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A NOTE ON STARLIKENESS
OF A CERTAIN INTEGRAL

SHIGEYOSHI OWA

Let A be the class of functions f(z) which are analytic in the open
unit disk U with the normalizations f(0) = 0 and f'(0) = 1. Denoting
by R(a) the subclass of A consisting of functions f(z) which satisfy
Re{f'(z)} > a for some a(a < 1) and for all z € U, the starlikeness of
an integral g(z) = f{f(t)/t}d¢ is shown.

1. Introduction

Let A denote the class of functions of the form

O
f(z)=z+Zanz" (1.1)
n=2
which are analytic in the open unit disk U = {z : |z| < 1}. A function
f(z) belonging to A is said to be a member of the class R(a) if it
satisfies

Re{f'(2)} > (z€U) (1.2)

for some a(a < 7). Further, a function f(z) € A is said to be in the
class $*(B) if it satisfies

Re{ ZJ{('S)} > B (z € U) (1.3)

for some (8 < 1).
For f(z) belonging to A, we define the function g(z) defined by the

following integral
g(z) = / —f—gt—)dt. (1.4)
0

For such an integral, Singh and Singh [6] have shown
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THEOREM A. I f(z) € R(0), then g(z) € S*(0).

In the present paper, we inipréve tljle”a.bove theorem by Singh and
Singh [6]. Furthermore, Bulboaca [1, p. 162] has given

PROBLEM. If f(z) € R(a), find the best Q(a) for which g(z) €
5*(Q(a)); or for a given a, find the best ¥(a) for which f(z) € R(!P(a))
implies g(z) € S*(a). .

2. Starhkeness of the mtegral

We begm with the statement of the following lemma due to Owa,
Ma and Liu [4, Corollary 1].

LEMMA 1. If f(z) € R(a), then
Re{f—(;—)} 214 2(1 ;a)logz GEU). (1)

The result is sharp.
Further, we have to recall here the following lemma by Jack [2] (also,
by Mxller and Mocanu [3]).

LEMMA 2. Let w(z) be regularm U, with w(0) = 0. Iflw(z)l attains
its maximum value in the circle |z| =r < 1 at a point zg € U, then

zow'(z0) = kw(zo), (2:2)

where k is real and k > 1. ‘
An apphcatlon of the a,bove 1emmas denves

THEOREM 1. If f(2) € R(a) with v < @ < 1, then ¢(z) € S*(8),
where 0 < 8<%, t=28>+8-1, and

 8tlog2 — 4t(log 2)? — 3t
y= Stlog2 - 4illog2)” — 3¢ (2.3)
8tlog 2 — 4t(log 2)? — 4t + 2

Proof. Since

Re{f'(2)} = Re{g'(2) + 20"(2)} > o, (24)



A note on starlikeness of a certain integral 321
Lemma 1 gives that
Re{f-ng—)} =Re{¢'(z)} > 22 —1+2(1 —a)log2,  (2.5)
so that,
Rc{g( )} >da—3+8(1-a)log2—4(1 - a)log2)®.  (26)

Define the function w(z) by

2g'(2) _ Cpltue
o) =Pt O-Bi—ony WAL (2.7)

Then w(2) is regular in U and w(0) = 0. It is easy to see that
Re{f'(2)} (2.8)

=Re{g'(2) + 2¢"(2)}

Re {g( )((54_(1— )lfzgi)z%-(l—ﬂ)%%g_ﬁ)}

If we suppose that there exists a point zg € U such that

max |w(z)| = |w(zo)l =1  (w(20) # 1),

[21<] 20l

then we can write w(zo) = e* (0 < § < 2r). Therefore, applying
Lemma 2, we have

Re{f'(z0)} (2.9)

{20012 -0 )

= (52 +(1- ﬂ)zzZZZi + f(()ie—_ i) Re{i(i"_)}
< (- 52 nef el

20
< (ﬂz - -(l—;-ﬂ—)) Re{g(z—z:-)-}

<(26 + - 1){2a - g +4(1 - a)log2 — 2(1  a)(log 2)° },
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because

Re{g—(—z—o—)-} > 4a — 3+ 8(1 — a)log2 — 4(1 —a)(log2)® > 0
<0

for ¥ < a < 1, where 7 is the root of the equation

(267 + 8- {27 - 3 +4(1 - )log2 - 21 ~1)10g2)?} = 7.

Further, noting that

282 +8-1
2
<(282+ B~ 1){2a — g +4(1 — a)log2 — 2(1 — a)(log 2)2}
=7 |

we know that (2.9) contradicts our condition of the theorem. Thus we
conclude that |w(z)| < 1 for all z € U, that is, that

{g(z)}>ﬂ (zeU). (2.10)

This completes the assertion of the theorem.
Letting § = 0 in Theorem 1, we have

CoROLLARY 1. If f(z) € R(—0.26228---), then g(z) € §*(0), and
1ff(z) € R(O), then g(z) € 5*(1/2)

REMARK Corolla.ry 1 is the 1mprovement ‘of Theorem A by Smgh |
- and Singh [6]. The first half of Corollary 1 was given by Owa [5].
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