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SOME ANALYTIC CLASSIFICATION
OF PLANE CURVE SINGULARITIES
TOPOLOGICALLY EQUIVALENT TO THE
EQUATION :" + y* = 0 WITH ged(n, k) = 1

CHUNGHYUK KANG AND CHANGHO KEEM

1. Introduction

We know [6] that the analytic classification of complex hypersurfaces
with isolated singularity at the origin is the same as the algebraic
classification of their corresponding moduli algebra over the complex
field. In fact, even an algebraic classification of irreducible plane curve
singularities at the origin is a very delicated and complicated problem.
For example, consider the family of analytic irreducible plane curve
singularities f, at the origin parametrically defined by y = t* and
z =19 + 110 4 at!! where a is a number. Then for any o fq is clearly
topologically equivalent to the equation z* + y° = 0 at the origin, but
for any two numbers a # 8 f, and fz are analytically different at the
origin [2].

Let V = {f(z,y) = 0} and W = {z" + y* = 0} with ged(n,k) =
1 be analytic irreducible plane curves with isolated singularities at
the origin. Assume that V and W are topologically equivalent at the
origin. Then denote this relation by f ~ 2™ + y* for brevity. So by
a nonsingular linear change of coordinates f can be written as u(z" +
ay®2 2" 2 4. . 4@,y 2+y*) where u is a unit and the a; = a;(y)
are units in O, the ring of germs of holomorphic functions at the origin

inC?and & > -’Sfori=2,...,n—1[5]. If V and W are analytically

i n
equivalent at the origin, then denote this relation by f ~ g. If not, we
write f % g.
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Then we are going to prove the following cases:

(1) ¥ f = 2" +uy®2P +y* ~ 2" 4+ y* where u is a unit in 2O, then
f ™+ yoaf 4 gk

(2) ¥ f=z"+uy®zf+yF, g = 2" toy 2’ +y* and f ~ g ~ 27 +y*
where 4, v are units in 20 and 1 < o,y <k —-2and 1 < G,
6 <n—2 then f ® gifand only f a =+ and § = é.

(3) Inthecase (2),iffl1<a<k—land1<f<n-—1,then frg
does not imply that & = v or § = .

(4) Suppose that f ~ 2" +y* and g ~ 2" +y*. By [1], f =
2"+ yF+ Y ¢ Pand g~ 2" +yF + Xd;Q; where each c¢; and
d; are nonzero numbsers if exist and P; = y 2P Qi=y% 2%
1< a7 £ k-2;1 £ B;, 6; £ n—2 satisfying that na;+k3; >
nk and nvy; + ké; > nk. Let m(f) = Min{a; + Bi;¢; # 0} and
m(g) = Min{y; + 6; : d; # 0}. If f = g, then {(0;,0;) :
a; + B =m(f)} = {(7;,6;) : v; + 6; = m(g)} as sets.

(5) Let f = 2™ + y* + Tc; P; where each ¢; is a nonzero number if
exists and P; = y®% 2% with no;+kf; > nkand1 < o; < k-2,
1< B; <n—2. Then f = 2™ +y* if and only if all ¢; are zero.

2. Known preliminaries

DEFINITION 2.1. Let V={2 € C": f(2) =0} and W = {z € C":
g(z) = o} be germs of complex analytic hypersurfaces with isolated
singular points at the origin. (i) V and W are said to be topologically
equivalent at the origin if there is a germ at the origin of homeomor-
phisms ¢ : (Uy,0) — (Uz,0) such that ¢(V) = W and #(0) = 0 where
U, and U, are open subset containing the origin in C". In this case
denote this relation by f ~ g. (ii) V and W are said to be analytically
equivalent at the origin if there is a germ at the origin of biholomor-
phisms 1 : (Uy,0) — (U2, 0) such that (V) = W and 4(0) = 0 where
U, and U, are open subsets containing the origin in C*. Then denote
this relation by f = g. If not, we write f % g. Let ,O denote the ring
of germs of holomorphic functions at the origin in C™.

THEOREM 2.2 [5]. Let f(z,y) = apz™ + a1y**2"" 1 +--- + ap,y*»
be irreducible in 4@ where each a; is a unit in QO if exists and the a;
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e @ _ « ) .
are positive integers. Then — > — for all i. Moreover, if a, = nk
1

. a a; )
for some integer k, then — = — foralli=1,...,n — 1.
n 1

COROLLARY 2.3. Let f(z,y) = z"+a;y* 2" 1 4. - - ap_1y*-1z+
y* with (n,k) = 1 where a; = ai(y) is a unit in O if exists and the «;
- .. _ ) ok i

are positive integers. Then f is irreducible in ;O if and only if -~ < az—.

for all i # n. Moreover, in this case f ~ z™ + y* in L 0.

