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COMPACT TOEPLITZ OPERATORS WITH

BOUNDED SYMBOLS ON THE BERGMAN SPACE

Boo RIM CHOE AND YOUNG Joo LEE

1. Introduction

The setting of the present paper will be a domain n which is a
product of balls in the complex n-space en. More precisely, n is a
domain of the form

where each B nj is the unit ball of enj and nl + ... + n m = n. We
will write V for the volume measure on n normalized to have total
mass 1. We let A2(n) denote the Bergman space of square-integrable
holomorphic functions on n with respect to the measure V. By the
mean value property for holomorphic functions it is easy to see that
the Bergman space A2(O) is a closed subspace of L2(O) = L2(O, V), so
there is an orthogonal projection P - called the Bergman projection
- from L 2 (n) onto A2(n). For a function u E LOO(n), the Toeplitz
operator Tu with symbol u is defined by

Tu! = P(uf)

for functions! E A2 (n). It is clear that the Toeplitz operator Tu is
bounded on the Bergman space A2 (n), but not necessarily compact.
Answering a question posed by Axler [2], Zheng found a characteriza­
tion of bounded symbols in terms of a certain vanishing property for
corresponding Toeplitz operators to be compact (the original statement
in [9] is in a slightly different form):
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(Z E Q, a, bEen)

THEOREM A (Zheng [9)). Assume n is the ball or the polydisk and
let U E LOO(n). Then Tu is compact if and only if

In IP(u 0 ~a)IP dV-t 0 as a -t aQ· for all (some) p;::: l.

Here, the statement a -t an simply means that the euclidean dis­
tance d(a, an) between a E n and the topological boundary an of n
has the property d(a,an) -+ O. Also, for each a E n, ~a denotes a
biholomorphic automorphism of n with the property that

~a(a) = 0, 'Pa o~a =the identity map.

These notations willhave the same meanings for general n under con­
sideration (automorphisms ~a are explicitly described in [6] in the case
of the ball, and hence can be defined in an obvious way for general Q).

-In the present paper, we will use a new argument to reprove Zheng's
characterization and, at the same time, to give one more characteriza­
tion. Also, the restriction on the range of p in.Zheng's characterization
will be removed by a little bit more careful analysis, All these will be
done on the setting of a general product of balls. So, inthe rest of
the paper, n will always denote the product of balls mentioned at the
beginning of the paper. Our new characterization will be in terms of
average vanishing properties over the balls induced by the BergmCin
metric. Let us first recall the Bergman metric Hz(a,b) defined by

" a a. -Hz(a,b) = LJ -a_a_·logK(z,z)aibj
.. Zs zJ
S,J

where K(· , .) denotes the .Bergman kernel for n (see Section 2). This
Bergman metric. induc(:ls tpe Bergman distance (3(Z, w) between two
points Z ,w E n defined by

(3(z,w) = iDf11

-/H-y(t)(,'(t),,'(t))dt

where the infimum is taken over all Cl-curves 1 in n such that ,(0) = z
and ,(1) = w. This Bergman distance is invariant under automor­
phisms. Details can be found in [4]. We use the notation E(a, r) for
the Bergman metric ball with center at a E n and radius r > 0:

E(a,r) = {z E Q: (3(a,z) < r}.
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We also use the notation IAI for the measure of a Borel subset Aof 0
with respect to the measure V. We now state our main result.

THEOREM B. Let u E V)O(O) and 0 < P < 00. Then the following
statements are equivalent:

(a) Tu is compact.

(b)

(c)

LIP(u 0 lpa)IP dV -+ 0 as a -+ 80.

IE(
1

)1 ( IP(U 0 Ipa)( lpa)IP dV -+ 0
a, r JE(a,r)

for all r > O.

as

The integrals in condition (b) of the above make sense by Lemma 3
of Section 3. The hard part of the proof is the implication (c) ::::::} (a).
To prove it, we will actually estimate the adjoint operator T: by using
its integral representation. This idea comes from [7] where Stroethoff
used a similar argument to characterize bounded symbols of compact
Hankel operators on the Bergman space of the disk.

In Section 2 we collect some basic results about the Bergman ker­
nel and related facts which we use repeatedly throughout this paper.
Section 3 is devoted to the proof of Theorem B. Finally in Section 4,
we close the paper with some remarks related to Hankel operators and
some questions we could not answer.

