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THE GLOBALLY REGULAR SOLUTIONS
OF SEMILINEAR WAVE EQUATIONS
WITH A CRITICAL NONLINEARITY

Jonagsik KiM! AND CHOON-HO LEE?

0. Introduction

In this paper we study the existence of a globally regular solution
of the semilinear wave equation with a critical nonlinearity

uy — Au+u =0, (0.1)

where u(z,t) : R* x R — R is a function of four space variables and
time. In order to solve (0.1) one has to prescribe initial data at a fixed
time t = 0, i.e.

u(z,0) = uo(x), us(z,0) = uy (). (0.2)

The equation (0.1) is a special case of a more general set of model

equations
U — Au + Iulp—]u = 0, (03)

where u(z,t): R® x R — R is a function.
In case n = 3 and p < 5, Jérgens|3] proved in 1961 that the nonlinear
wave equation (0.3) with initial data

u(z,0) = uo(z) € C3(R?), uy(z,0) = uy(z) € C1HR®) (0.4)

has a globally unique C? solution. In case n = 3 and p = 5(critical
power), Rauch[4] in 1981 first proved the existence of a global C? so-
lution provided the initial energy is small enough. In 1988 Struwe
[5][6] proved the existence of a radially symmetric global C? solution
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provided the initial data is radially symmetric. Finally, Grillakis[2] in
1990 was able to remove symmetric assumption in Struwe’s result. In
case n < 13, the equation (0.3) with suitable initial data has a global
C? solution provided p < Zt2 (See [1]).
In this paper we shall prove

 THEOREM 0.1. Let ug € C*(R*),u; € C3(R*) be arbitrary initial
data. If u € C?(R* x [0, T)), for some T > 0, is a solution of (0.1) and
(0.2), then there exists a solution u € C%(R* x [0,00)) to the Cauchy
problem (0.1) and (0.2). ,

The proof is divided into several parts. In Section 1, we shall es-
tablish an integral representation of the solution of a semilinear wave
equation. In Section 2, using the Hardy type inequality we prove the
existence of a global C? solution with small initial data. In Section
3, we apply the identities to derive the several estimates of solutions.
In Section 4, we shall prove the existence of a global C? solution with
arbitrary initial data. .

We shall use the following notations: Let z = (z,t) denote a point
in the space -time R* x R. Given zo = (20, to), let

K(zo)={2=(a,t): |z —zo| <tg—1}
be the forward(backward) light cone with vertex at zo,

M(zp) ={z=(z,t): |z — 20| =10 — £}
its mantle, and ‘
D(t,20) = {2 = (z,t) € K(20)} (% fixed)
its time-like sections. If zg = (0,0), zo will be omitted. For any space-
time region Q@ C R* x Rand T < S, we let

| QF={z=(s,)€Q: T<t< S5}
the truncated region. Hence, for instance, we have

OK; = D(s)U D(t) U M;.
I s = 0o or t = —00, it will be omitted. For zo € R*, let
Bp(zo) ={z € R': |z — 20| <R}
with boundary
Sr(zo) = {z € R*: |z — zo| = R}.



The globally regular solutions of semilinear wave equations 257

1. Integral Representation

In this section we shall give an integral representation of a solution
of the semilinear wave equation

Uy — Au+ud =0 inR*xR (1.1)
with initial data
u(z,0) = ug(z), uez,0) = ui(z). (1.2)

Assume that u is a solution belonging to C?(R* x [0,T)) of (1.1)
and (1.2). Let z¢ and z be points in R*. Let y = z — z¢ where z¢ is a
fixed point and z is a variable. Define the functions [u] as

] = u(z, t — ly]).
Then
Vi = (Va] - [ud,
Alu] = [Au] — 2Vuy] -+ [ue] - ,—z—l[utl,

V[ue] = [Vug] - [ued] - 9,
where § = T%T is the unit vector of y. Eliminating [Vu,] from the above,
we have
3

il = [Au] — [ue] = [w7]. (1.3)

Alu] + 29 - Viu,] +

Multiply (1.3) by EIT’ to get the identity

1 y 2 1 1,

V= [Vu] + = [ue] + —zyu] § + —zlud = —[v°]. 14

{IyP[ P pled + e i} e = et 09

Take z9 = (g,t9) such that |zg| < ¢¢ and £, < T and integrate (1.4)

inside the domain A bounded by the surfaces S. = {|y| = €},5 =
{lyl = to}. Then
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The divergence theorem gives

A i{g.vu(z,0)+ut($’0)+ ly Iu(z 0)}

yl:to Iylz
- / "% {37 - Vu(z,to — €) + us(z,t0 — €) + u(a: to — e)}do
lyl=e Iyl l l

=/e<|y|<to{ ly l3ut($ vto — yl) + T‘liu3($ yto — ly[)} dy.

