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MULTIPLE SOLUTIONS OF A CLASS

OF SINGULAR PERTURBATION

PROBLEMS WITH NEUMANN TYPE

BONGSOO Ko

1. Introduction

In this paper we discuss the existence of multiple nontrivial solutions
and interior transition layers of those solutions of a class of semilinear
elliptic singular perturbation problems with Neumann type:

f2 L1u + I(x, u) =0,

au -0an - ,

x En,

x E an,
(1)

where :: denotes the outward normal derivative of u on an, and we

assume that ne Rn (n;::: 1) is a smooth bounded open set, an E c2
,0I

(0 < et < 1) and fi = nu an.

In section 2, we assume that I : fi x R ~ R satisfies the following:

(1) lE Gl(fi x R)
(2) There exist exactly three functions 9i : fi ~ R (i = 0,1,2)

which belong to C2
( ii), and

and

for all x E ii.
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(3) There exists a positive constant K such that

for all x E ti and i = 1,2.
(4) There exist two nonempty disjoint connected open subsets ill

and il2 of il such that for any point x E aill ,

1
92 (X)

f(x,u)du > 0
')'(x)

for all ,(x) E [9l(X), 92(X), and for any x E ail2,

l
')'(X)

f(x,u)du < 0
91(X)

for all ,(x) E (9l(X), 92(X)]. We also assume that aill and
ail2 are smooth.

Constructing three pairs of quasisupersolutions and quasisubsolu­
tionsof the problem (1), we prove that there is EO .such.. that for any
E with 0 < E :::; EO (1) has five distinct ordered solutions in C2(ti)
between 91 and 92 and one of them has an interior transition layer as
E --+ o.

In [1], the limit of global minimizers of functionals of the type

E

2

{1V'uI2 dx+ { F(lxl,u)dx,
2 in in

as E --+ 0, where F(lxl, z) = Jr(lxD zf(lxl, u) du, has been discussed

previously in case the domain is an interval in RI, or a ball, or an
annulus in Rn by the variational method.

We also discuss interior transition layers of solutions in the case of
f( x, u) = u(u - a(x ))(1 - u) and we show that several types of interior
transition layers of solutions are dependent on the shape of the graph
of the function a(x).
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In the section 3, we discuss the existence of multiple solutions of (1)
in the case of f( x, u) = g(x )h(u) for sufficiently small € > O. In the
problem we assume that h has at least three zeros Zl < Z2 < Z3 and
h'(zt} < 0, h'(Z2) > 0, and h'(Z3) < 0, and the function 9 takes both
positive values and negative values on the domain n. Constructing
two pairs of quasisupersolutions and quasisubsolutions of (1), we show
that there is EO such that for any E with 0 < E :S EO the problem (l)
has at least two distinct nontrivial solutions which lie between Zl and
Z3 and which have interior transition layers as E -+ O. We also prove
that the existence of a nontrivial solution having the interior transition
layer even though h has only two zeros.

In [2], in the case of f(x,u) = g(x)h(u) = g(x)u(l-u)[k(l-u)+(l­
k)u], 0 < k < 1, and with condition Jng(x)dx < 0 or In g(x) dx > 0,
they proved by the bifurcation method that the existence of a nontrivial
positive solution of (l) between 0 and 1.

Without the integral conditions for the function g, we prove that for
all sufficiently small € > 0 the problem (l) has two nontrivial positive
solutions and interior transition layers for the solutions according to
the value of k if k i= 0, k i= t, and k i= 1. We also prove that if k = 0,
or k = t, or k = 1, then the problem (l) has at least one nontrivial
positive solution having an interior transition layer as E -+ O.

2. Main Results

DEFINITIONS. A function w tl -+ R is a quasisupersolution (or
quasisubsolution) of (1) if for any Xo E il, there exist a neighborhood
N of Xo and a finite number of functions Wk E C2(N), k = 1,2,," ,p
such that

W(x) = min Wk(X) (or max Wk(X))
l~k~p l~k~p

for all x EN, where p may depend on xo, and

for all x E N n n and k = 1,2, ... ,p. Furthermore, if Xo E an,

a;;k (x) ~ 0 (or :S 0)
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for all k.
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(Il)

Constructing three pairs of quasisubsolutions and quasisupersolu­
tions of (I) and using Theorem 3 in [4], we prove the existence of five
distinct ordered solutions of (I) and interior transition layers of those
solutions as E -+ O.

