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MULTIPLE SOLUTIONS OF A CLASS
OF SINGULAR PERTURBATION
PROBLEMS WITH NEUMANN TYPE

BonGgsoo Ko

1. Introduction

In this paper we discuss the existence of multiple nontrivial solutions
and interior transition layers of those solutions of a class of semilinear
elliptic singular perturbation problems with Neumann type:

e Au+ f(z,u) =0, z € 12,
Ou (I)

-5-7;=0, z € 012,

where QE denotes the outward normal derivative of u on 9§2, and we

assume that 2 C !{” (n> 1) is a smooth bounded open set, 82 € C**
(0<a<1l)and 2=02U03R.

In section 2, we assume that f : 2 x R — R satisfies the following;:
(1) feCY(2xR) )
(2) There exist exactly three functions g; : 2 — R (¢ = 0,1,2)
which belong to C?(2), and

91(z) < go(z) < g2(=)
and
f(z,9i(z)) =0
for all z € 2.
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(3) There exists a positive constant K such that

fu(:t’ g'i(x)) <-K

forallz € 2 and i =1,2.
(4) There exist two nonempty disjoint connected open subsets 24
and {2, of {2 such that for any point z € 9f2,

g2(z)
/ f(z,u)du >0
+(z)

for all y(z) € [g1(x), g2(z)), and for any = € 842,

(=)
/ fz,u)du<0
g1(z)

for all v(z) € (g1(x),92(z)]. We also assume that 92, and
012, are smooth.

Constructing three pairs of quasisupersolutions and quasisubsolu-
tions of the problem (I), we prove that there is €y such that for any -
e with 0 < € < ¢ (I) has five distinct ordered solutions in C?({2)
between g; and g, and one of them has an interior transition layer as
e— 0.

In [1], the limit of global minimizers of functionals of the type

2
f_/ |Vu|2dm+/F(|z|,u)dw,
2 Jo Q

as ¢ — 0, where F(|z|,2z) = ff(lzl) z2f(|z|,u) du, has been discussed

previously in case the domain is an interval in R!, or a ball, or an
annulus in R™ by the variational method.

We also discuss interior transition layers of solutions in the case of
f(z,u) = u(u — a(z))(1 — u) and we show that several types of interior

transition layers of solutions are dependent on the shape of the graph
of the function a(z).
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In the section 3, we discuss the existence of multiple solutions of (I)
in the case of f(z,u) = g(z)h(u) for sufficiently small ¢ > 0. In the
problem we assume that A has at least three zeros z; < z; < z3 and
h'(z1) < 0, h'(z2) > 0, and h'(z3) < 0, and the function g takes both
positive values and negative values on the domain §2. Constructing
two pairs of quasisupersolutions and quasisubsolutions of (I), we show
that there is ¢ such that for any € with 0 < € < ¢y the problem (I)
has at least two distinct nontrivial solutions which lie between z; and
23 and which have interior transition layers as ¢ — 0. We also prove
that the existence of a nontrivial solution having the interior transition
layer even though h has only two zeros.

In [2], in the case of f(z,u) = g(z)h(u) = g(z)u(1—u) [k(1—u)+(1—
k)u], 0 < k < 1, and with condition [, g(z)dz <0 or [, g(z)dz >0,
they proved by the bifurcation method that the existence of a nontrivial
positive solution of (I) between 0 and 1.

Without the integral conditions for the function g, we prove that for
all sufficiently small ¢ > 0 the problem (I) has two nontrivial positive
solutions and interior transition layers for the solutions according to
the value of k if k # 0, k # 3, and k # 1. We also prove that if ¥ =0,
or k = 3, or k = 1, then the problem (I) has at least one nontrivial
positive solution having an interior transition layer as ¢ — 0.

2. Main Results

DEFINITIONS. A function w : 2 — R is a quasisupersolution (or
quasisubsolution) of (I) if for any z¢ € 2, there exist a neighborhood
N of 24 and a finite number of functions wx € C*(N), k= 1,2,--- ,p
such that

w(z) = 12]icuglp wg(z) (or 1211?%{;; wi(z))

for all z € N, where p may depend on z¢, and
EAwr(z) + f(z,wi(z)) <0 (or >0)
foralze NN and k=1,2,---,p. Furthermore, if z¢ € 952,

Owg

a—(z) >0 (or <0)
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for all .