By letting € — 0 we have
/ 5 {Vu(m 0) - § + ue(2,0) + — u(:c 0)} do — 4w4u(zg,t0)
jyl=to lyl | l

- /Iyl<to {-Wm * WUS} & -

Thus we have

L
d
szyl mHZ{V“" grut g “°} °

1 / 1
+ — —uy(z,to — ly]) dy
2wy |?!|<tol o

1 / 1
—u”(z,to — |y|) dy
T 2w, tyl<to 1Y lyl? @t 1yl

—UL(mo,,to) + un(zo, o),

u(.’vo,to) =

where the linear part of u(zo, ) is g1ven By

1 2
= d
et =5, /y| —ty lyIZ{Vu" R i o}do
2wy lyl<to I:‘/ls

and the nonlinear part of u{zo,%o) is given by
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1 u?(z, 0 — |yl)
to) = ——— —_—— dy. 1.8
UN(tTOa 0) 2(4)4 [yl(to |y|2 Y ( )

Let 2o = (20,%0) and z = (z,t) for z € M§*(20) = {(z,t): |z —z0| =
to—1t, 0 <t <tp}. Then z — zg = (y, ly|) and

1 ud(z)

un(zo,to) = —*——/ ————do (1.9)
) \/—2_‘.‘)4 M;O(Zo) |Z _ ZO|2

Thus we have proved the

THEOREM 1.1. Let u € C*(R* x [0,T)) be a solution of (1.1) and
(1.2). Then for every zg € Kl = {(z,t)||z]| < T -t,0 <t < T}, u
satisfies the integral equation

u(zo) = ur(z0) + un(20), (1.10)

where up(zp) and un(zq) are given by (1.7) and (1.9).

2. Globally Regular Solutions for the Small Initial Data

In this section we shall prove the existence of globally regular so-
lutions of semilinear wave equations with small initial data. Given a
function u on a cone K(zp) we denote its energy by

e(w) = 5(lul? + Vuf?) + u*

and by
E(u:D(t:2)) = / e(u)dz

D(t:z9)

its energy on the space-like section D(t : zp). Let z = y + xq. We
denote by

1. 1
d.(u) = Elyut - Vul|® + ZU4
the energy density of u tangent to M(zp). The following Hardy’s in-

equalities are useful to prove the regular solutions of semilinear wave
equations.
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LEMMA 2.1. Supposeu € L*(Bpg) possesses a weak radial derivative
ur = £ - Vu € L*(Bg)., Then with an constant Cy independent on p
and R for all 0 < p < R the following holds:

3 / lu(2)|? / 1 2
- ——dz < url” der + — ul” do. 2.1
4 /Ba\B, lz|? Bz\B, furl” 2R I | @1)
2 ‘ 1/2
/ |u(:c2| dz < Cy / lur|? dz + (f ut dx) (2.2)
Bgr ] Br Br
‘ 1/2 1/2 3/4
/ u?’doSCo{(/ u4dm) (/ ufda:) +(/ u4dx) }
Sr Bn \JBgr Bpr

(2.3)
Proof. The equality ‘
u
(Vru)r = Vru, +‘2—‘/—7, r=|z|
implies ‘
1 1 12 u? 1
2 == — —ul > — — —(ru?),. 2.4
U |\/F(‘/;’f)' | 2‘r"l 2 g7 g (24)

Integrating (2.4) over Bg\B,, we have

2 2
1/ —de</ uda:+1/ {v-(%z)—“—z}dx.
4 JBa\B, T Ba\B,  2JBag, r r

Therefore, the dlvergence theorem ylelds (2 1) Note that

3 _ ‘ u® u? r
(- / (+€) d&) 32 /S 1 (r€) dé +3r° /S (rE)ur(rt) d(sz .
Integrating (2 5) from 0 to R, we have

