

Now we claim that for this z, the condition (2) holds, that is, for
any given positive integer k, there is an integer m ~ k such that X m <JZ.

We consider possible three cases.

(1) Suppose that there is an integer m ~ k such that

Then for any n ~ m, we get
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Therefore for n > m, by adding both sides of the above inequality
through m to n - 1, we get

By letting n ---t 00, since lim 4>( xn) ~ 4>( z) we have

d( xm, z) S c(4>( xm)) {4>( xm) - 4>( z) } ,

which means that X m <I z.

(II) Suppose that lim4>(x n ) = er = 4>(z) and for any integer m ~ k,
there is an integer n > m such that c(4)(x n )) > c(4)(x m )). Since c is
u.s.c., we know that

Therefore for n ~ k, we get

d( x n, Xn+1) S max{ c(4>(xn)), c(4>(x n+1)) }{ 4>(xn) - 4>(X n+1)}

S c(4>( z ) ) { 4>( x n) - 4>( x n+1 ) } ,

and hence by adding both sides of the above inequality through k to
n - 1, we have

Also by letting n ---t 00, we have

which shows that Xk <l z.

(Ill) Suppose that lim 4>( x n) = er > 4>( z) and for any integer m ~ k,
there is an integer n > m such that c(4>( x n)) > c(4>( x m)). Then also
we know that

sup{ c(4)(x n ))1 n ~ k}= limsupc(4)(x n )) = j3 > O.
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Therefore we can find an integer rn > k such that c(</>(x m )) 2: i.a and
for n 2: rn, </>(xn ) ::; 20: - </>(z). Then we have for n 2: rn,

d(x n , Xn+l) ::; max{c(</>(xn )), c(</>(Xn+l)) } {</>(x n ) - </>(Xn+l)}

::; .a{</>(x n ) - </>(Xn+l)}

::; 2c(</>(x m)){ </>(x n) - </>( Xn+l)}'

By adding both sides of the above inequality through rn to n - 1 for
n > rn, we have

By letting n -+ 00, we get

Also since </>(x m ) ::; 20: - </>(z), we have

2{</>(xm ) - o:} = </>(x m ) - 20: + </>(x m )

::; rjJ(x m ) - </>(z).

Therefore, finally we obtain

which yields X m <I Z.

Now by applying Theorem 1, we get z E X such that z <I y implies
Z = y. However, the condition (5) means that x <I g(x) for any x EX.
Therefore gz = z, which completes the proof.

In Theorem 3, if the function c is nonincreasing, then we can have
a more stronger result as follows.

THEOREM 4. Let X be a complete metric space, </> : X -+ [0,00) a

l.s.c. function, and c : [0,00) -+ [0,00) a nonincreasing function. Let
9 : X -+ X be a mapping such that for each x EX,

(6) d(x,gx) ~ c(rjJ(x)){ </>(x) - rjJ(gx)}
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holds. Then for any given Xo EX, 9 has a fixed point z E X with

(tP(xo)

d(xo,z) :::; 10 c(t)dt.

Proof. Define a new function t/J : X -t [0, 00) by

(tP(x)

t/J(x) = 10 c(t)dt, for x EX.

Then we see that t/J is also a l.s.c. function. In fact, if Xn -t x in X,
then liminf </>(xn ) ~ </>(x) shows that

(4)(Xn) (4)(x)

liminft/J(xn ) = liminf 10 c(t)dt ~ 10 c(t)dt = t/J(x),

so that t/J also 1.s.c.. Now define an order relation:::; on X by

x:::; y iff d(x,y):::; t/J(x) - t/J(y).

Then it can be easily shown that (1)' and (2)' hold (see [7,14,17]).
Therefore, by Corollary 2, for the given point Xo EX, there is a max
imal element z E X with Xo :::; z. But by the condition (6), we know
that

d(z,gz):::; c(</>(z)){</>(z) - </>(gz)}

l
tP(Z)

:::; c(t)dt = t/J(z) - t/J(gz),
tP(gz)

so that z :::; gz. By the maximality of z we know gz = z, and Xo :::; z
means that

1
4>(XO)

d(xo, z) :::; 1jJ(xo) -1jJ(z) = c(t)dt
4>(z)

(4)(x o)

:::; 10 c(t)dt.

This completes the proof.