Theorem 3 in [4] is as follows:

THEOREM 2.1 [4]. Suppose that WI, W2 are quasisubsolutions and
WI, W2 are quasisupersolutions of elliptic problems of the type:

.du(x) + f(x,u(x») = O,x E n,
au

p(x)u(x) + q(x) an = ep(x), x E an

such that WI(X) ::; W2(X) and Wj(x) ::; Wj(x) for all x E ti and j = 1,2,
and W2(XO) > WI(XO) for some Xo E ti. IfWI and W2 are not solutions
of (11), then (11) has at least three distinct solutions Uj in C2 (ti),
(j = 0,1,2), such that

for all x E ti and j = 1,2, and especially

REMARK. In Theorem 2-1, the notation [Wj, Wj] = {u E C(ti) :
Wi(X) ::; u(x) ::; Wj(x), x E ti}, i ::; j.

The function f satisfies that f E caCti x I) ( Here 0 < a < 1, I is
a fixed finite closed interval in R) and there is a positive number M
such that If(x,u) - f(x,v)1 ::; Mlu - vi for all x E ti and u, v E I.

Ip and an are smooth.

In order to construct a quasisubsolution and a quasisupersolution of
(I), we use a coordinate transformation near the boundary anI and
an2. IT x E ni, (i = 1,2) we denote by t = t(x) the distance from
x to ani and by s = s(x) the point of ani which is closest to x. Of
course s(x) might not be uniquely defined, but will be if x is close
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enough to 8fli . Let Oi be the open set of all points of fl i such that
the normal through distinct points of 8fli do not intersect on Oi. We
denote x = (s, t) if x E Oi and x = s = (s,O) if x E 8fli, and if x E Oi,
we have

2 2
82

€ .dx = € {)t2 +O(€).

by the substitution x = (s, t).
Now consider the following boundary value problem:

{
~ = F(s, u(s, r))

u(s,O) =~(s), u(s,oo)=O,

where s E ofl is a parameter and r E [0,00) and F(s, u) is a real valued
function.

The following fact is well known.

LEMMA [3]. Let ~(s) and F(s,u) be infinitely differentiable for all
s E ofl and u E (-00, +00), all derivatives being uniformly continuous.
For all 5 E 8fl, assume tbat

F(s,O) = 0, Fu(s,O) > 0, lw

F(s,u)du > 0

for all w E (O,~(s)] or [~(s),O). Tben tbere is a unique monotone
solution v(s, r) of tbe above boundary value problem and it is infinitely
differentiable in 5 and r. Moreover each of tbe derivatives of v decays
exponentiallyas r --+ 00, uniformly in 5, in tbe sense tbat if D is any
Coo linear differential operator in 5 and T, tben tbere exist positive
constants C and (3, possibly depending on D, such tbat IDv(S,T)1 ~

ce- fh .

Hence, we can say that

2 02v
I: ~xv(s,r) = or2 +0(1:)

as € --+ 0, uniformly on s E ofl, if v(s, T) is the unique monotone
solution of the above boundary value problem.

Using Lemma, we have the following theorem which yields the exis­
tence of a pair of quasisubsolution and quasisupersolution of (I).
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THEOREM 2-2. Assume (1)-(4). Tben tbere is EO > 0 such tbat
for any E witb 0 < E ::; EO tbere exist a quasisub solution w(x; E) and
a quasi~uper solution w(x; E) of (l) so tbat w(x; E) ::; w(X; E) for all
x E ti,

. _ ~ {92(X) in ill
lim w(x; E)( orw(x; E)) = (). n
t-O 91 X ill J.li2 ,

and tbe convergence is uniform on every compact subset of indicated
reglOns.

Proof. We first construct a quasisupersolution w(X; E) of (1). From
the hypothesis (3), there is a positive constant r1 such that

fu(x, 9i(X) ± r) ::; -K < 0

for all 0 ::; r ::; r1 and for all x E ti, i = 1,2. Let Po > 0 be a sufficiently
small number so that Po < rI, and let L(s,po) = f(s, 91(S) + Po) for
all s E 8il2. Then L(s, Po) < 0 for all s E 8il2. Let F(s, u) =
- f(S,91(S)+PO +u)+L(s, Po). Then F(s, 0) = 0 and Fu(s, 0) "2 K > 0
for all s E 8il2 • Now, since

rP(s)

10 F(s,u)du

1
91 (S)+Po+P(s)