3
/u3d0=3/ u—dm+3/ ulu, dz
Sr Br T Bp )
1/2 2 1/2 1/2
<3 / ut dz / -’liz—dz + / u2 dz .
Bg Br T Bp
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2/3
/uzdosR(4w4)1/3 (/ u3do) ,
SR SR

Since

we have

u? 1/2 1/2)2/3
(/ —dz) +</ uf.d:c)
Br T Bp
5 1/3 1/2
S/ ufdz-{—(s w4) / u? dz
Bp 24 Br
1/3 2
+(£‘i)’ {/ :‘—2-dm+/ uidz}.
6 Br r Bg

This implies (2.2). Finally, using (2.2), we have

/suado

R

o) ({134 (5)")
SC{(/BH“”’“’)W(/193“3"'”)1/2““(/BR““’)M}' /111

Note that if u = u(z,t) is a solution of (1.1), then u(z,—t)is also
a solution of (1.1). Since the semilinear wave equation is conformally
invariant, the solution is translation invariant in ¢.

Let z = (z,%) be given and suppose u is a C?-solution of (1.1) on
the deleted backward light cone K{(Z) = Ko(2)\{z}. In order to prove
that u can be extended to a global solution of (1.1) and (1.2), it suffices
to show that for any z as above

m = limsup -z |u(20)] < oo.
20€K(2),207#%

We may assume that m = supg, (z)|u/-
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LEMMA 2.2. Suppose u € C%(K}(Z)) solve (1.1) and (1.2). Then
for any 0 <t < s <t there holds

E(u:D(s,%))+ % /M’(-) dz(u)do=E(u:D(t:2)) < Ep

Proof. Integrating the identity
e(u): — div(u:Vu) = e(u), — div {u) =
over a cone K} of the positive light cone and using the identity

e(u) - ,—jj—, - Blu) = dyy(u),

we obtain the result. /11]

By Lemma 2.2, for any fixed Z the energy E(u : D(s, %)) is a mono-
tone decreasing funct1on of s € [0,%) and hence converges to a limit as
s /' t. It follows that : z

/ dz(u)do — 0 as s,t /'t (2.6)
M (2)

In Section 1, we had a decomposition of the solution of (1.1) and (1.2)
as
u=urp +up,

where y = z — z¢, and ur and upy are defined as in (1.7) and (1.9)
respectively. Since we are interested in points zg such that |u(zo)| —
m as zop — Z, we need only consider points z satisfying |u(z¢)| =
MAZT ko (z0) || = mo. Thus, and splitting integration over M (zo) and
Mr(zo) for suitable T', from Holder’s inequality we obtain

mo =|u(zO)l

(2) ()
<C + / do + - / ‘ —-—do o

‘ \/§w4 Mir(en) 12— 70 \/§w4 ME (o) 12 = 20l (g 7y
By Lemma 2.2 the last term is bounded by Clto — T|’1E(,Z . Thus

to establish our main result, it suffices to show that for any z = (7, 1)
there exists T < t such that

limsup zy—: / u*(2) 2alo < V2uwy. (2.8)
20€K(2) J My (z) |z = zo|

This observation and Hardy’s inequality gives
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THEOREM 2.3. If u € C?([0,T) x R*) is a solution of (1.1) and
(1.2),then there exists a constant ¢, > 0 such that for any uo €
C*(R*),u; € C3(R*) with

1 1
E, = /R (5([u112 + [Vuol?) + Z|uo|4)dgc < ¢o,

(1.1) and (1.2) admit a global C? solution.

Proof. Let v(y) = u(zo + y,to — |y|). Then by Lemma 2.1 we have

2 2
[ g, bl (29)
Mr(z) 12 — 20| V2 Bi,-1(0) |yl

1/2
<C |Vo|?dy + C (/ Jul* dy>
Be,1(0) Biy-1(0)

1/2
<C dzO(u)d0+ C (/ dZO(u)do)
Mr (20} Mr(z0)

< C(Eo + E3/%).

Letting T=0, the theorem holds from (2.7). /1//
Since t = 0 no longer plays a distinguished role in the following, we

may shift coordinates so that z = (0,0) and thus in the sequel we may
assume that u is a C? solution of (1.1) on Ky, \{(0,0)} for some ¢, < 0.