By the same method as in the proof of Theorem 4, we can have the
following theorem.
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THEOREM 5. Let X be a complete metric space, </> : X -7 [0, 00) a
1.s.c. function, and c : [0,00) -7 [0,(0) a nondecreasing function. Let
9 : X -7 X be a mapping such that for each x EX,

(7) d(x,gx) S; c(</>(gx)){</>(x) - </>(gx)}

holds. Then for any given Xo EX, 9 has a fixed point z E X with

1
4>(XO)

d(xo, z) S; 0 c(t)dt.

Proof. As in the proof of Theorem 4, define 'ljJ : X -7 [0, 00) by

r4>(x)
'ljJ(x) = 10 c(t)dt, for x EX.

Then also we know that 'ljJ is a ts.c. function. Now define an order
relation S; on X by

x S; y iff d(x,y) S; 'ljJ(x) - 'ljJ(y).

According to Corollary 2, for the given point Xo E X, there exists a
maximal element z E X with Xo S; z. But by the condition (7), we
know that

d(z,gz) S; c(</>(gz)){ </>(z) - </>(gz)}

'l4>(Z) , ,
S; e(t)dt,

4>(9 Z )

since e is nondecreasing, so that z S; gz. Therefore the maximality of
z implies gz = z. Also since Xo S; z,

1
4>(XO)

d(xo, z) S; 'ljJ(xo) - 'IjJ(z) = e(t)dt
4>(z)

r4>(xo)

S; 10 e(t)dt.

This completes the proof.

Note that if e(t) = 1, then Theorems 3-5 are just the Caristi-Kirk
fixed point theorem. Also our Theorems 4-5 can be compared with
Theorem 2.1 of Ray and Walker [20] (cf. [7, 17]).
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§3. Weak contractor directions

Altman [1] introduced the concept of contractor directions and direc
tional contractions to apply to the solvability of the equation Px = y.
Their concepts are appeared in some local assumptions on the operator
P such as differentiability.

Let X be an abstract set, Y a Banach space, and let P : X ~ Y
be a mapping from X to Y. Given an upper semicontinuous function
q : [0,00) ~ [0, 1), we define weak contractor directions for P at x such
that y E Y is said to be a weak contractor direction if there exists a
positive number € = €(x, y) S 1 and an element x E X satisfying

(8) IIPi - Px - €yll s €q(llyll)llyll·

Also we denote r;(p) by the set of weak contractor directions for P at
x. If q(llyll) = q is constant, then r;(p) is a set of contractor directions
for P at x, denoted by r x(P) (see [1,2,3,4]).

Our first mapping theorem is the following existence result of the
solution of the equation Px = y.

THEOREM 6. Let X be a nonempty set, Y a Banach space, and
P : X ~ Y a mapping such that P(X) is closed in Y. Suppose that
yE Y is fixed and y - Px E r;(p) for each x E X. Then the equation
Px = y has a solution in X.

Proof. Putting M = y - P(X) = {y - Pxlx E X}, we know that
M is a complete metric space, since P(X) is closed. Since for any
x E X, Y - Px E r;(p), by (8) there is an i E X such that

(9) Ilpi - Px - €(y - Px)11 s €q(lly - Pxll)lIy - Pxll·

for °< € SI and an u.s.c. function q: [0,00) ~ [0,1). From (9) we
have

(10) II(y - Px) - (y - Pi)11 S €{1 + q(lly - Pxll)}lly - Pxll·

Also from (9) we obtain

lIy - Pill- (1- €)lly - Pxll s €q(lly - Pxll)lly - Pxll,
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(11) e{l- q(lIy - PxlD}lIy - PXll ::;lly - Pxll-lIy - Pxll·

By combining (10) and (11). we finally have

1 + q(lIy - Pxll)
(12) I/(y-Px)-(y-Px)1/ ::; (11 ID (Ily- Px ll-lIly-Px ll)·1-q y-Px

Now let 4>: M -+ [0,00) be 4>(x) = IIxll, and let c: [0,00) -+ [0,00) be
c(t) = {1 +q(t)}/{1- q(t)}. Then c is also u.s.c., since so is q. Now by
putting g(y - Px) = y - Px, we have a mapping 9 : M -+ M satisfying
the condition (5) as a result of (12).

