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FIXED POINTS FOR SET-VALUED INCREASING

OPERATORS AND APPLICATIONS

BING-YOU LI, SHIH-SEN CHANG AND YEOL JE CHO

I. Introduction and Preliminaries

The existence of fixed points for set-valued increasing operators is
one of important problems in the study of nonlinear analysis [4], [6]. In
this paper, we give two fixed point theorems for nonlinear set-valued
increasing operators by using the generalized Gwinner's theorem [7]
and the generalized KKM theorem [3] on H-spaces. As an applica
tion, we prove a basic theorem which is important in the mathematical
econonues.

Let .r(X) be the family of all nonempty finite subsets of X.

DEFINITION 1 ([2]). (1) Let X be a topological space and {fA}
be a family of nonempty contractible subsets of X, indexed by A E
F(X), such that A C B implies fA C f B for A,B E .r(X). The pair
(X, {fA}) is called an H-space.

(2) Let (X, {fA}) be an H-space. A subset D of X is said to be
H-convex if for every finite subset A of D, fA CD.

DEFINITION 2 ([3]). Let X be a nonempty set and (Y, {fA}) be
an H-space. A set-valued mapping F : X -+ 2Y is called a gen
eralized KKM mapping if for any finite set {Xl> X2, .. . , xn } in X,
there exists a finite set {Yl> Y2, ... , Yn} in Y such that for any subset
{Yil,Yi2"" ,Yik} C {Yl>Y2,'" ,Yn},l:::; k:::; n,f{YipYi2'''' ,Yik} C

U~=i F(Xij)'

We say that a subset C of a topological space X is compactly closed
(resp., compactly open) in X if, for every compact set K in X, the set
en K is closed (resp., open) in K.

Received March 22, 1993.



326 Bing-you Li, Shih-sen Chang and Yeol Je Cho

THEOREM 1 ([3]). (The Generalized KKM Theorem)
Let X be a nonempty set, (Y, {fA}) be an H-space and F : X -t2Y be
a generalized KKM mappmg satisfying one the following conditions:

(1) for each x EX, F(x) is compactly closed in Y,
(2) for each x E X,F(x) is compactly open in Y.

Then the farriily {F(x) : x EX} of sets has the finite intersection
property. In addition, if there exists an Xo E X such that F(xo ) is a
compact set, then nXEX F(x) =I </>.

THEOREM 2 ([7]). (The Generalized Gwinner's Theorem)
Let (X, {fA}) be an H-space, E be closed subset ofX and G : E -t 2x

bea generalized KKM mapping satisfying the following conditions :
(1) for each x E E, G(x) is a finite closed subset in X (ie. the inter

secion of G(x) ind any finite subset L of X is closed in the euc1idean
topology),

(2) there exists anxo E E such that the closure, G(xo), ofG(xo) is
a comp~ct· subset in X, .

(3) for any finite set D = En F containing Xo, where F is a finite
subset of X containing Xo, nyED G(y) n D = nyED G(y) n D.
Then n{G(x) : x E E} =I </> .

.DEFINITION 3 ([8]). Let X .be a Hausdorff topological space with
the partially ordered structure and D he a subset ()f X. The set D is
said to be upper semi-closed in X if for any directed sequence {xQ :

a E I} in D net-convering to X, X Q ~ x for all a E I, we have x E D.

It is easy to show that any closed set in X is upper semi-closed.

DEFINITION 4 ([8]). Let X,Ybe paItially ordered sets and Mbe a
subset.ofX. A set-valued operatorA :M -t 2Y is said to be increasing
if, for any x, yE M, x ~ y and u E Ax, there exists a v E Ay such that
u ~ v.

IT A is a single-valued operator, then A is increasing operator in the
sense of Definition 4 if and only if x :::; y implies Ax ~ Ay.

11. Fixed Point Theorems

Now, in this section, we give our main theorems for set-valued in
creasing operators.
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LEMMA 1. Let (X, {rA}) be an ordered H-space and D be a upper
semi-closed subset in X. Suppose further that

(1) the space X satisfies the consistent axiom, i.e., for any two di
rected ~equences {xo : a E I} and {Yo : a E I}, if X Q ~ Yo for all
a E I, {xo} net-converges to X, and {Yo} net-converges to y, then we
have x ~ y,

(2) n(Y) = {y E D : y 1:. Y}, if E X, is an H-convex set,
(3) for any totally ordered subset N of D, there exist a compact set

K in X and X o E K n N such that X o 1:. x for all x E N \ K.
Then D has a maximal element.