2. Bergman Kernel

We collect in this section some notations and basic facts which will
be used in the sequel. Most of those are well-known and necessary
verifications can be found, for example, in [4] or [5].

By the mean value property of holomorphic functions, it is easy
to see that point evaluations are bounded linear functionals on the
Bergman space A2(0). Hence there corresponds to every z E 0 a
unique function K(· ,z) in A2(0) - called the Bergman kernel ­
which has following reproducing property:

I(z) =< I,K(· ,z) > for all (1)
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where the notation < , > denotes the inner product in L 2(f2) with re­
spect to the measure V. Using the well-known formula for the Bergman
kernel on the ball, one can easily write down the explicit formula for
the Bergman kernel on f2:

m 1
K(z,w) = IT ( " ") "+11- zJ • wJ n J

i=1
(w En). (2)

Here, we use the notation z = (Z1, ... ,zm) with each zi = (z{, ... ,Z~j)

E Bnj for a point z E f2 and

for the Hermitian inner product of zi, wi E enj . It is often very
convenient to use kernels normalized to have L2-norm L So, we let

ka(z) = K(z, a)
y'K(a, a)

(a,z E f2).

There is a well-known transformation formula for the Bergman ker­
nels on biholomorphically equivalent domains. In particular, for the
automorphisms 'Pa of f2, we have

K('Pa(z),'Pa(W»(J'Pa)(z)(J'Pa)(w) = K(z,w) (z,w E f2) (3)

where J'Pa denotes the complex Jacobian determinant of 'Pa. The
special case z = w yields a useful identity

(z E f2). (4)

The real Jacobian determinant of 'Pa turns out to be the same as IJcpal 2

for which we have the identity

(5)

on f2. This follows from a straightforward calculation by using trans­
formation formulas (3), (4) and the fact K (. ,0) = 1. Since 'Pais an
involution, another straightforward calculation shows

(z E f2). (6)
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A manipulation of the identities (4) and (6) shows

IK(z, ~z(w) )IOlkz(wWK( ~z(w), ~z(W))11

=IK(z, W)1 2 - 0
-

211 K(z, Z)0+11 -1 K( W, W)11

and thus, by (5), we have a change-of-variable formula:

l h(w)jK(z, w)IOK(w, w)11 dV(w)

= K(Z,z)0+11- 1 l h(~z(w))IK(z,w)12-0-2I1K(w,W)l1dV(w)

for alIa, fL real whenever the integrals make sense.

3. Compact Toeplitz Operators

(7)

We start with an observation on how Toeplitz operators act on the
Bergman kernel.

PROPOSITION 1. Let u E £<'0(0.). Then we have

Tuka = [P(u 0 ~a) 0 ~a]ka

for all a E n.
Proof. Fix a point a E n. Define a linear operator Ua on L 2 (n) by

for f E L2(n). Using (5) and (6), one can readily see that Ua IS a
unitary operator taking A2(n) onto itself. It follows that

UaP = PUa

on L 2 (n). Since if'a is an involution, we obtain from (8) that

Tuka = P(uka)

= PUa(u 0 ~a)

= UaP(u 0 ~a)

= [P(u 0 ~a) 0 ~a]ka·

(8)
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This completes the proof. 0

As is well-known, a bounded operator on a Hilbert space is compact
if and only if its adjoint operator is compact. So, when we prove
the compactness of Tu, we will actually show that its adjoint operator
T: : A2 (Q) ~ A2 (Q) is compact. The following proposition gives a
convenient way to represent the operator T:.

PROPOSITION 2. Let U E LOO(Q). Then we have

(T:h)(a) = in h(w)P(u 0 'Pa)('Pa(w))K(a, w) dV(w)

for hE A2(Q) and a E Q.

Proof. Let hE A2(Q) and a E Q. Then, by the reproducing prop­
erty (1) of the Bergman kernel, we have

(T:h)(a) =< T:h, K(· ,a) >=< h, TuK(· ,a) > .

Note that K(· ,a) = K(a, .). The integral representation thus follows
from Proposition 1. 0

Note. We remark in passing that Propositions 1 and 2 remain valid
on arbitrary bounded symmetric domains by the same proof.