Therefore by Theorem 3, 9 has a fixed point in M, that is, there is
a point Xo E X such that g(y - PXo) = y - Pxo. But this means that
Pxo = PXo, and hence by (9) we have

elly - Pxoll ::; eq(lIy - PxolDlly - Pxoll·

Also since 0::; q(lIy - Pxoll) < 1, we conclude that Pxo - y = 0, which
completes the proof.

Note that ify = 0, then Theorexn 6 is a consequence of Altman's
result [4]. As a direct application of Theorem 6 we have thefollowing
surjectivity result.

COROLLARY 7. Let X be a nonempty set, Y a Banach space, and let
P : X -+ Y be a mapping such that P(X) is closed in Y. Suppose tbat
for any x E X, r;(p) = Y. Tben P is surjective, tbat is, P(X) = Y.

Proof. Since y - Px E r;(P) for any x E X and any y E Y, by
Theorem 6, the equation Px = y has a solution for all yE Y. Therefore
Pis surjective.

IT the closedness of P(X) is omitted, then we need more stronger
conditions to obtain mapping theorems for nonlinear operators of con
tractor directional type.

We say that an operator P from a subset D of a metric space X into
a metric space Y has closed graph if its graph is closed in D x Y, that
is, for any sequence {xn } ~ D with Xn -+ x E D and PXn -+ y,Px = y
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holds (see [4] for the definition). Also we say that P has closed graph
in X x Y if its graph is closed in X x Y, that is, for any sequence
{xn} ~ D with Xn -+ x and PXn -+ y, it follows that x E D and
Px = y (see [1,2,3] for the definition). Note that if P has closed graph
in X x Y, then it has closed graph, and if D is closed in X, then the
converse holds. .

For a metric space X and x EX, we denote by B(x; r) the set

{y E Xld(x, y) < r},

and B(x;r) its closure for r > O. Also conveniently, we set B(x;oo) =
X.

THEOREM 8. Let D be a nonempty subset of a complete metric
space X, Y a Banach space, and let P : D -+ Y be a mapping having
closed graph in X x Y. Suppose that there are a constant q E (0,1)
and an u.s.c. function c : [0,00) -+ [a, 00) with a > 0 such that for
any x E D, there are an x E D and 0 < € = €(x) ~ 1 satisfying

(13)

and

(14)

IIPx - (1 - €)Pxll ~ q€IIPXII

d(x, x) ~ €c(IIPxll) IIPxll.

Then the equation Px = 0 has a solution in D. Moreover, if c is
nonincreasing, then for any given point Xo E D, the equation Px = 0
has a solution in D n B(xo; r), where

[lI pzo lI
r = (1 - q)-l 10 c(t)dt.

Also as noted above, if D is closed in X, then we can simply assume
that P has closed graph.

Proof. Give a new metric p on D by setting

p(x, y) = max{ d(x, y), (1 +q)-laIlPx - Pyll}, x, yE D.
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Then we can prove that the metric space (D, p) is complete. In fact,
suppose that {xn } is a Cauchy sequence in (D,p). Then it can be
easily shown that {xn} and {Pxn} are Cauchy sequences in X and Y,
respectively. Therefore X n ~ x and PX n ~ y for some x E X and
y E Y, since X and Y are both complete. Since P has closed graph in
X x Y, it follows that x E D and Px = y. Then clearly p(xn,x) ~ 0
as n ~ 00. Therefore (D, p) is complete.

Now also set 4>: D -+ [0,(0) by 4>(x) = IIpxll for x E D. Then 4> is
continuous with respect to the new metric p on D.

For each x E D we can find x E D satisfying (13) and (14). Now
from (13) we have

(15) IIPx - Pxll ~ E(l +q)lIpxll.

Also from (13) we get

(16) E(l - q)lIpxll ~ IIpxll-lIpxll.

By combining (15) and (16) we obtain

(17) II px - Pxll ~ 1 +q(IIPx ll-IIPx ll).
1-q

And by (14) and (16) we have

.. 1
(18) d(x, x) ~ 1- qc(IIPx ll) (IIPx ll-IIPx /l).