= -f(s, u) du +L(s,po),8(s).
91(S)+PO

and since if we choose Po so that

1
92 (S)+Po

- f( s, u) du > 0
91 (s)+PO

for all sE 8il2 , then

1
91 (s)+po+P(s)

-f(s,u)du > 0
91 (s)+PO

for all ,8(s) E (0,92(S) - 91(S)]. Since

lim L(s, po) = 0,
Po-o
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uniformly for all s E 002 ,

l
P(S)

o F(s, u) du > 0
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for all f3(S) E (0,92(S) - 91(S)]. Then, by Lemma, there is a unique
monotone solution v(s, r) of the problem

02Vor2 = - l(s,91(s) + Po + v) + L(s,po)

v(s,O) = 92(S) - 91(S), v(s,oo) =°
such that v and the first derivatives and second derivatives of v in s
and r decay exponentially as r - 00. Let t = er and V(s, t) = v(s,~),

and let 0" = (Cs, t) E ii2 :°~ t ~ ~, s E 002}, where ~ is so chosen
that the normals through distinct points of 002 do not intersect on
0". Then if x = (s, t) EO",

02V
e2~V(x) = e2 Ot2 + O(e)

02 v
= or2 + O(e)

= - f (s, 91 (s) + Po + v(s, r )) + L(s, Po) + O(e)

V(s,O) = v(s,O), V(s,oo) = 0

We take a smooth function q(t) E COO([O,oo)) such that u(t) = 1 for
o~ t ~ ~ and u(t) = 0 for j~ ~ t, and 0 ~ u(t) ~ 1 for all t 2:= 0,
and we define V(s,t) = V(s,t)q(t) for (s,t) E 0" and Vex) = 0 for
x E O2 \ 0". Then the function V is in C2(ii2 ). We note that ~ is
independent of e.

Let U(x; e) = 91(X) + Po + Vex) for all x E ii2. Now we prove that
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in {l2. For any x = (s,t) with 0 < t ~ i,

E2t::..U(x; E) + f(x, U(x; E))

=E2 t::..V(X) + f(x, U(x; E)) + 0(E2
)

(j2v ~

= or2 + f(x, U(x; E)) + O(E)

= - f(S,91(S) + Po + v(s,r)) + f(X,91(S) + po + v(s,r))

- f(x,91(S) + Po + v(s, r)) + f(X,91(X) + Po + v(s, r))

+ L(s, Po) + O(E)

=VzJ(x*, 91(S) + po + v(s, r)) 0 [~; (t*)]t

+ fu(x,U*)(V91(X**) 0 : (t**))t + L(s, Po) + D(E),

where x* and x** are o~ the line segment passing through the point x
and s on OK' and u* is between U(x; E) and 91(S) + Po + v(s, r), and
o< t* ,t** < t, and 0 is the inner product in Rn. Hence

E2t::..U(x; E) + f(x, U(x; E)) = D(t) + O(E) + L(s, Po).

If E and /'i, are sufficiently small, then

E2t::..U(X;E) + f(X,U(X;E)) ~ o.

For any x = (s,t) with i < t < ~/'i"

E2t::..U(X; E) + f(x,U(x; E))

=~t::..V(s, t) + f(X,91(X) + Po + Yes, t)) + D(E2
)

02V
= or2(T + f (x, 91 (x) + Po + V (T) + D( E).

Since ::~ and v decay exponentially as r -+ 00 and f (x, 91 (x) + po) <
0, so

E2 t::..U(X;E) + f(X,U(X;E)) ~ D
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if E is sufficiently small. For any x E n2 \ () 1. 1<'
3

U(x; E) = 9I(X) + Po·

Then

E2 t::.U(X; E) + I(x, U(X; E))

=O( E2) +1(X, 91 ( X) + pO) ::; 0

if E is sufficiently small. Furthermore, we note that if x E oD2 ,

19

U(x; E) = 92(X) + Po.

- oh
We choose a function h E C2 ( n) such that on ~ 0 on oD and 92(x) <

h(x) ::; 92 (x) + Po in ti. Let

W(X'E) = {min{U(X;E),h(X)}
, h(x)

if x E ti2

if x E ti \ Q2 •

Since I(x,h(x)) < 0 for all x E ti,

E2 t::.W(X;E) + I(x,w)::; 0

if W is twice partial differentiable at x in n. Moreover, if x = (s,O) E
oD, then

OW oh
on(x)= on(x)~O.

We hence note that w(x; E) is a quasisupersolution of (1) if E > 0 is
sufficiently small.

