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THE GLOBALLY REGULAR SOLUTIONS

OF SEMILINEAR WAVE EQUATIONS

WITH A CRITICAL NONLINEARITY

JONGSIK KIM 1 AND CHOON-Ho LEE2

o. Introduction

In this paper we study the existence of a globally regular solution
of the semilinear wave equation with a critical nonlinearity

Utt - ~u + u3 = 0, (0.1)

where u(x, t) : R4 x R -+ R is a function of four space variables and
time. In order to solve (0.1) one has to prescribe initial data at a fixed
time t = 0, Le.

(0.2)

The equation (0.1) is a special case of a more general set of model
equations

Utt - ~u + lulP-l u = 0, (0.3)

where u(x, t) : Rn X R -+ R is a function.
In case n = 3 and p < 5, Jorgens[3] proved in 1961 that the nonlinear

wave equation (0.3) with initial data

has a globally unique C 2 solution. In case n = 3 and p = 5(critical
power), Rauch[4] in 1981 first proved the existence of a global C2 s0­

lution provided the initial energy is small enough. In 1988 Struwe
[5][6] proved the existence of a radially symmetric global C2 solution
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provided the initial data is radially symmetric. Finally, Grillakis[2] in
1990 was able to remove symmetric assumption in Struwe's result. In
case n < 13, the equation (0.3) with suitable initial data has a global
C2 solution provided p < :i:~ (See [1]).

In this paper we shall prove

THEOREM 0.1. Let Uo E C4(R4 ), Ul E C3(R4) be arbitrary initial
data. Hu E C 2 (R4 X [0, T», for some T > 0, is a solution of (0.1) and
(0.2), then there exists a solution u E C2(R4 X [0,00» to the Cauchy
problem (0.1) and (0.2).

The proof is divided into several parts. In Section 1, we shall es­
tablish an integral representation of the solution of a semilinear wave
equation. In Section 2, using the Hardy type inequality we prove the
existence of a global C2 solution with small initial data. In Section
3, we apply the identities to derive the several estimates of solutions.
In Section 4, we shall prove the existence of a global C2 solution with
arbitrary initial data. .

We shall use the following notations: Let z = (x, t) denote a point
in the space -time R4 x R. Given zo = (xo, to), let

K(zo) = {z = (x,t): Ix - xol:::; to - t}
be the forward(backward) light cone with vertex at zo,

M(zo) = {z = (x, t): Ix - xol = to - t}

its mantle, and

D(t,zo) = {z = (x,t) E K(zo)} (t fixed)

its time-like sections. IT Zo = (0,0), Zo will be omitted. For any space­
time region Q C R4 X R and T < S, we let

Qf = {z=(x,t) E Q: T:::; t:::; 5}

the truncated region. Hence, for instance, we have

oK: = D(s) U D(t) U M:'

IT s = 00 or t = -00, it will be omitted. For Xo E R4 , let

BR(XO) = {x E ~: Ix - xol :::; R}
with boundary

SR(XO) = {x E ~: Ix - xol = R}.
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1. Integral Representation

In this section we shall give an integral representation of a solution
of the semilinear wave equation

with initial data

Utt - .6.u + u3 = ° (1.1)

U(x,O) = uo(x), Ut(x,O) = Ul(X). (1.2)

Assume that U is a solution belonging to C2(R4 x [0, T» of (1.1)
and (1.2). Let Xo and x be points in R4. Let y = x - Xo where Xo is a
fixed point and x is a variable. Define the functions [u] as

[U] = u(x, t - Iyl).

Then
V[U] = [Vu] - [Ut],

.6.[u] = [.6.u] - 2[Vut]' y+ [Utt] - 1:1 [Ut],

V[Ut] = [VUt] - [Utt] . y,

where Y= f,r is the unit vector of y. Eliminating [VUt] from the above,
we have

.6.[U] + 2y . V[utl + ':1 [Ut] = [.6.u] - [Utt] = [u3]. (1.3)

Multiply (1.3) by ~ to get the identity

(1.4)

Take Zo = (xo, to) such that Ixol $ to and to < T and integrate (1.4)
inside the domain A bounded by the surfaces SE = {Iyl = el,S =
{Iyl = to}. Then

1 {I y 2y } 1{1 1 3}
AV. lyI2[VU]+lyI3[Ut]+lyI4[U] dy= A -lyI3[Ut]+jYj2[U] dy.
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The divergence theorem gives

[ ,112 {Y' Vu(x, 0) + Ut(x, 0) + _1
2

1u(x, 0) } do
J,y/=to y y

- [ 1
1
12 {Y· Vu(x, to - c) + Ut(x,to - c) + _,2

1
u(x, to - c)} do

J(yl=€ .y Y

j 1 1 .
= {--,13 Ut(x, to -Iyl) + -I12 u3(x, to -Iyl)} dy.