Before turning to the proof of our main result Theorem B, we need
several lemmas. First, we show that the Bergman projection P is a
bounded operator from LOO(Q) into LP(Q).

LEMMA 3. For any 0 < P < 00, the operator P : LOO(Q) ~ LP(Q)
is bounded.

Proof. Let hE LOO(Q) and z E Q. By the reproducing property (1)
we have

Ph(z) =< Ph, K(· ,z) >=< h,K(· ,z) >

and thus, by (2) and Fubini's theorem, we obtain

IPh(z)l:::; Ilhlloo rrrn ( I . . 1 "I "+1 dl--j(wi )
} B 1 - zJ . wJ nJ

i=l nj
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where each Vi denotes the normalized volume measure on Bnj • Now
Proposition 1.4.10 of [6] yields

(z En)

for some constant C depending only on n. Another application of
FUbini's theorem therefore shows

fa IPhlP dV ~ C
P

11hll::'fi fa.; (1+log 1- tZil2rdV;(zi)

for every 0 < p < 00. Note that the integrals on the right side of the
above are finite. The proof is complete. 0

The following is a version of Proposition 1.4.10 in [6] for the unit
ball.

LEMMA 4. There are constants J.l > 0 and q > 1 such that

sup In IK(a, z)IQ(1-2,,) K(z, z)q" dV(z) < 00

where the supremum is taken over all a E n.
Proof. See Lemma 9 of [3].

LEMMA 5. Let h E V"'(n) and J.l > 0 be as in Lemma 4. Then
there exists a constant C, depending only on n, such that

for all zEn.

Proof. Let q > 1 be as in Lemma 4 and lip + llq = 1. Apply the
change-of-variable formula (7) and then Holder's inequality to obtain

In IPh('Pz(W))!2IK (z, w)IK(w, w)" dV(w)

= K(z,z)"LIPh(wWIK(z,w)11- 2JtK(w, w)" dV(w)
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( )

lip

::; K(z,z)P. llPhl2PdV·

( )

lh
X .LIK(z, w )!Q(1-2P.)K(w, w)qp. dV(w)

for all zEn. Thus the result follows from Lemma 4 and the inequality

for some constant G depending only on n, which is a consequence of
Lemma 3. The proof is complete. 0

We will need some informations about the size of the volume of the
Bergman metric balls E(a, r ).

LEMMA 6. For r > 0, there are positive constants G(r), c(r) so that

c(r) < Ika (w)[2 < G(r)
- IE(a, r)1 - .

for all a E nand wE E(O,r).

Proof. Fix r > 0. Since K(· , ,) is continuous and nonvanishing on
the compact set E(O, r) X n, we have

mT ::::;inf IK(w,aW > 0,
.... 2MT = sup IK(w,a)1 <00

where the infunum and supremum are taken over all w E E(O, r),
a E n. Now, since 'Pa is an involution and the Bergman distance is
automorphism-invariant, one can easily see that 'PaE(a, r) = E(O, r).
Since IJ'PaI2 = Ikal2 is the real Jacobian determinant of 'Pa, a change
of variables shows that

IE(a,r)1 = [ dV = [ Ika l2 dV
~~(a,r) ~~(O,r)
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and therefore

IE(a,r)l2:: mrIE(O,r)IK(a,a)-l

= mrIE(O, r)IIK(w, a)I-2 Ika(w)1 2

2:: mrM;lIE(O,r)llka(wW

for all a E n and w E E(O, r). Similarly, we have

for all a E n and w E E(O, r). The proof is complete. 0

LEMMA 7. For r > 0, there are positive constants C(r), c( r) so that

for all a E n and w E E(a,r).

Proof. Since 'PaE(a,r) = E(O,r), we have 'Pa(w) E E(O,r) for wE
E(a, r). Thus, the lemma follows from Lemma 6 and (6). 0

We are now ready to prove a preliminary version of our main result.

THEOREM 8. Let u E Loo(n). Then the following statements are
equivalent:

(a) Tu is compact.

(b)

(c)

llP(u 0 'PaW dV ---+ 0 as a ---+ an.

IE/ )1 ( IP(u 0 'Pa)( 'PaW dV ---+ 0
a, r JE(a,r)

for all r > O.

as a ---+ an

In the proof the same letter C stands for various constants which
may change with each occurrence.