DEFINITION 2.4. The polynomial f(zj,...,z,) is called weighted
homogeneous of type (—,..., —) if there is a some positive rational
aj a

n
numbers aj,...,an such that f(¢%2;,...,t%z,) = tf(21,..., 2a).

THEOREM 2.5 (MATHER-YAU [6]). Suppose that V = {f(z1,...,
2,) =0} and W = {¢(z1,...,2n) = 0} have the isolated singular point
at the origin. Then the following conditions are equivalent:

(i) frg.
(ii) A(f) is isomorphic to A(g) as a C-algebra where A(f) =
=O/(f,A(f)), Alg) = no/(g,A(g}) and (f, A(f)) is the ideal

in ,O generated by f, Rt
(iii) B(f) is isomorphic to B(;) as a C-T;Jgebra where B(f) = ,O/
(f,mA(f)), B(g) = »O/(9,mA(g)) and (f,mA(f)) is the

ideal in ,O generated by f and zi-a—-f- foralli,j=1,...,n.
2j

THEOREM 2.6 (ARNOLD [1]). Assume that n < k, (n,k) =1 and
that ¢ = 2™ + aly"’lz”_l + it y*iz + y" ~ 2" 4 y" at the
origin in C? where each a; = a;(y) is a unit in O if exists and the
a; are positive integers. Then g ~ z™ + y* + T¢;P; where each c; is
a nonzero number if exists and P; = y* 2% with1 < 8; < n — 2 and
1< a; £k —2 with no; + kB; > nk.
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3. Some analytic classification of irreducible plane curve
singularities

THEOREM 3.1. Let f = z™ + uy®z® + y* with na + kB > nk where
n< k, (n,k)=1and u = u(z,y) is a unit in ;0. Then f ~ z" + y*
and f =~ 2™ + y*zP + yF.

Proof. By Corollary 2.3, clearly f ~ 2™ + y*. First note that for
any number ¢ # 0 f.(z,y) = 2™ +cy“2? + y* ~ 2™ +y*2# + y* because
fc(th, tny) — tnk(zn + ctna+k/3—nkyazﬂ + yk).

(i) To show that f ~ 2" + y®z? + y*, first assume that u(z,y) =
u(z,0) is a unit in »O. Then by a nonsingular linear change of coordi-
nates at the origin, f = 2" +u(z,0)y%2? +y* = v(z)z"+y*2P +yF =h
where v = v(2z) is a unit in ;0. Now it is enough to show that
h =~ v(0)z™ +y*z? + y* = g. To use Theroem 2.5 compute the ideal
I = (h,mA(R)) in O generated by hk, zh,,yhy, yh..zh, as follows:

h=vz"+ y"’zﬁ + y*
zh, = (zv' + nv)z" + ﬂg"‘zﬂ
yhy = ay®2? + ky*
yh; = (zv' +‘n‘v)3‘/z""1 + ,5'y‘°""'123"3"“‘1
zhy = ay* 1Pt 4 ky*1z.

Then solve the equation h = 2k, = yhy, = 0 (mod I) with respect to
2™, y®2# and y* as below:

v 1 1  ‘ ' ‘ ‘ ‘
w4+nw B 0| =v(na+kB—nk)+zv'(k—a)#0
0 a k

at the origin. Thus z",y%z#, y* belong to I. Considering yh, a;ld zhy,
then I = (27, y°2%,y*,nv(0)2"~1 + By°+1zh1, ayo~12P%1 4 kyt12).
So I = (g,mA(g)). By Theorem 2.5 f ~ v(0)z" + y*2f +yF =~ 2™ +
a,fB k '
Yz +yt. . .
(ii) Now let f = 2™ 4+ u(z,y)y*2? +y*. Also by a nonsingular linear
change of coordinates, it is enough to consider #(z,y) = 2" +y*z# +
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v(z,y)y* where v = v(z,y) is a unit in ,@. Then compute the ideal
J = (£, mA({)) as follows:

£=2" +y°’zﬂ +vy"
28, = nz"™ + By*2f + v,yFz
yly = ay®z® + (yvy + k”)yk
yl, = nyz™1 4 Byl A1 4, yhHl
28y = ay® 1 2PH! 4 (yu, + ko)yt 2.