€<Iyl<to y Y

By letting e ---+ 0 we have

[ ,1/2 {Vu(x, 0) . y+Ut(x, 0) + _1

2
1u(x, O)} do - 4w4 u(xo, to)

J1yl=to y y

= [ { __,1,3 Ut + -1
1'2 u 3

} dy. (1.5)
J1yl<to Y Y

Thus we have

where the linear part of u(xo, to) is given by

11 1{ A 2}UL(Xo,tO) =- -I12 Vuo' Y +Ul + -,,uo do
2w4 Iyl=to Y Y

1 1 Ut(X, to - Iyl) d+- y
2W4 Iyl<to lyl3

and the nonlinear part of u(xo, to) is given by

(1.7)
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1 1 u3 (x, to - Iyl)
UN(XO, to) = - 2w 1 12 dy.

4 IYI<to y

Let zo = (xo, to) and z = (x, t) for z E M~O(zo) = {(x, t) :
to - t, °~ t ~ to}. Then z - zo = (y, Iyl) and

259

(1.8)

Ix-xol=

(1.9)1 1 u
3
(z)

UN(XO, to) = - M I 12 do
V2W4 M~O(zo) z-zo

Thus we have proved the

THEOREM 1.1. Let U E C 2 (R4 X [0, T)) be a solution of (1.1) and
(1.2). Then for every Zo E Kl = {(x,t)lIxl ~ T - t,O < t ~ T}, U

satisfies the integral equation

(1.10)

where uL{zo) and UN(ZO) are given by (1.7) and (1.9).

2. Globally Regular Solutions for the Small Initial Data

In this section we shall prove the existence of globally regular so­
lutions of semilinear wave equations with small initial data. Given a
function U on a cone K (zo) we denote its energy by

and by

E(u: D(t: zo)) = f e(u)dx
JD(t:zo)

its energy on the space-like section D(t : zo). Let x = y + Xo. We
denote by

( 11 ~ 12 1 4dzo u)=2 YUt -\7u +4'u

the energy density of u tangent to M(zo). The following Hardy's in­
equalities are useful to prove the regular solutions of semilinear wave
equations.
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LEMMA 2.1. Suppose u E L 4 (BR) possesses a weak radial derivative
U r = X . 'Vu E L 2(BR ). Then with an constant Co independent on p
and R for all 0 ::; p < R the following holds:

L. IUI~;I' dx " CO {L. IUrl' dx + (L. u
4dx)1

/
'} (2.2)

L. u
3M" Co { (L.U4dx) '/' (L. U~dx) '/' + (L. U4dx) 3

/
4}

(2.3)

Proof The equality

implies

2 1 1 .. 1 1
2

u
2

1 2Ur = . ..;r(.jrU)r .~ 2r U. 2: 4r2 - 2r2(ru Jr. (2.4)

Integrating (2.4) over BR\Bp , we have

Therefore, the divergence theQrem yields (2.1). Note that

Integrating (2.5) from 0 to R, we have
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Since

we have

Note that if u = u(x, t) is a solution of (1.1), then u(x, -t)is also
a solution of (1.1). Since the semilinear wave equation is conformally
invariant, the solution is translation invariant in t.