Proof. For any a E D, put D(a) = {y E D : a ~ y}. It is sufficient
to show that D(a) has a maximal element. Choose a totally ordered
set N in D(a) and let N denote the closure of N in X. Letting B(x) =
{y E N: x ~ y},x E N. Then B(x) = N n {y EX: x ~ y},x E N, is
a closed set in D(a) and so B(x) is a finite closed set and nXEN B(x)
is closed. Therefore, we have

n B(x) n N = nB(x) n N.
xEN xEN

Now, we prove that B : N -t 2x is a generalized KKM mapping.
Suppose that B is not a generalized KKM mapping. Then there exists
a finite subset A = {Yl' Y2, .. · ,Yn} of N such that r A et U7=1 B(Yi)'
Hence there exists a point x ErA such that x f/;. U7=1 B(Yi), i.e., x f/;.
B(Yi), i = 1,2, ... ,n, which implies Yi 1:. x, i = 1,2, ... ,n. Thus we
have {Yl,Y2, ... ,Yn} C n(x). Since n(x) is H-convex, x ErA c n(x)
and so x 1:. x, which is a contradiction.

From the condition (3), for each x E N \ K, we have x f/;. B(xo ), i.e.,
B(xo ) C K. On the other hand, since B(xo ) C N, B(x o ) C NnK c K
and the closure, B(x o ), of B(x o ) is compact. Thus, from the arguments
above, we know that B satisfies all the conditions of the generalized
Gwinner's theorem and so nxEN B(x) =1= 4>. Take fj E n xEN B(x).
Then, from the definition of B, we have Y ~ Y for all yEN. On the
other hand, since fj E nXEN B(x) c N, there exists a directed sequence
{Yo : a E I} C N C D(a) such that {Yo} net-converges to fj. Since
Yo ~ il for all a E I and D is upper semi-closed in X, we have y E D.
Since N c D(a), we have a ~ Y for all yEN. Hence, from Y ~ il,
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we have a S fj and so fj E D(a). Therefore, fj is the supremum of N
in D(a) and so, by Zom's lemma, D(a) haS a maximal element. This
completes the proof.

THEOREM 3. Let (X, {rA}) be an ordered H-space satisfying the
consistent axiom, M be a closed subset of X and A : M ~ 2M be a
set-valued increasing opereator. Suppose further that

(1) D = {x EM: 3u E Ax such that x S u} is nonempty,
(2) n(W = {y E D : y 1:. 0, fj E X, is an H-convex set,
(3) for each totally ordered subset N of D, there exist a compact

set K in X and X o E K n N such that X o 1:. x for all x E N \ K,
(4) for any x EM, Ax is a compact subset of X.

Then A has a fixed point in M.

Proof. FiJ:st, we prove. th~t Disan upper semi-dose.<:l s~t. Let {x a :

a E I} be a directed sequence in D which net-converges to i and
X a S i for all a E I. For all a E I, since X a E D, there exists a
U a E AXa such that Xa SUa. Thus, since A is a set-valued increasing
operator, from X a S i and X a S Ua for all a E I, there exists a
Ya E Ai such that Ua S Ya and so X a S Ya for all a: E I. From
the condition (4), since Ai is compact, {Ya : a: E I} have a directed
subseqllence {y". : TEA}, A Cl, net-convergingto a point jj E Ai
(See Theorem 2 of Chapter 5 [5)). Since the directed subsequence
{xr : TEA} of {xa : a: E I} net-converges also to .the point i and
X r S Yr for all TEA, by the condition (1) of Lemma 1, we have is f)
&nd so, since fj E Ai, i E D. This implies that D is upper semi-closed.
Thus, from (4) and Lemma 1, D has a maximal element x* and hence
there exists a u* E Ax* such that x* :5 u*. Since A is a set-valued
increasing operator:, there exists a y* E Au* such that u* S y*, which
impliesu* E D. Since x~ S u* and x* is a maximal element, we have
x* = u* E Ax*. This completes the proof.

LEMMA 2. Let (X, {rA}), D, n(fj), N be the same as .in Lemma 1.
H there exists an :1;0 E N such that G(xo ) = {y E N : X o S y} is
a relatively compact set in X, i.e., the closure, G(xo ), of G(xo ) is a
compact set, then D has a maximal element.

Proof. As in the proof of Lemma 1, G : N ~ 2x is a generalized
KKM mapping and, for any x E N, O(x) is closed in DCa). Thus, by



Fixed points for set-valued increasing operators and applications 329

the assumption, there exists an X o E N such that G(x o ) is relatively
compact in X and so G(x o ) is compact. Therefore, by Theorem 1,
nXEN G(x) #- 4>. This completes the proof.