To construct a quasisubsolution of (1), we let G(s, u) = l(s,92(S)­
vo - u) -l(s,vo), where l(s,vo) = I(S,92(S) - vo) for all s E onI

and for some Vo with 0 < Vo < rI. Then l(s, vo) > 0, G(s,O) = 0,
Gu(s,O) ~ K, and

1
0(8)

o G(s,u)du > 0

for all a(s) E (0,92(S) - 91(S)] if Vo is sufficiently small.
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By the similar method used in constructing quasisupersolution of
(1), we can find a quasisubsolution w(x; e) of (1) having the following
properties:

w(xje) = {max{u(xje),k(x)} textif ~ E!il
k(x) if x E n \ nb

w(x;e)=9l(s)-VO forall xEonl ,

2 - - ok
k E C (n), gl(X) - Vo ::; k(x) < gl(X) in n, On ::; 0 on on,

U(x; e) = 92(X) - Vo + vex) for all x E iil ,

vex; e) = { U(s, t)u(t) for (s, t) E 0." _
o for all x E nl \ 0." ,

0 11 = {(s,t) E nl : 0 5 t::; TJ, s E ond .

Here 7] is so chosen that the normals through distinct points of onl
do not intersect on 0 11 and TJ is independent of e. As before u(t) E
COO([O, 00)), u(t) = 1 for 0 5 t 5 f and zero for tTJ 5 t, and 0 5
u(t) ::; 1 for all t ~ o.

Finally, U(s, t) = U(S,T), (t = eT), is the unique monotone solution
of the problem:

02U
OT2 = I(S,92(S) - Vo - u) -l(s,vo)

u(s,O) = 92(S) - gl(S), u(s,oo) = 0

Clearly, w(x; e) S; w(x; e) for all x E n and the convergence for W and
was e ~ 0 is true if we choose Po and Vo smaller and smaller. This
completes the proof.

Choosing four functions Pi(X), (i = 1,2,3,4) such that Pi E C2(ii),
for each x E an,

OPl < 0 OP2 > 0 OPa < 0 OP4 > 0
on-' on-' an-' an-'

and for each x E n,
I(X,Pl(X)) > 0, I(X,P2(X)) < 0, f(x,pa(x)) > 0, f(X,P4(X)) < 0,

9l(X) - Vo S; Pl(X) 5 9l(X) 5 P2(x) S; 9l(X) +Vo,

92(X) - Po ::; pa(x) 5 g2(X) S; P4(X)::; g2(X) + Po,
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and using Theorem 2-1 and Theorem 2-2, we conclude the following
theorem which is the main result.

THEOREM 2-3. With assumptions (1)-(4), there is lOO > 0 such that
for any lo with 0 < lo :s; lOO the problem (I) has at least five distinct
ordered solutions Uj(x; f) in C2(ti) such that

P1(X) :S;U1(X; f) :::; P2(X) ,

U1(X; f) :S;U2(X; f) :::; U3(X; f),

w(x; f) :S;U3(X; f) :::; w(x; f),

P3(X) :S;U5(X; f) :::; P4(X) ,

U3(X; f) :S;U4(X; f) :s; U5(X; f),

for all x E ti. Especially

lim Uj (x; f) = 9j (x) x E n (j = 1, 5) ,
E-O

limu2(X;lO) = 91(X) x E il2 ,
E-O

limu4(X;lO) = 92(X) x E ill,
E-O

. { 91 (x) x E il2
hmU3(X;lO) = () n
E-O 92 X x E J,q ,

and the above convergencies are uniform on every compact subset of
indicated regions.

REMARK. In fact, the above theorem is true in case that f E
CO:(ti x I), 0 < a < 1, and I is a bounded interval in R such that
9i(x) E I for all i = 1,3 and for all x E ti, if we replace the assumption
(3) by the hypothesis that there is a positive number r1 such that

f(X,9i(X) - r) > 0 and f(X,9i(X) + r) < 0

for all x E ti, for all r with 0 < r:S; r}, and i = 1,3.