Let z = (x, f) be given and suppose u is a C 2-solution of (1.1) on
the deleted backward light cone Kb(z) = Ko(z)\{z}. In order to prove
that u can be extended to a global solution of (1.1) and (1.2), it suffices
to show that for any z as above

m = limsup zO ..... z lu(zo)1 < 00.
zoEK(z),zo#z

We may assume that m = sUPKo(z) lul.
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LEMMA 2.2. Suppose u E G2(K~(z» solve (1.1) and (1.2). Then
for any 0 :::; t < s < f there holds

E(u:D(s,z»+ ~( dz(u)do=E(u:D(t:z»:::;Eo
v2 JMt(z)

Proof. Integrating the identity

e(u)t - div(utV'u) = e(u)t - div pcu) = 0

over a cone Kt of the positive light cone and using the identity
x

e(u) - j;i' pcu) = dzo(u),

we obtain the result. IIII
By Lemma 2.2, for any fixed z the energy E(u: D(s,z» is a mono­

tone decreasing function of s E [0, f) and hence converges to a limit as
s /' f. It follows that

( dz(u) do -+ 0 as s, t /' f (2.6)
JMt(z) .

In Section 1, we had a decomposition of the solution of (1.1) and (1.2)
as

u = UL +uN,
where y = x - Xo, and UL and UN are defined as in (1.7) and (1.9)
respectively. Since we are interested in points Zo such that lu(zo)1 -+

in as Zo -+ z, we need only consider points Zo satisfying lu(zo)1 =
maxKo(zo)lul = moo Thus, and splitting integration over M[(zo) and
MT(ZO) for suitable T, from Holder's inequality we obtain

mo =lu(zo)1

<G fflO 1 .. u
2
(z) d . J 1 u

3
(z) d

+ -- 2 0+ -- . 2 O.- V2W4 MT(ZO) Iz - zol . V2w4 MJ'(zo) Iz - zol (2.7)

3

By Lemma 2.2 the last term is bounded by Glto - TI-1EJ. Thus
to establish our main result, it suffices to show that for any z = (x, f)
there exists T < f such that

. 1 u2 (z) ~lzmsup zo-+z I 12 do < V 2W4'
zoEK(z) MT(Z) z - Zo

This observation and Hardy's inequality gives

(2.8)
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THEOREM 2.3. If u E C2 ([O, T) X R4 ) is a solution of (1.1) and
(1.2),then there exists a constant EO > °such that for any Uo E
C4 (R4

), U1 E C3(R4) with

(1.1) and (1.2) admit a global C 2 solution.

Proof. Let v(y) = u(xo + y, to - Iyl). Then by Lemma 2.1 we have

[ luI2(z) do = _1 [ Iv(y)1
2

dy (2.9)
J MT(ZO) Iz - Zo 12 J2 J B'o-T(O) lyl2

:S C [ IVvl 2 dy + C ( [ lul4 dY) 1/2

J B'o-T(O) J B'o-T(O)

:S C [ dzo(u)do+C ([ dzo(u) dO) 1/2

JMT(zo) JMT(zo)

:S C(Eo + E~/2).

Letting T=O, the theorem holds from (2.7). / / / /

Since t = °no longer plays a distinguished role in the following, we
may shift coordi~ates so that z = (0,0) and thus in the sequel we may
assume that u is a C 2 solution of (1.1) on K t1 \{(O,O)} for some i 1 < 0.

3. Some Estimates for the Large Initial Data

In this section, we introduce the multiplier iUt + x . Vu + ~ u to drive
the following identity

(3.1)
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3
Qd =te(u) + x· ptu) + '2UUt

1 1
=4(t - r)(ut - ur)2 + 4(t + r)(ut + ur)2

1 A2 1 4 3
+ '2t /Vu - urxl + 4 tu + '2UUt

3
=Qo + '2UUt,

3
Pd =tptu) + xl(u) + (x· Vu)Vu + '2uVu,

1 4
Rd =4u .

The identity (3.1) is equivalent to the identity

{
d x 3 3 2

t -(e(u) + -. ptu) + -UUt + -U )
dt t 2t 4t2

-div(ptu) + :'l(u) + ~(x. Vu)Vu + !uV'u)}
t t 2t

1 3
+ e(u) +"tx. ptu) + 2t2U2 + Rd = O.

(3.2)

LEMMA 3.1. There exists a sequence of numbers tl / 0 such that

!
: I f UUt dx S 0(1), (3.3)
.1. lD(tl) ' .

where 0(1) --+ 0 as I --+ 00.