Constructing three pairs of quasisubsolutions and quasisupersolu-
tions of (I) and using Theorem 3 in [4], we prove the existence of five
distinct ordered solutions of (I) and interior transition layers of those
solutions as € — 0.

Theorem 3 in [4] is as follows:

THEOREM 2.1 [4]. Suppose that w,,ws are quasisubsolutions and
Wy, Wy are quasisupersolutions of elliptic problems of the type:

Au(z) + f(x,u(:v)) =0,z € 12,
(m Hou(e) + o) e = pla), =€ I0

such that %;(z) < wy(z) and w;(z) < wj(z) forallz € Nandj=1,2,
and Wy(z¢) > wi(zo) for some zg € 2. If w, and @, are not solutions
of (II), then (II) has at least three distinct solutions uj in C*(£2),
(j =0,1,2), such that

Wi(z) < uj(z) < @(z), wi(z) < uo(w) < uz(w)
for all z € 2 and ‘j =1,2, and especiaﬂy

ug € {Wy, W] \ (@1, W] U (@9, e].

REMARK. In Theorem 2-1, the notation [@;,%;] = {u € C(£) :
wi(z) < u(z) < B;(z), z € 2}, i < j.

The function f satisfies that f € C*(2 x I) (Here 0 < a <1, I'is
a fixed finite closed interval in R) and there is a positive number M
such that [f(z,u) — f(z,v)| < M]u~v|forall z € £ and u, v € I.

@ and 842 are smooth.

In order to construct a quasisubsolution and a quasisupersolution of
(I), we use a coordinate transformation near the boundary 02; and
0fh. If z € 02;, (i = 1, 2) we denote by ¢t = t(z) the distance from
z to 012; and by s = s(z) the point of 942; which is closest to z. Of
course s{z) might not be uniquely defined, but will be if z is close
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enough to 942;. Let O; be the open set of all points of §2; such that
the normal through distinct points of 92; do not intersect on O;. We
denote z = (s,t)ifz € O; and ¢ = s = (s,0) if z € 042;, and if z € O;,

we have .

2 0
€A, =€ 3 + 0(e).

by the substitution z = (s,1t).
Now consider the following boundary value problem:

{ Zu = F(s,u(s,T))
u(s,0) =£&(s), wu(s,00)=0

where s € 012 is a parameter and 7 € [0,00) and F(s, u) is a real valued
function.

The following fact is well known.

LEMMA [3]. Let £(s) and F(s,u) be infinitely differentiable for all
s € 02 and u € (—o0,+00), all derivatives being uniformly continuous.
For all s € 912, assume that

F(s5,0)=0, Fu(s,0)>0, / F(s,u)du >0
0

for all w € (0,€(s)] or [€(s),0). Then there is a unique monotone
solution v(s, ) of the above boundary value problem and it is infinitely
differentiable in s and . Moreover each of the derivatives of v decays
exponentially as 7 — oo, uniformly in s, in the sense that if D is any
C® linear differential operator in s and 7, then there exist positive

constants C and (3, possibly depending on D, such that |Dv(s, )| <
ce AT,

Hence, we can say that

2
A v(s,T) = (9 +0(6)

as € — 0, uniformly on s € 912, if v(s,T) is the unique monotone
solution of the above boundary value problem.

Using Lemma, we have the following theorem which yields the exis-
tence of a pair of quasisubsolution and quasisupersolution of (I).
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THEOREM 2-2. Assume (1)-(4). Then there is ¢¢ > 0 such that
for any € with 0 < € < € there exist a quasisub solution w(z;€) and
a quasisuper solution @(z;e) of (I) so that w(x;e) < w(x;¢) for all
z € 12,

o . g2(z) in (&
llino w(z; €)(or(z;€)) = {gl(z) n 0,

and the convergence is uniform on every compact subset of indicated
regions.