Proof. (a) ===> (b) : Suppose that Tu is compact on A2 (n). Since
the normalized kernel ka converges uniformly to 0 on compact subsets
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of n as a -7 an, one can easily see that ka converges weakly to 0 in
A 2(n) as a -7 an. The compactness of Tu therefore implies

as a -7 an. (9)

On the other hand, using Proposition 1, we can easily see by a change
of variables that

LIP(u Q 'PaW dV = LIP(u 0 'Pa)('PaWlkaI
2

dV

=LITuka1
2

dV.

Colllpining the above with(9), we have (b).

(b) ===? (c): Suppose that (b) holds, and let r > O. Recall that
'PaE(a, r) = E(O, r) for a E n. Using a change of variables and Lemma
6, one obtains

IE/ )1 f \P(u 0 'Pa)('Pa)!2 dV
a, r JE(a,r)

= IE(
1

)1 f IP(u 0 'Pa)1
2

IkaI
2

dV
a, r JE(O,r)

~ C.ln IP(u 0 'Pa)12dV

for some constant. C independent of a, so that (c) follows..

(c) ===? (a) : We will assume (c) and construct a sequence of com­
pact operators which converges in the opertaor norm to the operator
T:'. Then the compactness of Tu will follow from that of T:'.

For p > 0, put

np = {z En: d(z, an) 2:p}.

Recall that d(. , .) denotes the euc1idean distance. Let Mp be the
multiplication by the characteristic function of np, acting on L2(Q).
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Since the symbol of Mp is supported on the compact set Qp, the
opetator Mp is compact when restricted to A 2 (Q). Thus the opera­
tor MpT: : A2(Q) -t L 2(Q) is compact. Put

for simplicity. Now we show that the operator norm IIGpll converges
to 0 as p -t O. To do so, pick any h E A 2(Q). Then, by Proposition 2,
we have

Gph(a) = Xp(a)1h(w)P(u 0 epa)(Cfla(w))K(a,w)dV(w)

where Xp denotes the characteristic function of the set n \ np. Given
r > 0, decompose

(10)

where

Up,rh(a) = Xp(a) ( h(w)P(u 0 'Pa)( 'Pa(w))K(a, w) dV(w)
JE(a,r)

and

Vp,rh(a) = Xp(a) ( h(w)P(u0'Pa)(epa(w))K(a,w)dV(w).
In\E(a,r)

We first estimate the operator Up,r' Put

l(a, r) = IE/ )1 ( IP(U 0 'Pa)( 'PaW dV
a, r JE(a,r)

for simplicity. By the Cauchy-Schwarz inequality

(a E Q, r > 0)

IUp,rh(aW ~ xp(a)( f /P(UOCfla)( Cfla(w))h(W)K(a,w)ldV(W))2
JE(a,r)

~ Xp(a)l(a,r) ( Ih(wWIE(a,r)IIK(a,w)12dV(w).
JE(a,r)
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An application of Fubini's theorem therefore yields

{ jUp,rhl2 dV ~ ( sup lea, r»)
in aEO\np

X { Ih(w)12 ( IE(a,r)IIK(a,w)\2 dV(a)dV(w).
in JE(w,r)

By Lemma 7 and (7), one can estimate the inner integral of the right
side of the above:

I IE(a,r)IIK(a,w)12 dV(a) ~ c I K(a,a)dV(a)
JE(w,r) JS(w,r)

= c I K(z, z) dV(z)
. JE(O,r)

5:C

for some constants C independent of p. Here, the last inequality holds
because the function z~ K(z,z) is continuous and hence bounded on
the compact set E(O, r). Therefore we get the following estimate for
the operator norm of Up,r:

IIUp,rW 5: C( sup I(a,r))
aEfi\fip

for each r .> 0 and for some constant C independent of p. It follows
from the assumption that

I\Up ,rll ~ 0 as (11)

for each r.
Now we estimate the operator Vp,r. Let /-l > 0 be the constant as in

Lemma 4. Then, by the Cauchy-Schwarz inequality again,

IVp,rh(a)1 2 ~ (I IP(UO 'Pa)('Pa(W))h(W)K(a,w)ldV(W))2
Jfi\E(a,r)
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~ ( ( IP(u 0 'Pa)('Pa(w)WIK(a, w)IK(w, w)/l dV(W))
in\E(a,r)