Proof. Consider Ul(X, t) = 2-1u(2-1x, 2-1t), lE N,"satisfying (1.1)
with

Note that

(3.4)
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as [ -t 00. Now, if

{ u;dx-tO (1-t00), (3.5)
1D(tl)

letting tl = 2-lt1 we have an estimate

J... { Ut Udx < ( { /Ut/2 dX) 1/2 (_1_ { u2dX) 1/2
ItlllD(tt> - lD(t,) It I1 2 1D(tt>

::::; 2E(u;D(tI))1/2 (-111
2

{ U;dX) 1/2

tl 1D(t,) (3.6)

which converges to 0 as [ -+ 00. Otherwise, there exist a positive
constant Cl and a sequence A of numbers [ -t 00 such that

lim { u;dx ~ Cl. (3.7)
IlEA lD(tl)

For any 8 E [t ll 0), by Holder's inequality

{ u;dx::::; (w41814)1/2 (f ut dX) 1/2
lD(s) lD(s)

::::; CE~/282. (3.8)

Choose 8 = 81 < 0 such that the latter is ::::; Cl' Then by (3.4) we have

2 r (ulhuldz = r (Iu11 2 )t dzJK:: JK:;
= r luII2 dx _ r IUI1 2 dx + ~ r. luII2 do

J D(sll JD(tl) y2 JMt1
1

:s: 0(1) --+ 0 (1--+ 00, 1 EA).

We conclude that for suitable numbers SI E [t1' SI], tl = 2-ls/, [ E A,
we have

_1

2
1 { Utudx = _1

2
, { (Ul)tUl dx

tl 1D(t,) SI 1D(s,)
::::;0(1)-t0 (1-t00, [EA).

Relabelling, we obtain a sequence {tdlEN, as desired. IIII
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LEMMA 3.2. For any 1E N there holds

41~ I f luI 4 dxdt + f {e(u) + =. p(u)} dx ~ 0(1) -t 0 (3.9)
I lKt, lD(t/) t

as I-t 00.

Proof. For s E [tl, 0), we integrate (3.1) over Kt to obtain

Now, e(u) + tx. p(u) is dominated by the energy density e(u). There­
fore, using Holder inequality as in (3..6) and (3.8), the first term is of
order Isl and hence vanishes as s -t O. Moreover, on M t, we have

It~(u) + x· p(u) + ~UUt - x,Pdl
1

1. .. . 3
=Itl e(u)+ "tx ; p(u) + 2tUUt -x ·p(u) -l(u)

-Ix, Vul 2
- :;x. Vul

=ltlllVul2 -Ix, Vul 2 + ~u4 - 2~2 u(tUt + x· Vu)1

~ltll(2do(u) + I~r).

Hence by (2.1) and Lemma 2.1 the second term is of order o(l)ltll,
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where 0(1) -t 0 as I-t 00. Thus, by Lemma 3.1 we have

_1

1
, f Rd dxdt + f (e( u) + _111 x . PC u)) dx

t, JK:/ JD(t,) t,

:5 2,3 I f UUt dx + 0(1)
t, JD(t,)

:50(1) -t 0 (l-t (0)

which is the desired conclusion. IIII

(3.11)

LEMMA 3.3. There exists a sequence of numbers fi /' 0 such that
the conclusion of Lemma 3.1 holds for (£,) which in addition we have

2 < _ll < 4
- tl+1 -

for all 1E N.

Proof. First observe that by Holder's inequality and by Lemma 3.2
we have for any mEN

where {tm } is determined in Lemma 3.1. From the identity (3.2) we
have

d { x 3 3 2}- e(u) +- .PCu) + -UUt +-u
dt t 2t 4t2

- div{ptu) + ~l(u) + ~(x, Vu)Vu + !uVU}
t t U

1{I 3 }+ i e(u) + i X ' ptu) + 2t2 u
2 +Rd = O.

(3.12)
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Integrate (3.12) over the cone K;rm for m ~ 1 to obtain

[ {e(u) +.:.. p(u) + !UUt + -;'u2} dx (3.13)1D(tz) t 2t 4t

+ [ ~{e(u)+':'.P(u}++232U2+Rd}dxdt
lKtm t t t

t(

= [ {e(u)+':'.P(u)+-;'u~}dx
lD(tm ) t 4t

+ [ {e(u)+':'.P(U)+ 23UUt+ 43zu2
lMtm t t t

tr

- T.(pcu) + T1(u) + (T· V'u)V'u + :tuV'u)} do.