3. Some Estimates for the Large Initial Data

In this section, we introduce the multiplier tu; +z-Vu+ %u to drive
the following identity

0:Qq4 — divP; + Ry = 0, (31)
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where

 Qa =te(v) +z - {u) + guut

1 1
=Z(t —r)(ue — ur)2 + Z(t +7)(ue + ur)2
1 . 1 3
+ EtIVu —uq g2+ —4—tu4 + Ut
3
:QO + Euuta
P =tp(u) + zl(u) + (z - Vu)Vu + guVu,
1
Rd =Zu4

t {%(e(u) + 25 + %uut + 4-%u2) (3.2)
—div(p{u) + -z-l(u) + -1—(2 - Vu)Vu + %uVu)}

+e(u)+?$-ﬁ(u)+§-§u + Ry =0.

LEMMA 3.1. There exists a sequénce of numbers t; /* 0 such that

L wusdz < o(1), | ‘ (3.3)
[t Joy .. ‘ L

where o(1) — 0 as | — oo.
Proof. Consider uj(z,t) = 2~(27'z,27%), € N, satisfying (1.1)
with
E(uy; D(t)) = E(w; D27')) < Eq.
Note that

do(’dl)dz -0 (34)
M‘l
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as | — oo. Now, if
/ uldz -0 (I — ), (3.5)
D(t1)

letting t; = 2~'¢; we have an estimate

. iz 1/2
— ugudr < / lus|? dz ————i-/ u’dz
itil J ey D(t) [ti1? S

1/2
< 2E(u; D(#;))'/? ( ! / u? dz)
iti12 J e (3.6)

which converges to 0 as | — oo. Otherwise, there exist a positive
constant C; and a sequence A of numbers [ — oo such that

lim uldr > C,. (3.7)
e /o)

For any s € [t;,0), by Holder’s inequality

1/2
/ u?dz < (w4|5|4)1/2 (/ uf dm)
D(s) D(s)

< CE)?s?. (3.8)
Choose s = 87 < 0 such that the latter is < C). Then by (3.4) we have

2/ (up)rurdz :/ (|u1|2)t dz
K1 K1

t ty

= / lu|? dz —/ |ug|? dz + —/ |up)? do
D(sq) D(ty)

<o(1)—0 (I—oo, [EA).

We conclude that for suitable numbers s; € [t1,31],81 = 2~ 1 € A,
we have

2

— uu dr = —
It} J ey

s1] D(s;)
<o(l)=»0 (-0, l€eA)

(up)sur dz

Relabelling, we obtain a sequence {t;}1en, as desired. /1]/
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LEMMA 3.2. For any |l € N there holds

o )42} de < o) -
4t K Jul da:dt-l-/D(t'){e(u)-i-t 7 )}d <o(1) =0 (‘3.9)

as | — oo.

Proof. For s € [t1,0), we integrate (3.1) over K}, to obtain

0 =/ {(Qa)+ — divFs + Ry }dzdt
k2, :
‘ :/ Qadz —- Qddz+‘ 1 / (Qd—-’c’Pd)dO-l'-/ Rydzdt
D(s) D(%) V2 Img Kz,
: v, 1 3 .,
=/ {S(e(u) + -z ) + Suiu}ds
D(3) s 2
1 3
t : “uu;—z-Pipd
+ﬁA:I{e(u)+Z 5(‘!1)-{-‘21‘11“ z d} 3

—|t,|/ {e(u)+ix-ﬁu)}dz+/ Rdda:dt—é/ wuy dz.
D(1;) [t:] K, 2 Jpap

Now, e(u) + 1z - p(u) is dominated by the energy density e(u). There-
fore, using Holder inequality as in (3.6) and (3.8), the first term is of
order |s| and hence vanishes as s — 0. Moreover, on M;, we have -

lte(u) + - plu) + Fule — g~ Pdl
—Itlle(u) + 22 Hu) + —uut — & fu) = U(u)
—|& - Vul? - —E-a: Vul
[ Vul? - 12 Vul? + _u - 2—t§u(tut +o-Vu)
2
<Jel (2do(u) + 1)

Hence by (2.1) and Lemma 2.1 the second term is of order o(1)]t],
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where o(1) — 0 as [ — oo. Thus, by Lemma 3.1 we have

1
Rgdzdt + / (e(u) +—z. [)‘(u)) dz
] K} D(1:) I ll
3
<— uuy dz + of1
2t Jpey (1
<o(1) » 0 (I — o)
which is the desired conclusion. /1]

LEMMA 3.3. There exists a sequence of numbers t; / 0 such that
the conclusion of Lemma 3.1 holds for (t;) which in addition we have

4

41

2< <4 (3.11)

|

forallle N.