From Theorem 2-3 and Remark, we have the following results:
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COROLLARY 1. In the problem (1), let f(x,u) = u(u-a(x))(l-u).
If the function a(x) has the following properties: 0 < a(x) < 1 for all
x E a, a E Gl(a), and there are two nonempty disjoint connected
open subsets ill and il2 with smooth boundaries such that for any
point x E oill ,

11 U (u - a(x )) (1 - u) du > 0
l'(x)

for all,(x) E [0,1), and for any x E·oil2

(l'(x)

10 u(u - a(x))(l- u)du < 0

for all,(x) E (0, 11, then for all sufIiciently small f > 0 the problem (1)
has at least three distinct positive nontrivial ordered solutions Uj(Xj f)
in C2( a) such that

for all x E a,

lim Ul(Xj f) =0
e-O

lim U3(Xj f) = 1
e-O

lim U2(Xj f) = {01
e-O

xEf12 ,

X E ill,

X E {}l'

x E {}2'

and the above convergencies are uniform on every compact subset of
indicated regions. .

COROLLARY 2. Let f(x,u) = u(u - a(x»(l- u), 0 < a(x) < 1 for
all x E a, and a E Gl(a). If there are N nonempty disjoint connected
open subsets {}b {}2, ... , {}N of {} such that their boundaries are
smooth, for any point x E O{}i (i's are odd)

11 f(x, u) du > 0
l'(x)
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for all,(x) E [0,1), and for any point x E anj (j's are even)

r'Y(x)

10 j(x,u)du<O

for all ,(x) E (0, 1], then for all sufficiently small € > 0 the problem
(1) has three distinct nontrivial positive ordered solutions Uk(X; €) in
Cz(ti) such that

for all x E il,

lim u 1( x; f) = 0 x E n j (j = even) ,
f-+O

limu3(x;€)=1 xEnj (i=odd),
f-O

{

1 x E n j (i = odd)
lim uz(x; f) = .
f-+O 0 x E n j (J = even) ,

and the above convergencies are unifonn on every compact subset of
indicated regions.

3. The function j(x,u) = g(x)h(u) case

Consider a model with two alleles Al and Az corresponding to three
possible genotypes AIAI , AIAz, AzAz. The population lives in a region
n in Rn. Let u(x, t) denote the frequency of the allele Al at time tat
the point x in n. Changes in gene frequency are assumed to be caused
only by the flow of genes within n and selective advantages for certain
genotypes in certain subregions of n.

In [2J, they said that u satisfies the semilinear parabolic equation

Ut(x,t) = €z~U + g(x)h(u)

in n, where h(u) = u(l - u)[k(l - u) + (1 - k)u], for some constants
f > 0, and 0 < k < 1. They assumed that 9 takes on both positive and
negative values on the region n and that either

19(X)dx < 0
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fa g(x)dx > o.

They then proved by bifurcation method that there is EO > 0 such that
for all E with 0 < E ~ EO the problem (l) has a nontrivial positive
solution U(Xj E) in C2(ii) such that 0 < u(Xj E) < 1 for all x E ii.

Now, without the integral condition for 9 we prove the existence
of two nontrivial positive solutions as well as the existence of interior
transition layers of the solutions as E -t O. Here we assume that 9 E
C l (ii) and h E Cl(I), where I is an interval in R.

THEOREM 3.1. Let f(x,u) = g(x)h(u), h have three zeros Zl <
Z2 < Za and no other zeros between Zl and Za, and h satisfy that
h'(Zl) < 0, h'(Z2) > 0, and h'(Z3) < o. If ill = {x E Q : g(x) < O}
and Q 2 = {x E Q : g(x) > O} are connected open subsets of Q with
smooth boundaries, then there is EO such that for all € with 0 < E ~ €o

the problem (l) has two nontrivial ordered solutions Ui(Xj E) in C2(ii)
so that Zl ~ Ui( Xj E) ~ Z3 for all x E ii and they have the following
interior transition layers:

and the above convergence are uniform on every compact subset of
indicated regions.

Proof. For any x E Ql and for any Zl < U < Z2, f(x,u) > O. Since
f(x, Z2) =0, fu.(x, Z2) < 0, and

1
%2

f(x,u)du > 0
%1

for all x E Ql, by the similar construction on the proof of Theorem
2-2, there is a function ih(xj E) E C2(iil ) such that for all sufficiently
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E2~UI+f(x,ud~0, xEill ,

UI(X;E)=ZI' x Eaill ,

Zl < UI(X;E) < Z2, x E Db

25

and limf->o UI(X; E) = Z2 uniformly on every compact subset of ill. Let

if x E ilb

if x E D\ ill,

Then WI(X; E) is a quasisubsolution of the problem (1).
Similarly, for any x E il2 and for any Zl < u < Z2, f(x, u) < 0.