Proof. We first construct a quasisupersolution w(z;e€) of (I). From
the hypothesis (3), there is a positive constant r; such that

fu(z,gi(z) £r) < -K <0

forall0 <r <rjandforallz € 2,7 =1,2. Let po > 0 be a sufficiently
small number so that pg < 71, and let L(s, po) = f(s,91(s) + po) for
all s € 0f2;. Then L(s,p0) < 0 for all s € 92,. Let F(s,u) =
—f(s,91(s)+po+u)+ L(s, po). Then F(s,0) =0 and Fy(s,0) > K >0
for all s € 942,. Now, since

B(s)
~ F(s,u)du

91(8)+po+8(s)
-/ — Fls,u) du + L(s, p0)B(s).
g1(s)+po
and since if we choose py so that
g2(s)+po
/ ~f(s,u)du >0
g1(8)+p0
for all s € 02, then
91(s)+pot+B(s)
/ —f(s,u)du >0
g1(s)+po

for all B(s) € (0, g2(s) — g1(s)]. Since

plgglrﬂ L(S, PO) =0,
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uniformly for all s € 862,

B(9)
F(s,u)du>0
0

for all B(s) € (0,92(3) — g1(5)]. Then, by Lemma, there is a unique
monotone solution v(s, 7) of the problem

0%
7= —£(5,91(8) + po + v) + L(s, po)

’0(8,0) = 92(3) - g1(8), U(sa 00) =0

such that v and the first derivatives and second derivatives of v in s
and 7 decay exponentially as 7 — co. Let t = er and V(s,t) = v(s, {),
and let O, = {(s,t) € 2, :0 <t < &, s € 82, }, where x is so chosen
that the normals through distinct points of 3f2; do not intersect on
Oy. Then if z = (s,t) € O,,

v
€2AV(.’L‘) = 62—&5— —+ 0(6)

0%v

= F ) + 0(e)

= “'f(S, 91(5) + Po + 'U(S,T)) + L(S, PO) + 0(6)
V(s,0) = v(s,0), V(s,00)=0

We take a smooth function o(t) € C°°([0,00)) such that o(¢) = 1 for
0<t< §anda(t)=0for§n§t,and0§a(t)SlforalltZO,
and we define V(s,t) = V(s,t)a(t) for (s,t) € O, and V(z) = 0 for
z € £25\ O,. Then the function V is in C?({2;). We note that & is
independent of e.

Let U(z; €) = g1(z) + po + V(z) for all z € £2,. Now we prove that

EAU(z;€) + f(z,U(z;€)) <0
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in §2,. For any z = (s,t) with 0 <t < §,

EAU(z;€) + f(z, U(z; €))
= AV (z) + f(z,U(z;€)) + 0(e?)

g 5 + f(z, U(z €)) + 0(e)

=— f(s,91(8) + po + v(s,7)) + f(=,91(s) + po + v(s, 7))
— F(z,91(8) + po + v(s,7)) + f(2,91(2) + po + v(s,7))
+ L(s, po) + 0(e)

=V, £(=*aa(s) + po +v(s,7)) o [ or(e)]t
+ fularw)(Var(e™) 0 (1)) + Lis, pu) + 0(e),

where z* and z** are on the line segment passing through the point z
and s on O, and u* is between U(z;€) and g1(s) + po + v(s,7), and
0 < t*,¢** < ¢, and o is the inner product in R™. Hence

EAU(z;€) + f=, U(z; €)) = 0(¢) + 0(¢) + L(s, po).
If € and & are suﬂicientiy small, thén
AU (z;€) + f(z,0(z;¢)) <0.
For any = = (s,t) with § <t < &,

EAU(z;¢) + f(z, U(z;¢))

=2AV (s,£) + f(2,91() + po + V(s,1)) + 0(¢?)

g =50 + f(z,91(z) + po + V&) + 0(e).

Since -32_5 and v decay exponentially as 7 — oo and f(z,g1(z)+po) <

0, so

AU (z;€) + f(z,U(z;€)) <0
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if € is sufficiently small. For any z € £2,\ O Zns

U(z;€) = g1(2) + po-
Then
AU (z;¢€) +f(3:,[j(x;e))
=0(e’) + f(z,91(z) + po) <0

if € is sufficiently small. Furthermore, we note that if z € 0f2,,
U(z;€) = g2(2) + po-

We choose a function h € C?(£2) such that % > 0 on 812 and g2(z) <
h(z) < g2(z) + po in £2. Let

ilaie) = § PnU@E M@} i ze
] A(2) if ze 0\ .

Since f(z,h(z)) < 0 for all z € £2,
e Aw(z;e) + f(z,w) <0

if W is twice partial differentiable at x in 2. Moreover, if z = (s,0) €

052, then 5 5
W h
2oey= L@ 20,

We hence note that w(z;¢) is a quasisupersolution of (I) if e > 0 is
sufficiently small.