Proof. First observe that by Holder’s inequality and by Lemma 3.2
we have for any m e N

2
/ EIsz
1 1/2
< / Lz / lu[* dz
D(tm) [t D(tmm)
( : |4)1/2 ‘d v
= | ~—wylt z
[tm]* ltm ./D(:,,.)l“l

SCwilz /1'7(1 ){e(u) + %(z . VU)“:} de -0 (m-— ),

1/2

where {tn,} is determined in Lemma 3.1. From the identity (3.2) we
have

%{e(u) + = plu)+ -—uut + :5‘5“2} (3.12)

- div{[f(u) + —l(u) + ——(:c - Vu)Vu + %uVu}

{e(u)+ -z - ﬁ‘(u)+2—t2-u +Ra}=0.
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Integrate (3.12) over the cone K{™ for m > [ to obtain
/ {e(u) + = plu) + ———uut + —§—u } d:é (3.13)
D(tl 4t2

+/ t{e(u)+—— Hu )++2‘Z'2u + Ry} dodt

=/D(t ){e(uH— ﬂ")+4t2 }do

3 2
+/M‘ {e(u)+— ﬁ(u)+—uut+4t2

T
z 3
i (ﬁ(u) + ?l(u) + (%— - Vu)Vu + -éZuVu)} do.
By the preceding remark the first term on the right (3.13) vanishes

as we let m — oo, while by (3.1) the integral over M;™ becomes
a.rb1trar11y small asm > | — 0. Fmally, by Lemma, 3.1, we have

/ luut dz = /uut dz > o(1) =0 (I — o0).
D(t1) | I

All remaining term being non-negative, we thus obtain the estimates

0 1 u2
/Kt, It]3 —=drdt = / (ftl /D(t) |t|2d ) dt<o(l) >0 as [— oo.

Hence for any f € [£,0) there also holds

1w\ o w
0(1) > 1 / / L) dt> wmf [ 2
t D(t) ‘t| 2t<t<t D(®) ltl

where o(1) — 0 if I — co. Now to construct the sequence {#;}, choose
t; = t; and proceed by 1nduct10n Suppose #, I = 1,..., L, have been
defined already. Let ¢, L1, €[, %) be chosen such that

2 u2
/ —dz <2 inf T3 4.
D(iz41) ltl << Jpe) [t)2
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Clearly, this procedure yields a sequence {#;} such that 2 < 71—37 <4

for all [ and we have

u2
/ Tz dz =0 (I — oo).
by 1t

Then by (3.4) we have

1

— uupdzr — 0 (I — o00)
[t J iy

concluding the proof. /11]

In the sequel to simplify notation we shall assume that ¢; = #; for
all {, initially.

4. Globally Regular Solutions for the General Data

In this section we shall prove the Theorem 0.1. Fix z¢9 = (zg,%0) €
K\{0} arbitrary. Let y = z — 79,5 = ]-g—l,i = ,%[ Divide (3.2) by ¢
and then for s > ¢, integrate over K; \A(zo) to obtain the relation

1 3 3
0= -z - P — —u? d
/D(s){e(u)+ tz P(U)+2tuut+4t2u } z

1 3 3
- e{u) + ~z - plu) + —uu, + ———-u2}dz
/D(tl)\D(fﬂlo){ t 2t 42

1 1 . 3 3 4 .
+\/—i/M:l{e(u)-{-?z-p(u)-'l—auut%-zﬁu —-z~P}do

1 1 3 3, .
- lr. el 2wt y.plyg
V2 M:;(zo){e(U)+ § 7 P et g =Y po
1 1 3
+ / —de(u)+ —z - plu) + —u® + Ry } dedt
K \K(z0) t{ t 2 }

=I+1T+1IT+1IV 4V,

where P = p(u) + £l(u) + (32 - Vu)Vu + %uVu = 1P,
By Holder's inequality, (3.6), (3.8) and Lemma 3.2 the first term
I — 0 if we choose s = t; with £k — oo. Similarly, IT — 0 if [ — oc.
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By Lemma 3.2 also III] — 0 as I — oo. Finally V' < 0. Thus we obtain
the estimate for any 2o € K'\{0}.