Since f(x, zd = 0, fu(x, Zl) < 0, and J:
1
2 f(x, u) du < °for all x E il2,

there is a function UI (x; E) E C2(n2) such that for all sufficiently small
10 > 0,

E2~UI + f(X,UI)::; 0,

UI(X; E) = Z2,

Zl < UI(X;E) < Z2,

x E il2 ,

X E ail2 ,

x E D2 ,

and limf-+o UI(X; E) = Zl uniformly on every compact subset of il2. Let

if x E il2 ,

if x E ti \ il2 .

Then WI(X;E) is a quasisupersolution of the problem (1). Since

for all x E D, there is a solution UI(X; E) E C2(ti) such that

for all x E D and for all sufficiently small 10 > 0.
By the same method, for any x E ill and for any Z2 < u < Z3,

f(x,u) < 0. Since f(X,Z2) = 0, fu(X,Z2) < 0, and Jz:3 f(x,u)du < °
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for all x E ill, there is a quasisupersolution W2(X; f) ofthe problem (1)
such that lime.....oW2(X; f) = Z2 uniformly on every compact subset of
ill and W2(X; f) = Z3 for all x E fl \ ill.

Similarly, for any x E il2 and for any Z2 < U < Z3, f(x, u) > o.
Since f(x, Z3) = 0, fv.(x, Z3) < 0, and 1z:3 f(x, u) du > 0 for all x E

il2, there is a quasisubsolution W2(X; f) of the problem (1) such that
lime.....oW2(Xj f) = Z3 uniformly on every compact subset of il2 and
W2(Xj f) = Z2 for all x E fl \ il2. We note that W2(Xj f) ~ W2(Xj f) for
all x E fl. Hence there is another nontrivial solution U2(Xj f) of the
problem (1) such that

for all x E fl and for all sufficiently small f > O.

Introducing some functions Tt < h and it > h which satisfy the
conditions on the derivatives at Zl, Z2, and Z3 in Theorem 3-1, we can
prove the same existence result in the case of h'(Zl) ~ 0 and h'(Z3) ~ O.

COROLLARY 1. Theorem 3-1 is true if we replace the assumptions

by h'(zd ~ 0 and h'(Z3) ~ 0, h(u) < 0 for all Zl < u < Z2 and h(u) > 0
for all Z2 < u < z3.

COROLLARY 2. In Theorem 3-1, let h have two zeros Zl and Z2 and
no other zeros between them, and let h'(Zl) < 0 and h'(Z2) > O. Then
there is fa such that for all f with 0 < f ~ fa the problem (1) has a
nontrivial solution u(Xj f) in C2(fl) so that Zl < u(x; f) < Z2 for all
x E fl,

{
. Z2 X E ill

lim u(Xj f) = n
e.....O Zl X E J&2 ,

and the above convergence is uniform on every compact subset of the
indicated regions.

From Theorem 3-1, Corollary 1 and 2, we have the following results:
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Corollary 3. Let f(x,u) = g(x)u(l-u)[k(l-u)+(I- k)u]. Then
there is EO such that for all E with 0 < E ~ EO,

(1) if either k > 1 or k < 0, there exist two nontrivial positive
solutions Ui(X; €) in C<ti) so that 0 < Ui(X; E) < 1 for all
x E ti,

lim U 1( x; E) = { 0 k
E--O 2k-l

limU2(X;E) = { 1 k
E--O 2k-l

x E ill

X E il2 ,

x E ill

X E il2 ,

(2) if k E {O,!, I}, there exists a nontrivial positive solution
u(x; E) in C2(ti) so that 0 < u(x; E) < 1 for all x E ti and

{
Ox E ill

limu(x;E) = 1 n
E-O X E J&2,

(3) if! < k < 1, there exist two nontrivial positive solutions
Ui(X; E) in C2(ti) so that 0 < Ui(X; E) < 2k~l for all x E n,

lim Ul(X; E) = { 0
E-O 1

1imu2(x;E) = { 1 k
E-O 2k-l

x E il2
X E ill,

x E il2

X E ill,

(4) if 0 < k < !' there exist two nontrivial solutions Ui(X; E) in
C2(ti) so that 2k"-l < Ui(X; E) < 1 for all x E ti,

lim Ul(X; E) = { 1
E--O 0

1imu2(x;E) = { 2k"-l
E--O 0

x E il2
X E ill,

x E il2
X E ill,

and the above convergencies are uniform on every compact subset of
indicated regions.
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