By the preceding remark the first term on the right (3.13) vanishes
as we let m -+ 00, while by (3.1) the integral over MJ,m becomes
arbitrarily small as m ~ 1 -+ 00. Finally, by Lemma 3.1, we have

1 1 1 J .-uutdx = --1-' UUt dx ~ 0(1) -+ 0 (1-+ 00).
D(tr) t tl

All remaining term being non.:.negative, we thus obtain the estimates

Hence for any t E [t,O) there also holds

11t (1 u
2

) 1 u
2

0(1) ~ -= -dx dt ~ jnf _ -dt
t 2t . D(t) It12 . 2t9$t D(t) Itl 2

where 0(1) -+ 0 if 1 -+ 00. Now to construct the sequence {El}, choose
El = t1 and proceed by induction. Suppose El, 1 = 1, ... , L, have been
defined already. Let h+1 .E [ft, t) be chosen such that
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Clearly, this procedure yields a sequence {id such that 2 ::; tl:1 :s: 4
for all 1and we have

(I-too).

Then by (3.4) we have

_111 j _UUt dx -t 0 (I -t (0)
tl D(t,)

concluding the proof. / / / /

In the sequel to simplify notation we shall assume that tl = {I for
all I, initially.

4. Globally Regular Solutions for the General Data

In this section we shall prove the Theorem 0.1. Fix Zo = (xo, to) E
K\ {O} arbitrary. Let y = x - Xo, Y= ~,x = TiT. Divide (3.2) by t

and then for s > to integrate over Kt, \K( zo) to obtain the relation

0= j {e(u) + ~x. p(u) + ~UUt + ~u2} dx
D(8) t 2t 4t2

j { I _ 3 3 2}
- e(u)+-x,p(u)+-UUt+-2u dx

D(tl)\D(t,:zo) t 2t 4t11{ 1 _ 3 3 2 }+- e(u)+-x'p(u)+-UUt+-u -x·p do
v'2 M' t 2t 4t 2

'I11 { 1 3 3 2 }- - e(u) + -x . P(u) + -UUt + -U - y. P do
v'2 M,,(zo) t 2t 4t2

+ r ~{e(u) + ~x. p(u) + ~u2 + Rd} dxdt
JK' \K(zo) t t 2t

'I

=1 + I I + I I I + IV + V,

where P = p(u) + fl(u) + (tx. V'u)V'u + ftuV'u = tPd'
By Holder's inequality, (3.6), (3.8) and Lemma 3.2 the first term

I -t 0 if we choose s = t k with k -t 00. Similarly, I I -t 0 if 1 -t 00.
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By Lemma 3.2 also III ~ 0 as 1~ 00. Finally V ~ O. Thus we obtain
the estimate for any Zo E K\{O}.

f {e(u)+~x.j/(u)+!.uUt+-;u2_y.p} do ~ 0(1) ~ 0 (4.1)JM
tl

(zo) t 2t 4t

as 1~ 00, with error term 0(1) independent of Zoo

In order to bound (2.8) we shall use (4.1). Let r = Ixl; then we may
rewrite

A :=e(u) + ~x. j/(u)+ !UUt + ~U2 - y. P
t 2t 4t2

=~(l-:-x, y)lutl2 + (1 +:-x. y)(~r\7uI2+ ~luI4)
2 t t 2 4

+ !(Ut - y. Vu)u + :-(Ut - y. Vu)x· Vu - UtY· Vu + ~U2.2t t . 4t2

Introducinguu = y·Vu,a = x....:y(y·x),lalucr =a·Vu,Qu=Vu-yu;,.,
we have

A :=~(1- IX. Y)(Ut - Uu? + (1 + IX. Y)(~lnuI2 + ~luI4)
3 r . 3 2

+ 2t(Ut-uu)u+ilalucr(ut-u.,.)+ 4t2U

Now let x·y = cos 8, la\.= sin 8 and let Up = ~(Ut - u.,.). Then we
have

A =(1- ~cos8)lupI2+ (1 + ~cos8)(~IQuI2 + ~luI4)
r J;:;,. I 3 3 2+ t v2 sm8 upucr +.V2iuUp+ 4t2 U

3 3 2 ( )=Ao + fii uUp+-2u . 4.2v2t . .. 4t

Note that if we estimate lUcri ~ IQul, then we have

Ao ~(1 - ~ cos8)lupl2 + (1 + Icos8}(~lucrI2 + ~luI4)