By putting gx = x, we see that the mapping 9 : D ~ D satisfies

p(x,gx) ~ _1-c(4)(x)){4>(x) - 4>(gx)} , x E D.
l-q

Therefore by applying Theorem 3, 9 has a fixed point zED, that is,
gz = z = z. Since 0 < q < 1, by (13) we can conclude that pz = O.
Moreover, suppose that c is nonincreasing. Then by applying Theorem
4, for any given Xo E X, 9 must have a fixed point zED with

1
4>(XO) 1

d(xo, z) ~ p(xo, z) ~ --c(t)dt° 1- q

1 ll1PXOII
= - c(t)dt.

1-q °
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Since this z should be a solution of the equation Px = 0, we complete
the proof.

Note that if c is a constant function, then Theorem 8 is same as
Theorem 2.2 of Bae and Sung [6]. Also our Theorem 8 can be compared
with Theorem 2.1 of Cramer and Ray [12], and Theorem 3.1 of Altman
[3], in which they treat the case c(t) = r l B(t), where B : [0,00) -+

[0, 00) is a continuous nondecreasing function.
By applying Theorem 5, we can obtain a similar result of Theorem

8.

THEOREM 9. Let D be a nonempty subset of a complete metric
space X, Y a Banach space, and let P : D -+ Y be a mapping having
closed graph in X x Y. Suppose that there are a constant q E (0,1)
and an u.s.c. function c : [0,00) -+ [0',00) with 0' > 0 such that for
any x E D, there are an i E D and € = €(x) E (0,1] satisfying

IIPi - (1 - €)Pxll ::; q€IIPXII

and

(19) d(x,i) ::; €c(IIPill)IIPxll.

Then the equation Px = 0 has a solution in D. Moreover, if c is
nondecreasing, then for any given point Xo E D, the equation Px = 0
has a solution in D n B(xo; r), where

1 ll1Pxoll
r =-- c(t)dt.

1 - q 0

Proof. Let p and </> be same as in the proof of Theorem 8. Then by
the same way of the proof of Theorem 8 and by using the condition
(19) instead of (14) we finally obtain that for each x E D, there is an
x E D such that

1
p(x,x)::; -1-c(</>(x)){</>(x) - </>(x)}.

-q
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Therefore the mapping 9 : D - D defined by gx = x has a fixed point
zED by Theorem 3. Moreover, if c is nondecreasing, then by Theorem
5, 9 has a fixed point zED with

l
tP(XO) 1

d(xo, z) ::; p(xo, z) ::; -1-c(t)dt° -q

1 l"Pxol
= -- c(t)dt.

1- q 0

Since every fixed point of 9 is a solution of the equation Px = 0 by
(13), we complete the proof.

We remark that the condition (13) means -Px E r x(P) for any
x E D. Therefore the first part of Theorem 8-9 can be proved by using
Theorem 6. But our interest about these kinds of mapping theorems
is the information concerning the whereabout of the solution.

The assumption that inf{c(t)lt 2:: O} = a > 0 is rather restrictive
in Theorems 8-9. In fact, if a = 0, then we can obtain the following
corollary.

COROLLARY 10. Let D be a nonempty subset of a complete metric
space, Y a Banach space, and let P : D - Y be a mapping having
closed graph in X x Y. Suppose that there are a constant q E (0,1)
and an u.s. c. function c : [0, 00) _ [0, 00) such that for any x E D,
there are an x E D and 0 < e = e(x) ::; 1 satisfying the conditions (13)
and (14).

Then the equation Px = 0 has a solution in D. Moreover, if c is
nonincreasing, then for any given Xo E D, the equation Px = 0 has a
solution in D n B(xo;r), where r is any real with

l
"PXOI

r > (1 - q)-l ° c(t)dt.

Also if P is continuous, then r can be choosen by

l
"PXOII

r = (1 - q)-l ° c(t)dt.
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Proof. For a fixed Xo E D, take a > 0 such that

l
l1PZOII

(1 - q)-laIIPxoll < r - (1 - q)-l 0 c(t)dt,

and put e: [0,00) -+ [a, 00) with e(t) = c(t) +a. Then clearly we can
apply Theorem 8 for this function e instead of c. Therefore, we can
obtain the first part of the theorem.

Now suppose that P is continuous. Then the inequality (18) gives
the result by applying Theorem 4. This completes the proof.

§4. Ranges of operators

In this section, we obtain the precise estimation of the range of a
nonlinear operator by applying our previous theorems. First we give
some definitions.