Similarly as the previous case, solve the equation £ = 28, = yf, =
0 (modJ) relative to z®,y*2? and y*. Then we prove easily that
z",y*2" and y* belong to J. Considering yf, and z{,, then J =
(2™, 228, y*, nyz""1 4+ By 12871 ay@ 1P+ 4 ku(2,0)y*12) where
v(2,0) is a unit in 2@. Therefore £ ~ 2™ +y*z? +v(z,0)y* by Theorem
2.5. By another nonsingular linear change of coordinates at the origin,
z" + y°2P + v(2,0)y* ~ z® + w(2)y®zf + y* where w(z) is a unit in
20. By (i), we proved the theorem.

THEOREM 3.2. Let f(z,y) = 2" +y*+uy®2? and g = 2" +y*+vy?2?
where n < k, (n,k) =1 and u = u(z,y), v = v(z,y) are units in 20
and1 < B,6<n-21<a v< k-2 with na + k8 > nk and
nvy + ké > nk. Then f ~ g if and only if a =y and f = 4.

Proof. By Theroem 3.1, if @ = v and # = 6 then f ~ g. Now
suppose that f ~ ¢g. Then by Theorem 3.1, we may put f = z™ +
y* + y*2P and g = 2" + y* + y"2°. Let us prove the condition that
a = vyand 8 = §. Assume the contrary. So it is enough to consider the
following cases : (I) a+ 8 <y+é and (II) a+ B =+v+ 6 with a # ~.

By definition, if f & g then there is a biholomorphic mapping ¢ :
(U1,0) — (Us,0) such that uf = g o ¢, where U; and U, are open
subsets containing the origin and u is a unit in ,0. Write ¢(z,y) =
(H,L) as follows:

H=H(z,y)=az+by+ Hy + Hs+--- and
L=L(z,y)=cz+dy+Ls+Ls+---
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where H,, and L,, are homogeneous polynomials of degree n with H,
Ho(2,y) = @ngz™ + an—112"" Yy + -+ + ao,ny™ and L, = Ly(2,y)
bn02™ + bp—1,12" Ty + -+ - + bo ny™.

Note that ad — be # 0. Then g o ¢(z,y) = (az + by + Ha + H3 +

)+ (cz+dy+ Lo+ Ls+---)(az+by+ Hy+ Hs +--- )"+ (ez +
dy+ Lo+ L3 +- )’c = u(z" +y* zﬂ+y’°) ‘where u is a unit-in 20. We
know that =0 because n<k,a+pf>nandy+6>n. Let us prove
the first case (I). ,

(I) We are going to separate this fact into the following three cases
t(l)a+B<k (i)a+B=F, (i) a+ g >k

(1) @+ < k: Observe that Hy, Hs,- -+ , Hotg—rn can be analytically
divisible by z in the expansion of H™ in go ¢(z,y), considering 2O as a
unique factorization ring up to a unit [3]. Therefore in the expansion of
H" = (az- unit+Ha+ﬂ_n+1+ - )™, we cannot find a nonzero monomial
y®z? with B < n'— 2 because B+ (n—B)a+B—n+1) > a+ﬁ1fa.nd
only if (a+f—n)n—B-1)>0.

(i1) & + B = k: Observe also that Hs, H3,--- ,Hg_, can be analyt-
ically divisible by z in the expansion of H" in g 0 ¢(z,y). To find the
set of nonzero monomials y%2™ with £+ m = k and m < n — 1 in the
expansion of g o ¢(z,y), it is enough to consider the following:

' n(a2)" " Hiena + (cz + dy). -
Since the coefficient of monomial y*~'z must be zero, ad — bc # 0
implies that ¢ = 0. Therefore we cannot find a nonzero monomial
y*2? in the expansion of g o ¢(z,y) because B<n—2.