+ ~v'21 sin 81up ucr

=(1 + :-)(luP I2+ ~lucrI2) - 2:.. (v'2Vl +cos8up- V1- cOS8Ucr)2
t 2· 2t

1 r+ 4(1 + tcos8)lul4 ~ 0 (4.3)
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on Mt,(zo).
Now for any f > 0 there exists a constant G = G(e) such that for

any Zo E K and any z E MCto (zo) we may estimate

r 1
--cos6> -.t - 2

In fact, for z = (x, t) E MCtO(zo) we have

I I It - to I Iyl
Ixl-Iyl ~ Iy - xl = Ixol ~ Itol ~ G -1 = G -1'

Hence

A A 1: > 1 IA AI 2 1xoI > 1 2x·y=cosv - y-x >1- - ---- - Iyl - G-1

while

1> _~ = Iyl It-tollxl > (1- .!.)(l- _1_).
- t It - tol It1 Iyl - G G-1

This yields the following estimate.

LEMMA 4.1. For any e > 0, any Zo E K, letting C = G(e) be
determined as above for tl; ~ Gto we have

Proof. we note mst that

IJ2upu I< I 12 -.!.. 2
t - Up + 4t2U .

Hence by (4.2) and our choice of G(e), for z E M[;tO(zo) we have
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which proves the lemma. / 1//
Note that up may be interpreted as a tangential derivative along

M(zo). In fact, let <P be the map

and let

<P: y --+ (xo +y,to -Iyl)

v(y) = u(ll>(y))

(4.4)

(4.5)

wherever the latter is defined. Then the radial derivative Vs of v is
given by

Vs = y . 'Vv = Uu - Ut = -J2up •

LEMMA 4.2. For any Zo E K and any C ~ 0 there holds

1 uu-t- do ~ (1 + log(l + C))o(l),
M(1+c)to(zo)

where 0(1) --+ 0 if (1 + C)to ~ tl and l --+ 00.

Proof. Introducing y as new variable, via (4.4),(4.5) we have

{ UpU d ( vsv d
lM(I+c)to(zo) -t- 0 = lBCltol jyl- to y

= { (lC1to,
~s2 dS) do.

lSI 0 S - to

Integrating by parts, this gives

(4.6)

1 (lC,to, 82 8 v2 )
" , ---(-)ds do
SI 0 8 - to 88 2

l1Clto, {v2 s V
2

8
2

} , 1 1 2= - --+, ' dsdo + v do
SI 0 8-to 2(s-toP '2{1+C)ltol SCltol

1
v2

~- dy
BCltol lyl(lyl- to) ,

1 1 u
2

= - - do(:z:,t)
v'2 M(1+C)to(ZO) 8(S - to)

l C,to, 1 (11 )=- -- - u2 do(:z:) ds
o 8 - to 8 8D(s-to:zo)
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Now by Lemma 2.1

(11 )3/2
u 2 do

s 8D(s-to:zo)

<C r u3 do
J8 D(s-to:zoJ

~C { (faD(S-tO:zo) u
4dX) 1/4 + (faD(S-to:zO) lV'ul

2 dX) 1/2}

(1 4 )1/2u dx
oDes-to :zo)

( )

1/2
<CEo u4 dx
- faD(S-to:zO)

Hence

with C = C(Eo). By Lemma 3.2 the latter can be controlled as follows.
Let k, KEN be determined such that

Note that by Lemma 3.3

1 + C > tk+l > 2K -(k+l)
- tK -

whence
K - k ::; 1 + log2(1 +C).