From Lemma 2, we have the following:

THEOREM 4. Let (X, {rA}), M, A satisfy the conditions (1), (2),
(4) in Theorem 3 and the following condition (3)':

(3)' for any totally ordered subset N of D, there exists an X o E N
such that G(xo ) = {y E N : X o :::; y} is a relatively compact set in X.
Then A has a fixed point in M.

Ill. Application

In this section, as an application, by using Theorem 4, we show the
existence of equilibrium points of mathematical economics:

THEOREM 5. Let (X,rA) and (Y,rB) be ordered H-spaces satisfy
ing the consistent axiom, L be a nonempty closed subset of Y and K
be a compact set in X. Suppose further that the sets n(x) = {x E K :
x 'i x}, x ErA, and n(Y1 = {y EL: Y 'i 17}, 17 E rB, are H-convex. If
the following conditions are satisfied:

(1) T : K ~ 2L is a set-valued increasing operator and, for any
x E K, Tx is compact,

(2) r.p : K x L ~ R is a continuous mapping and there exists a
constant C such that r.p(x, y) ;::: C for any x E K and y E Tx,

(3) for any Yi E L, i = 1,2, YI :::; Y2 and for any 6 E K such that
r.p(6 ,YI) :::; r.p( x, YI) for all x E K, if there exists a 6 E L such that
r.p(e2, Y2) :::; r.p(x, Y2) for all x E K, than we have 6 :::; e2,

(4) for any tatally ordered subsets NK and N L of K and L, re
spectively, there exist X o E NK and Yo E NL such that the sets
GK(Xo) = {xo E NK : Xo :::; x} and GL(Xo) = {y E NL : Yo :::; y}
are relatively compact in X and Y, respectively,

(5) there exist x o, Xl E K and Yo, YI E L such that if YI E Tx o and
r.p(Xl> Yo) :::; r.p(x, Yo) for all x E K, then we have Xo :::; Xl and Yo :::; Yl>
then there exist x E K and iJ E T(x) such that C :::; r.p(x, iJ) for all
xEK.

Proof. Define a mapping S: L ~ 2K by

sty) = {x' E K : r.p(x', y) :::; r.p(x, y) for all x E K}.
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Since ep is continuous and.K is ~ompact, S(y) is a nonempty closed set
and so S(y) is ;;ompact. From. the condition (3), it follows that S is a
set-valued increasing operator.

On the other hand, define a mapping R : K x L -+ 2KxL by
R(x,y) = S(y) x T(x) and define a partial order on Z = X x Y by
Ul :::;uz for Ul = (Xl,Yl),UZ = (X2,YZ) E Z if and only if Xl:::; xzand
Yl :::; yz· Then (Z, {fAXB}) is a partially ordered H-space satisfying
the consistent axiom, where fAxB = fA X fB, and M = K x L is a
closed set in Z. It is easy to see that

D L = {y EL: 31] E T(x) such that y :::; 1]} =1= <p.

Since S(y) =1= <p,

D K = {x E K : 3~ E S(y) such that x :::; ~} =1= <p

and

D = {v EM: 3JL E Rv such that v :::; JL} = DKX DL =1= <p.

Putting ji = (x, y>, by the assumptions, for ji E fAxB,

n(ji) = {JL E D : JL :::; ji} = n(x) x n(y>

is H-convex. Since S andT are increasing, R is also increasing. Since,
for any totally ordered subset N = N K X NL of D, there exists a
Uo = (xo,Yo) EN such that

G(uo) ={(x,y) E N: (xo,Yo):::; (x,y)) C GK(Xo) x GL(yo),

by (4), G(uo) is relatively compact is Z. SinceT(y) and T(x) are
compact, for any u == (x,y) E M,Ru isalso compact. It is easy to show
that the condition (5) holds if and only ifthereexlstxo·E K, Yo.E L
and Xl E S(Yo), Yl E T(x o) such that xo :::; Xl and Yo :::;Yl if and only
if there existuo = (xo,yo) E M and Ul = (Xl,Yl) E Ruo such that
U o :::; Ul' Thus, by Theorem 4, there exists. a (x, y) E K x L such that
(x, y) E S(jj) x T(x), i.e., x E S(y)C K and y E T(x) CL. Therefore,
from the definition of Sand (2), we have C :::; ep(x, y) :::; ep(x, y) forall
X E K. This completes the proof.

REMARK. Theorem 5 improves the .Walras theorem ([ID. Recently,
some authors [8], [10]-[12] gave some relations between fixed point The
orems and the existence of equilibrium points of abstract economies.
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