(i) a+ B8 > k: Note that Hy, Hs,--- ,Hi_n can be analytlcally
divisible by z in the expa.nsmn of H® in go ¢(z,y). Smce there is no
'nonzero monom.lal y*1z in'uf, a + B> k implies that ¢ =0 and also’
Hy_n41 can be divided by z analytically in ;0. So in the expansion of
go d)(z, y) to find a nonzero monomial y 2B it is suﬁc1ent to consider

the following:

(az-unit+ Hy_pig+ Hgnyz +--- )"+ (dy+ Lo+ Lz + )k
Now we are going to show that (iii, )there is no nonzero term y*z* in

the expansion of H™ and (iiiy) there is no nonzero term y®z? in the
expansion of L*. Consider the case (iii,). If H; can be analytically
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divisible by z for all j, there is nothing to prove. If not, let m be the
smallest positive integer such that H,, cannot be analytically divisible
by z. Then in the expansion of H®, 2*~! H,, contains a nonzero mono-
mial 2" 1y™. Ifn—14+m > a+ B, there is no nonzero term y®z? in the
expansion of H". If n — 1+ m < a + B and there is no nonzero mono-
mial y™2z""! in the expansion of L¥, then we cannot find a nonzero
term y™2""! in uf, because if exists then a < m and 8 < n — 2 would
imply that a + 8 < m+n -2 < a+ B. It is a contradiction. So it
is enough to prove that if n — 14+ m < a + f and there is a nonzero
term y™2z""! in L*, we could find a contradiction. Then let r be the
smallest positive integer such that L, cannot be analytically divisible
by y. Thus we would get some inequality as follows:

n—1+m>m+r(k—m).

Claim that n—1+4+m = m+r(k-m). f n—1+m > m+r(k—m), then
there is neither a nonzero term y™z"*~™) in uf nor in H™ because
k+n—-4>a+B>n—-14+m>m+r(k—m)implies that k-3 > m
and r(k —m) < n — 1. Since there exists a nonzero term y™2"*=™) in
go¢(z,y), it would be a contradiction. Therefore we get the equation:
(A)n—1+m=m+r(k—-m).

Now consider a nonzero term y*~!2" in L*. Note that k — 1 +r <
a+f because a+f > n—1+m = m+r(k—m) and m+r(k—m)—(k—1+
r) = (k—m—1)(r—1) > 0. Since there is no nonzero monomial y*~12"
in uf, if there is no nonzero term y*~!2" in H™ then there is nothing to
prove. If there is a nonzero term y*~1z" in H™, by the similar method

just as before, we get another equation: (B) k—1+4+r =r+m(n—r).
k 1

From two equations (A) and (B), k(1+r) = n(m+1), i.e., o= T:l .
Note that (n,k) = 1. So the equation k(1 + r) = n(m + 1) does not
hold because k —1+r < a+ 8 <n+k —4 implies r <n — 3. Thus
we proved the case (iii,).

Next, using the similar technique as in the case (iii,), we can prove
the case (iiip). Thus we proved the theorem in the case (I).

Similarly, we can prove the case (II).

In the assumption of Theorem 3.2, if f = 2" + y* + y®zf ~ 2™ 4+ y*
withl <a<k—-1land1l< g8 <n-1, then we can prove that the
result of Theorem 3.2 may not be true by the following examples:
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(1) Let f =2z*+y%2+y% and g = 2* + y"2% + y°. Then f =~ g but
f % z* + y° by Theorem 2.5.

(2) Let f=2t+y*23+y?’ and g = 2* + y®22 + ¢°. Then frg =
z* + y° by Theorem 2.5 and Theorem 3.1.

THEOREM 3.3. Let f = 2™ + y*¥ + Z¢;P; and g = 2™ + y* + d;Q;
where n < k, (n,k) = 1 and each ¢; and d; are nonzero numbers if
exist and P; = y*izP Q; = y% 2% with1 < a;,v; < k—2and1 < f;,
6 <'n — 2 satisfying that na; + kB; > nk and nvy; + ké; > nk. Let
m(f) = Min{a; + B; : ¢; # 0} and m(g) = Min{y; + 6; : d; # 0}. K
f = g, then {(a;, Bi) : @i + Bi = m(f)} = {(7,65) : 7; 61' = m(g)}

as sets.

Proof By the sxrmla,r method as in the proof of Theorem 3. 2 we
can 0 prove it.

THEOREM 3.4. Let f = 2" + y* + X¢;P; where n < k, (n,k) = 1
and each c; is a number if exists and P; = yi 2% with na; + kf; > nk
and1<a; <k—-2,1<p;<n—2. Then f = z" + y* if and only if
all ¢; are zero.

Proof. See [4] or use the similar technique as in the proof of Theorem
3.2
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