To construct a quasisubsolution of (I), we let G(s,u) = f(s, g2(s) —
vo — u) — l(s,vp), where I(s,v0) = f(s,92(s) — vo) for all s € 0
and for some vy with 0 < 19 < ry. Then I(s,15) > 0, G(s,0) = 0,
Gu(s,0) > K, and

afs)
/ G(s,u)du >0
0

for all a(s) € (0,g2(s) — g1(s)] if vy is sufficiently small.
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By the similar method used in constructing quasisupersolution of
(I), we can find a quasisubsolution @(z; €) of (I) having the following
properties:

5(zie) = { max{U(z;e¢), k(z)} .te:::ti f ze {‘21
k(z) if z€2\ &,
w(z;e) =g1(s) —vy forall z e df2y,

ke C*2), gi(z) — v < k(z) < g1(z) in 2, % <0on 0,

U(z;€) = go(z) —vo + 0(z) forall ze€ 2y,
B(zs€) = { U(s,t)o(t) for (s,t) €0, i
0 forall z € §;\0,,
Gﬂz{(s,t)eﬂl:OStgn,sea.Ql} .

Here 7 is so chosen that the normals through distinct points of 842
do not intersect on O, and 7 is independent of e. As before o(t) €
C>([0,00)), o(t) = 1 for 0 < ¢ < % and zero for 2n < ¢, and 0 <
o(t) <lforallt>0.

Finally, U(s,t) = u(s,7), (¢ = €r), is the unique monotone solution
of the problem:

2 om0 -0 o)
u(s,0) = go(s) — g1(s), u(s,00)=0

Clearly, @(z;€) < w(z;¢) for all z € 2 and the convergence for @ and
W as € — 0 is true if we choose pg and vy smaller and smaller. This
completes the proof.

Choosing four functions p;(z), (i = 1,2, 3,4) such that p; € C*(f2),
for each z € 912,

Opq Op2 Ops Opy
< _— > =2 <L >
n—o’ 3n"0’ an—o’ an_o’
and for each z € 02,

f(-’B,Pl(x)) >0, .f(x’P2(‘T)) <0, f($7p3($)) >0, f(:l?,p4($)) <0,
91(z) — o < pi(z) < g1(z) L p2(z) < g1(2) + 10,
g2(z) — po < ps(z) < ga(z) < pa(z) < g2(z) + po,
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and using Theorem 2-1 and Theorem 2-2, we conclude the following
theorem which is the main result.

THEOREM 2-3. With assumptions (1)-(4), there is ¢q > 0 such that
for any e with 0 < € < € the problem (I) has at least five distinct
ordered solutions u;(z;€) in C*({2) such that

p1(z) Sus(z;€) < pa(z),
uj(z;€) Sug(zie) < uz(z;e),
w(x;€) <uz(x;e) < w(z;e),

pa(z) Sus(z;€) < pa(z),
uz(z; €) Sug(z;e) < us(z;€),

for all x € 2. Especially

limuj(zie) =g;(z) z€ (j=1,5),
€t

linéug(x; €) =q(z) €2,

€ —+!

lin}) ug(z;€) = go(z) T €1,

g1(z) z€

Jim us(z; €) = {g2(x) e,

and the above convergencies are uniform on every compact subset of

indicated regions.

REMARK. In fact, the above theorem is true in case that f €
C*(2xI),0 < a <1, and I is a bounded interval in R such that
gi(z) € I'forall i = 1,3 and for all = € £2, if we replace the assumption
(3) by the hypothesis that there is a positive number r; such that

f(a:,g,-(z) — r) >0 and f(x,g,-(z) + r) <0

forallz € 2, forall r withO0<r <rj,andi=1,3.

From Theorem 2-3 and Remark, we have the following results:
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COROLLARY 1. In the problem (I), let f(z,u) = u(u—a(z))(1—u).
If the function a(z) has the following properties: 0 < a(z) < 1 for all
z € 2, a € CY(), and there are two nonempty disjoint connected
open subsets {2, and 2, with smooth boundaries such that for any
point z € 02,

/ u(u—a(z))(1 — u)du >0
v(z)

for all y(z) € [0,1), and for any = € 042,

=)
/o u(u —a(z))(1 —u)du <0

for all v(z) € (0, 1], then for all sufficiently small € > 0 the problem (I)
has at least three distinct positive nontrivial ordered solutions u;(z;€)

in Cz(-(—)) such that
0 < us(w;€) < ug(z;€) < ug(z;e) < 1
for all z € 02, i
im u(e;) =0 zefy,
lmus(zi)=1 c€,

. 1 zefh,
?$U2($;E)={O z €2,

and the above convergencies are uniform on every compact subset of
indicated regions.