We have the estimate

I
to

1 (1 )1/31= - u 4 dx dt
(l+C)to It I D(t)

K 1ti+1 1 (1 )1/3<L - u4 dx dt.
- ;=k to It I D(t)
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By Holder's inequality,

and by Lemma 3.3

Finally, use Lemma 3.2 to see that

I::; (K - k + 1)0(1) :::; (1 + log(l + C))o(l)

where 0(1)-+ 0 if (1 + C)to ?tl and 1-+ 00. / // /

Combing Lemma 4.1 and Lemma 4.2 it follows that for any € > 0,
if we choose tk ::; C(€)to < tk+b we can estim~te

0(1)? f Ado
lMtl(zo)

? ~.. l lup l2 do - €Eo21M :,k(zo)

+ f Aodo-o(l)(l+log(l+C(€»), (4.7)
lMt/(zo)

where o(1) -+ 0 as 1 -+.00. To estimate Ao on M tk (zo) npw introduce

the new angle Co, where Ixol = TO, Xo = ~xo.. '. Xo . ii = cos Co. Again let
TO

y = x - xo and Iyl = eT = It - tol. With this notation

TX • ii = x • ii = y . ii + Xo . ii
= eT + TO cos co,

lal = Ix - (: • ii)ii I= IXo - (:0' ii)ii I
= TO Isin Co I.

T



(4.8)

(4.9)
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Hence

(
q TO ) 2Ao = 1- t - Tcost5o Iupl

(
q TO ) (1 2 1 4) TO Y'2 .+ 1 + t + T cost5o 2"lnul + 41uI + T 2Ism t5 lupua.

Estimating Inul ~ Iual as before, we have

Ao ~ (2 - to ~ TO ) IUp l2 - ;~ (Y'2V1 + cos t50 up - VI - cos t50 uaf
to ( TO ) 2 to ( TO ) 4+ -2 1 + - Iual + - 1 + - cos t50 lul·
t to 4t to

Note that all the latter terms are nonnegative for z E M(zo), Zo E K.
Since TO :::; Itol in (4.9), for t :::; 2to we have Ao ~ lu pl2 • Moreover,
given, 0 < € < 1,zo E K, let tm :::; 2to < tm +1 and set

r = r(€: zo) = {z E Mtm(zo): /bol $ €1/4}

~ = ~(€: zo) = Mtm(zo)\r.

Note that by (4.8) on r we have an estimate

Ao ~ lup l
2

- Y'2€1/4Iu pua l

~ lup l2 - Y'2€1/4dzo (u)

while, by (4.9), on ~ we have

to TO 4
Ao ~ 4t (1 + to cos t5o)lul

1 €1/2
~ 32(1- (1 - 2"" + €))luI 4

€1/2
~ 32 lul4

- €dzo(u).

Combining (4.7) and Lemma 4.1, we thus obtain

f lu p l
2 do:::; f Aodo + Y'2€1/4Eo (4.10)

lr lMtle(zo)

:::; (e + Y'2€1/4)Eo+ 0(1) (1 + 10g(1 + G(€))) ,
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(4.11)

f IUpf do ~ { .Aodo + ( lu p l2 do
JM:t (Zo) JM:;; (zo) < JM:;; (zo)

~ 3eEo + 0(1)10g(1 + G(e», (4.12)

where 0(1) ~ 0 as 1~ 00, we may assume that tl ~ tk ~ tm .

Proof of Theorem 0.1. Given € > 0, we split the integral in (1.9)
and use Holder's inequality as follows

By Lemma 2.1 and (4.10)

By Lemma 2.1 and Lemma 3.2

r lul3 do
18 D(tm :zo)

{( )
1/2 ( )1/2 ( )3/4}

<S:C r lul4 dx r IVul2 dx + r lul4 dx
1D(tm ) 1D(tm ) 1D(tm)

{( )
1/2 ( )3/2} ( )1/2

<S:C r IVul2 dx + r lul4 dx r lul4 dx
1D(tm) 1D(tm ) 1D(tTn )

<S:C(Eo)o(l),



The globally regular solutions of semilinear wave equations 277

where 0(1) --* 0 as m ~ 1 tend to infinity. Similarly, by Lemma 2.1,
Lemma 3.2 and (4.12)

Finally, by (4.11),

r _1e-u..:..12_ do
J""lz- zoI 2

(
114/3 )3/4( )1/4

S i Iz ~ z018/3 do i lul
4

do

=64£1/2 ( r luI4/38/3 dO)3/4 Eo + 0(1)£1/2 (1 + 10g(1 + C(£))).
J""lz-zol

Hence, if we first choose E > 0 sufficiently small and then choose 1E 1'1
sufficiently large, then the integral

can be made as small as we please. IIIIII
REMARK. While preparing this paper, we were informed that M.G.

Grillakis has obtained the similar result. Our proof is independent
from his proof and is based on a different view point.
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