X ([ Ih(WW1K(a,w)IK(W,W)-JtdV(W))
in\E(a,r)

~ Cllull~K(a,a)Jt

X [ Ih(wWIK(a,w)IK(w,w)-JtdV(w)
in\E(a,r)

where C is a constant, depending only on n, provided by Lemma 5.
Then, by an application of Fubini's theorem again, we have

In IVp,rh l
2dV ~ Cllull~ In Ih(w)12K(w,w)-Jt

X ( K(a,a)/ljK(a,w)ldV(a)dV(w).
in\E(w,r)

Let

J(w,r) = K(w,w)-Jt ( K(a,a)JtIK(a,w)ldV(a). (12)
in\E(w,r)

Then we have

( IVp,rhl2dV ~ CllulI~(sUP J(w,r)) [lhI 2dV.
in wEn in

In other words,

IlVp,rW ~ Cllull~ (sup J(w, r))
wEn

(13)

for some constant C depending only on n. Now, make subsitution
a = 'Pw(z) in the integral of the right side of (12) and use (7), to see
that J(w, r) is exactly the same as the integral

( K(z, z)JtIK(w, z)1 1- 2Jt dV(z).
in\E(O,r)
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Choose q > 1 such that 1/p+1/q = 1 where q > 1 is the constant as in
Lemma 4. It then follows from Holder's inequality and Lemma 4 that

sup J(w,r) ~ Gin \ E(O,rW/p
wEn

for some constant G depending only on n. Since n = Ur>o E(0, r), it
follows from the above that

sup J(w,r) ~ 0
wEn

and therefore, by (13),

sup IlVp,rll ~ 0
p>O

as

as

r ~ 00

r ~ 00.

This, together with (10) and ell), gives

as

as desired. The proof is complete. 0

Before proving Theorem B, we have a couple of simple lemmas.

LEMMA 9. Let u E LOO(n). Then the following statements are
equivalent:

(a) LIP(u 0 'Pa)1 2 dV ~ 0 as a ~ an.

(b) LIP(uo'Pa)IPdV~O as a~an for all O<p<
00.

(c) LIP(u 0 'Pa)\PdV ~ 0 as a ~ an for some 0 <
p< 00.

Proof. First assume (a) and show (b). We may further assume p > 2
by Jensen's inequality. Then, by the Cauchy-Schwarz inequality we
have
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By Lemma 3 the second integral of the right side of the above stays
bOWlded independently of a, and therefore (b) follows.

The implication (b) ==> (c) is trivial. Finally assume (c) and
show (a). By Jensen's inequality once more, we only need consider the
case p < 2. For such p, another application of the Cauchy-Schwarz
inequality shows

and· thus (a) holds by Lemma 3 as before. 0

LEMMA 10. Let U E LOO(n) and r > o. Then the following state­
ments are equivalent:

(a)

(b)

IE(l )1 f IP(u0'Pa)('PaWdV-tO as
a, r JE(a,r)

IE( 1 )1 f IP(u 0 'Pa)('Pa)IPdV -t 0 as
a, r JE(a,r)

for all 0 < p < 00.

a -t an.

a -t an

(c) IE(l )1 f IP(u0'Pa)('Pa)IPdV-tO
a, r JE(a,r)

for some 0 < p < 00.

as a -t an

Proof. Assume (a) and show (b). We only consider the case p > 2
by Jensen's inequality. By the Cauchy-Schwarz inequality we have

CE(~, r )1 L<.,") IP(U 0 "'.)("'.)IP dV) 2

S CE(~, r)1 L<.)p(U 0 ",.)(",.)1' dV)

X CE(~, r) IL<.)p(U 0 "'.)("'. )l'P-2 dV).
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The second integral of the right side of the above stays bounded in­
dependently of a by a change of variables and· Lemmas 3 and 6 as
follows.

IE(l )1 f !p(uo lPa)(CPa)!2P-2dV
a, r JE(a,r)

= IE/ )1 { IP(u 0 CPaWp
-

2Ika!2 dV
a, r JE(O,r)

::; cLIP(u 0 CPa)1 2P-2 dV

::; Cllull~-2
for some constant C independentof a. Thus (b) holds.