COROLLARY 2. Let f(z,u) = u(u — a(z))(1 — u), 0 < a(z) < 1 for
all z € 2, and a € C*(f2). If there are N nonempty disjoint connected
open subsets 2y, 2, ---, 2xn of §2 such that their boundaries are
smooth, for any point z € 3§2; (i’s are odd)

1 flz,u)du >0

¥(z)
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for all 7(z) € {0,1), and for any point z € 912, (j’s are even)

7(z)
/ flz,u)du <0
0

for all y(z) € (0,1], then for all sufficiently small ¢ > 0 the problem
(I) has three distinct nontrivial positive ordered solutions ui(z;€) in
C?*(£) such that
0 < ui(z;e) Suz(z;e) < usz(zye) <1

for all z € 12,

elinéul(z;e) =0 z€8; (j=even),

1in(1) us(z;e) =1 z €82 (1= o0dd),

I 1 :I)E.Q,' (Z=Odd)

61_1‘1%) 'U.2(z) E) - 0 T G QJ (] — EVen),

and the above convergencies are uniform on every compact subset of
indicated regions.

3. The function f(z,u) = g(z)h(u) case

Consider a model with two alleles 4; and A, corresponding to three
possible genotypes A; Ay, A; A2, A2A,. The population lives in a region
2 in R". Let u(z,t) denote the frequency of the allele A; at time ¢t at
the point z in 2. Changes in gene frequency are assumed to be caused
only by the flow of genes within 2 and selective advantages for certain
genotypes in certain subregions of {2.

In [2], they said that u satisfies the semilinear parabolic equation

us(z,t) = €€ Au + g(z)h(u)

in §2, where h(u) = u(1 — u)[k(1 — u) + (1 — k)u], for some constants
€ > 0, and 0 < k < 1. They assumed that g takes on both positive and
negative values on the region {2 and that either

Ag(x)d:c <0
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or

/ng(:c)dx >0.

They then proved by bifurcation method that there is ¢g > 0 such that
for all € with 0 < € < ¢ the problem (I) has a nontrivial positive
solution u(z; €) in C?(2) such that 0 < u(z;€) < 1 for all z € £2.

Now, without the integral condition for ¢ we prove the existence
of two nontrivial positive solutions as well as the existence of interior
transition layers of the solutions as ¢ — 0. Here we assume that g €

C(£2) and h € C(I), where I is an interval in R.

THEOREM 3.1. Let f(z,u) = g(z)h(u), h have three zeros z; <
29 < z3 and no other zeros between z; and z3, and h satisfy that
h'(z1) <0, h'(22) > 0, and h'(23) < 0. If 2y = {z € 2: g(z) < 0}
and 2, = {z € 2 : g(z) > 0} are connected open subsets of {2 with
smooth boundaries, then there is ¢y such that for all e with 0 < € < ¢
the problem (I) has two nontrivial ordered solutions u(z;€) in C%(§2)
so that z1 < u;(z;€) < 23 for all z € 2 and they have the following
interior transition layers:

lim i fz2 TE .Ql
e% ul(x’ 6) - z1 T € 8§,
B 23 TESH
imuxTi) =14 ce,

and the above convergence are uniform on every compact subset of
indicated regions.

Proof. For any = € £, and for any 2; < u < 23, f(z,u) > 0. Since
f(xa 22) = Os fu(x’zZ) < 07 and

/Zz f(z,u)du >0

for all z € §2;, by the similar construction on the proof of Theorem
2-2, there is a function @1(z;€) € C%(§21) such that for all sufficiently
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small € > 0,

62Aal+f($aﬁ1)20’ (IJEQ],
uy(z;e) =21, =z € 0f,
z; < @y(z;€) < 29, T € £y,

and lim,_.o @;(z;€) = z; uniformly on every compact subset of §2;. Let

5y(z5) { uy(z;e€) if zefh,
zi€) = . ~
bt € 21 if z€ .Q\ .Ql,
Then w,(z;¢€) is a quasisubsolution of the problem (I).