Let X and Y be Banach spaces, and P a mapping from an open
subset D of X into Y. We say that P is Gateaux differentiable if for
each x E D, there is a mapping dPx : X -+ Y satisfying

lim P(x + th) - P(x) = dPx(h), hEX.
t-O+ t

IT dPx is a bounded linear operator and if the above limit is attained
unfonnly for all hEX with Ilhll = 1, then P is said to be Frecbet
differentiable. Note that in the definition of Gateaux derivative, we
do not require that dPz is linear, but it follows from the definition
that dPx is homogeneous from the right, that is, dPz(th) = tdPx(h)
for all t ~ O. Note that Frechet differentiable mappings are necessarily
continuous, but Gateaux differentiable mappings, even from R2 to R
need not be continuous.

The nonlinear theory was initiated by Pohozhaev [18] who showed
that, if Y is reflexive, P(X) is weakly closed, and if each dPz is bounded
linear with dPz(X) = Y, then P(X) = Y. This basic result was con
siderably sharpened and generalized by Browder [9], Kirk and Caristi
[15], Cramer and Ray [12], Ray [19], Bae and Yie [7] and Bae [5] in a
series of papers.
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THEOREM 11. Let X and Y be Banach spaces and P : X -t Y a
Gateaux differentiable operator from X into Y such that dPx(X) = Y
for each x EX. If P(X) is closed, then P is surjective.

Proof. Let x E X and y E Y be fixed. Since dPx(X) = Y, we have
hEX with dPx(h) = y. This means

lim P(x+th)-P(x) =y.
t .....O+ t

Now suppose that y =f:. 0, and let q E (0,1) be fixed. Then there is a
t E (0,1] such that

11 P(x +thj- P(x) _ yll ~ qllyll

which says
IIp(x + th) - P(x) - tY11 ~ tqllyll·

Therefore we know that by putting x = x + th, y E r x(P). Also if
y = 0, then by putting x = x, Y E r x(P). This show that r x(P) = Y
for each x EX. Therefore by applying Corollary 7, we conclude that
P is surjective. This completes the proof.

Note that Theorem 11 includes Theorem 2.1 of Ray [19J. The as
sumption that PWtsthed()Sed range is rather. strong. Such. as th~

linear theory, this assumption can be weakened by requiring each of
the functions dPx to be an open mapping. In this direction we intro
duce the following result of Bae and Yie [7].

THEOREM 12 ([7, THEOREM 3.4]). Let X and Y be Banach spaces
and.P : X -t Y a Gateaux differentiable mapping having closed graph.
Let c : [0,00) -t (0,00) be a continuous function for which, for each
XEX,

B(O; c(lIxll)) ~ dPx(B(O; 1)).

Then for each K > 0, P(B(O; K)) contains the ball B(P(O); J: c(t)dt).
Moreover, P is an open mapping, and if Jooo

c(t)dt =00 then P is sur
jective.

Theorem 12 is a generalization of Theorem 3.1 of Ray and Walker
[20] without assuming that c is nonincreasing. The following theorem
gives another direction of the above Theorem 12.
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THEOREM 13. Let X and Y be Banach spaces and P : X ---. Y a
Gateaux differentiable mapping having closed graph. Let c : [0,00) ---.
(0,00) be a continuous nondecreasing function for which, for each x E
X,

B(O; c(IIPxID-1) ~ dPz(B(O; 1)).

Then for any given Xo E X and r > 0, P(B(xo; rc(IIPxoll + 2r)))
contains the ball B (P( xo); r). In particular, P is an open mapping
and P(X) = Y.

Proof It suffices to show that for any y E Y with IIP(xo) - yll < r,
the equation Px = y has a solution in B(xo; rc(IIPxoll +2r)). Let us
choose a real q E (0,1) such that

Ily - p(xo)11 < (1- q)r.

Define a new metric p on X such that for x, y EX,

p(x,y) = max{lIx - yll,c(0)(1 + q)-lIlPx - Pyll}.

Since P has closed graph, (X, p) is a complete metric space. Also
define tP : X ---. [0,00) by tP(x) = IIpx - YII, so that tP is continuous
with respect to the metric p on X. Now define a mapping 9 : X ---. X
as follows; if Px = y, then gx = x. Suppose that Px i= y for x E X.
We set

v = lIy - Pxll-lc(IIPxll) -l(y - Px).