The implication (b) ==> (c) is trivial. Now assume (c) and show
(a). By Jensen's inequality again, we may further assume p<2. Then,
by the Cauchy-Schwarz inequality, we have

CE(~,rl! Lto,r) IP(U01"0)(<Pal!' dV),

$ CE(~' rl! Lto.r) IP(U 0 <Pol(<Po)IP dV)

X (·.IE/ )1 { IP(u 0cpa)(CPa)1
4

-
PdV)

a,~ JE(a,r)

::;c IE/ )1 l . IP(u 0 CPa)( CPa)\P dV
a, r. JE(a,r)

for some constant C independent of a as before. Thus (a) follows as
desired. 0

Now, our main theorem is just a simple consequence of Theorem 8,
Lemma 9, and Lemma 10.

Proof of Theorem. B. Combining Theorem 8 with Lemma 9, we have
the equivalence of (a) and (b). On the other hand, the equivalence of
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conditions (a) and (c) follows from Theorem 8 and Lemma 10. The
proof is complete. 0

4. Remarks

Let Q = 1- P be the orthogonal projection of L 2(0) onto ..12 (0)1.,
the orthogonal complement of A2(0) in L2(0). For u E Loo(O), the
Hankel operator H u with symbol u is defined by

Hul = Q(uf)

for I E A2(0). Clearly H u is a bounded linear operator of A2 (0)
into A2(0)1.. Answering a question posed by Axler [1], Stroethoff first
characterized bounded symbols of compact Hankel operators. In [7]
Stroethoff proved the disk version of the following theorem for 1 <
P < 00. Later Stroethoff [8] used a similar method on the ball and the
polydisk to obtain the equivalence of conditions (a) and (b) for p = 2
of the following theorem and pointed out that the result remains valid
on general products of balls. Zheng [9J independently obtained a result
similar to Theorem A. However, repeating the argument of the present
paper with H u and Q in place of Tu and P, respectively, one can prove
the following theorem without any restricion on the range of p:

THEOREM 11. Let u E LOO(O) and 0 < p < 00. Then the following
statements are equivalent:

(a) H u is compact.

(b)

(c)

LIQ(u 0 ¥'a)IP dV ~ 0 as a ~ ao.

IE( 1 )1 ( IQ(u 0 ¥'a)(¥'a)IP dV ~ 0
a, r JE(a,r)

for all r > o.

In view of definitions of Toeplitz and Hankel operators, it is in­
teresting that characterizations in Theorem B and Theorem 11 are
completely parallel. Let us observe a simple consequence. There
are well-known characterizations of positive symbols for correspond­
ing (densely-defined) Toeplitz operators to be compact. One of them
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is the boundary vanishing property of Berezin transforms of symbols.
More precisely, for v ~ 0, v E Ll(O), the following two conditions are
known to be equivalent (see [10] for bounded symmetric domains):

• Tv is compact.

. L(v 0 'Pa)dV ---7 0 as a -+ ao.

For u E LOO(O), apply this characterization to v = lul2 and use the
fact

to see from Theorem B and Theorem 11 (with p = 2) that Tlul2 is
compact if and only if Tu and H u are both compact. On the other
haild, sinceu E LOO(0),1r'Uj2 is compact if and only if l1ul is compact.
Thus we have

COROLLARY 12. Let u E LOO(O). Then the following statements
are equivalent:

(a) l1ul is compact.

(b) Tu and Hu are both compact.·

a ---7 ao for all

(c)

(d)

Llu o 'Pal dV -+ 0 as a -+ ao.

1 ( lul dV -+ 0 as
[E(a,r)l JE(a,r)

(some) r >0.

The equivalence· of conditions (a) and Cd) of the above, as well as some
other equivalent conditions, can also be found in [10].

We now close the paper with a couple of questions. In our proof of
Theorem B, the boundedness of symbols play a crucial role. We do not
know whether such boundedness hypothesis is essential. For example,
does TheOrem 8 hold with u E L2(0) in place of u E £OO(O)? For
u E L2(0), we do not even know whether the condition
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is necessary and sufficient for Tu to be bounded. However, it must
be pointed out that whatever condition on u that is necessary and
sufficient for Tu to be bounded must be automorphism-invariant, since
Tu and Tuo",. are unitarily equivalent:

where Ua denotes the unitary operator on A2(Q) defined in the proof
of Proposition l.

The first author was in part supported by the CARe and both
authors were in part supported by the KOSEF.
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