Similarly, for any = € §2, and for any z; < u < 29, f(z,u) < 0.
Since f(z,2z1) =0, fu(z,z1) <0, and f;’ f(z,u)du < 0 for all z € £2;,
there is a function 4, (z;€) € C?(£2;) such that for all sufficiently small
e > 0,

AU + f(z,21) <0, T € 2y,
t1(z; €) = 22, r € 02,
21 < y(z;€) < 29, z € {2y,

and lim,_.g 4;(z; €) = z; uniformly on every compact subset of 2. Let

. dy(z;e) i z € 0,
wl(:c;e)'-:{z2 if ze2\0,.
Then ,(z;¢€) is a quasisupersolution of the problem (I). Since
wy(z;€) < Wi(z;€)
for all z € £2, there is a solution u;(z;€) € C%(2) such that
z1 S W1(z;€) Suy(z;e) < wazse) < 29
for all z € 2 and for all sufficiently small € > 0.

By the same method, for any ¢ € §2; and for any z; < u < z3,
f(.’L‘,U) < 0. Since f((lf,ZQ) = 0’ fu(‘z.az2) < 01 and f::’ f(z,u)du <0
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for all z € £2;, there is a quasisupersolution ws(z; €) of the problem (I)
such that lim._.o W2(z; €) = 22 uniformly on every compact subset of
21 and wy(z;€) = 23 for all z € 2\ 2.

Similarly, for any z € {22 and for any 22 < u < z3, f(z,u) > 0.
Since f(z,z3) = 0, fu(z,2z3) < 0, and f:: f(z,u)du > 0 for all z €
{25, there is a quasisubsolution wa(z;e€) of the problem (I) such that
lim._,q wa(z;€) = z3 uniformly on every compact subset of {2, and
Wa(z;€) = 2o for all z € 2\ 22. We note that w2(z;€) < wa(z;e) for
all z € 2. Hence there is another nontrivial solution uy(z;e€) of the
problem (I) such that

29 < wa(z;€) < ug(zse) < Wwo(zse) < 23

for all z € 2 and for all sufficiently small € > 0.

Introducing some functions b < h and A > k which satisfy the
conditions on the derivatives at 27, 22, and z3 in Theorem 3-1, we can
prove the same existence result in the case of h'(21) < 0 and A'(z3) < 0.

COROLLARY 1. Theorem 3-1 is true if we replace the assumptions
h'(z1) <0 and A'(z;3) <0

by B'(z1) < 0 and h'(23) < 0, h(u) < 0 for all z; < u < z3 and h(u) > 0
for all zg < u < z3.

COROLLARY 2. In Theorem 3-1, let h have two zeros z; and z; and
no other zeros between them, and let h'(z;) < 0 and h'(22) > 0. Then
there is €q such that for all € with 0 < € < ¢y the problem (I) has a
nontrivial solution u(z;e) in C?(2) so that z; < u(z;€) < 2o for all
x € fl,

‘ z9 TESH

and the above convergence is uniform on every compact subset of the
indicated regions.

From Theorem 3-1, Corollary 1 and 2, we have the following fesults:



Multiple solutions of a class 27

Corollary 3. Let f(z,u) = g(z)u(l —u)[k(1—u)+(1—k)u]. Then
there is €9 such that for all € with 0 < € < ¢,
(1) if either k > 1 or k < 0, there exist two nontrivial positive
solutions ui(x;e) in C(2) so that 0 < ui(z;e) < 1 for all
ref,

; (z:6) {0 z € (4

imu(z;€e) =

e—0 ! Tt z€ Ry,
1 €

lim ug(z;¢) =

0 2( ) {_2_.1;15_—_I 1«'602,

(2) if k € {0, 3, 1}, there exists a nontrivial positive solution

u(z;€) in C*(2) so that 0 < u(zx;€) < 1 for all z € 2 and

{0 1?6.(21

im u(z;e) = 1 ze0

€—0

(3) if % < k < 1, there exist two nontrivial positive solutions

ui(z; €) in C(2) so that 0 < u;(z;€) < 55 forall z € L2,

0 T €
1 .’Eegl,
1 z €

lim ug(z;¢) =
€—0 2(z€) {% T €,

s = |

(4) if0< k<2

5, there exist two nontrivial solutions u;(z;e€) in
C?(f2) so that £~ < u;(z;¢) < 1forallz € 22,

I ) 1 z € )y
bmuy(zse) =9 o €0
k
ey ey 12
lim uz(x;e) — { 2k—1 T € §n
€e—0 0 z €,

and the above convergencies are uniform on every compact subset of
indicated regions.
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