Then by (20), there is a u E B(O; 1) ~ X such that dPz(u) = v and so,
if h = c(IIPxlDlly - Pxllu, then dPz(h) = y - Px. Since P is Gateaux
differentiable, we may choose t E (0,1] so small that

IIp(x + th) - P(x) - tdPz(h) 11 ~ qtllY - Pxll·

By setting gx = x + th, this implies

(21) IIp(g(x)) - P(x) - t(y - Px)II ~ qtllY - Pxll·

and

(22) Ilg(x) - xII = tllhll ~ tc(IIPxll)lIy - Pxll·
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From (21), we have

I/P(g(x)) - p(x)11 ~ t(l + q)/Iy - Pxl/

and
(1 - q)tl/Y - Px/l ~ I/y - PXl/-I/Y - P(g(x))I/,

and hence we know that

(23) (l+q)-II!P(g(X))-P(x)11 ~ (l-q)-I(/Iy-Pxll-I/y-P(gx)I/).

Also by (22) and the above inequality, we have

(24) IIgx - xl/ ~ (1 - q)-lc(/IPx/lHI/y - Pxl/ - I/y - P(gx)I/).

Therefore from (23) and (24), finally we get

p(x, gx) ~ (1 - q)-IC(I/Pxl/) {4>(x) - 4>(gx)},

since c(o) ~ c(/IPx/l) for all x EX. Now defined c: [0,00) -+- [0,00) by
c(t) = c(/Iy/l+t). Then since I/Px/l ~ /Iyl/+I/y-Px/l,c(IIPxll) ~ c(4)(x))
holds. Therefore, we finally obtain

p(x,gx) ~ (1- q)-IC(4)(X)){ 4>(x) - 4>(gx)}.

Since c is continuous, by Theorem 3, 9 has a fixed point z E X which
is actually a solution of the equation Px = y by the inequality (21).
Moreover, by using Theorem 1an.d the method of the proof of Theorem
3, we can find the fixed point z of 9 such that there exist finite points
Xl, X2,··· ,Xn E X with Xn = z and for each 1 ~ i ~ n,

p(Xi-l, Xi) ~ (1 - q)-l max{c(4>(Xi-I»), c(4>(Xi))}{ 4>(Xi-l) - 4>(Xi)}'

But since 4>(Xi) ~ 4>(Xi-l) ~ ... ~ 4>(xo) for each i, we have

C(4)(Xi)) ~ c(4)(xo)) ~ c(I/y/l + I/y-Pxol/) ~c(/IPxol/+2r).

Hence by using (1 - q)-I4>(xO) < r, we have

d(xo,x) ~ p(xo,xn ) ~ (1- q)-IC(I/Pxo/l + 2r)4>(xo)

< c(/IPxol/ + 2r)r,

which completes the proof.

In fact, in Theorem 13, we need only the continuity of c to obtain
the same conclusion.
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COROLLARY 14. Let X and Y be Banach spaces and P : X -+ Y a
Gateaux diJIerentiable mapping having closed graph. Let c : [0,00) -+

(0,00) be a continuous function satisfying the condition (20). Then P
is an open mapping and P(X) = Y.

Proof. Definedc: [0,00) -+ (0,00) byc(t) = sup{c(r)IO ~ r ~

t}. Then c is a continuous nondecreasing function, and clearly the
condition (20) holds for each x E X if we replace c(t) by c(t). Therefore
the proof follows from Theorem 13.

The following corollary is a generalization of Theorem 3.4 of Cramer
and Ray [12).

COROLLARY 15. Let X and Y be Banach spaces and P : X -+ Y be
a Gateaux differentiable mapping having closed graph. Suppose that
for each t > 0, there is a c(t) > 0 such that whenever !lxll ~ t,

and that IIPxl1 -+ 00 as IIxll -+ 00. Then P is an open mapping and
P(X) = Y.

Proof. Defined Cl : [0,00) -+ (0,00) by putting

Then since IIPxll -+ 00 as Ilxll -+ 00, by assumption we know that
Cl(t) > 0 for all t 2: 0 and Cl is a nondecreasing function. Now we
can choose a continuous nondecreasing function C2 : [0,00) -+ (0,00)
such that Cl (t) ~ C2 (t) for all t 2: O. Then for this function C2 instead
of Cl, it can be easily shown that the condition (20) is satisfied for all
x EX. Therefore the proof follows from Theorem 13. This completes
the proof.
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