/};4 . {e(U)+ —-T- 13'(u)+—-—uut+4z2u‘—-y P}do<o(1)—>0 (4.1)

as [ — oo, with error term o(1) independent of zp.
In order to bound (2.8) we shall use (4.1). Let r = |z|; then we may
rewrite

1 3 3 .
A :=e(u)+ -z - plu) + g tut + —u?—§-P

t 442
P Ry 1
=5(1= FE-D)luelt + (14 52 9) (51Vul + 71ult)

3 ) r R ) . 3,
+5’5(“:—y'VU)u-l-I(ut—y-Vu)szu—uty-Vu+4t2u

Introducing us = §-Vu,a = £—4(§ %), |ajug = a-Vu,Qu = Vu—gu,,
we have

4 -2(1——x ) (e —ug) + (147 y)( |Quf? + Iulf‘)

—(ut ~-Ug)u + —lalua(ut ud) + — 4t2
Now let £ - § = cosé, |a| =siné and Iet up T(ut — Ug). Then we
have

1 1
A=(1- gcosé)lu,,[2 +(1+ -:;:cosé)(—z-lflul2 + Z]ul4)

T . 3 3
+ ;\/2[81115'14,,1{01 + r\_/'-z—t"uup + Eu

3 3 , ‘

\/guuﬁ\mu« o (42)

Note that if we estimate ju,| < |Qu|, thén we have
Ao >(1— —-(:osé)[u,,l2 +(1+ —cosﬁ)( ~|ual? + —|u|4)
+ ;\/_I sin 6luptiq
=(1+ 1) (1ol + 3lual?) - 35 (VEVI Fconbu, — VI cosbu)’

+ %(1 + %cos &lul* >0 (4.3)

=Ag +
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on Mtt(z())'
Now for any e > 0 there exists a constant C = C(€) such that for
any zp € K and any z € M€%(z)) we may estimate
. 1
-—ft:\/il siné| < e, wg-cos& > 5

In fact, for z = (z,t) € M%(z,) we have

[t —to] 3]
— < - = < < - .
“"BI ly” = ’y .’D' lmOI = Itol = C-1 C -1
Hence
. L. |zo} 2
Z-g=cosbé>21-jg—-%¢21-2—21- ——
1§~ 2l |y Cc-1
while
r lyl |t —to] || 1 1
1> —-= —21-=)1=-5—).
Tt ft—to| |t Iyl"( C)( C—)

This yields the following estimate.

LEMMA 4.1. For any ¢ > 0, any 2o € K, letting C = C(¢) be
determined as above for t; < Cty we have

/ Ado> X / fu,|? do — eEq
M;* (20) 2 JM2 (20

Proof. we note first that

'\/iu,,u

t

3
' < u,l? + 4_t2'“2'

Hence by (4.2) and our choice of C(e), for z € Mf“(zo) we have

1
A> —]up|2 — €lupuql

1
2 5'“#’2 - ee(u)a
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which proves the lemma. /111

~ Note that u, may be interpreted as a fangential derivative along
M(z). In fact, let ® be the map

@y — (zo+y,to—lyl) (44)

and let

o(y) = u(®(y)) (4.5)

wherever the latter is deﬁned Then the radial derivative v, of v is

given by
V=0 -Vv=u, —us = —\/§u,,. (4.6)

LEMMA 4.2. For any 29 € K and any C > 0 there holds
—£—do > (1 +log(1 + C))o(1),
M1 4c)4(20) ¢

where o(1) — 0 if (1 + C)te > t; and I — oo.
Proof. Introducing y as new variable, via (4.4),(4.5) we have

/ U 4o = / g
M1 40)eq(%0) t Beitgl lyl —to
: Cltol
= / ° _1311_82 ds | do.
51 1] s—1g
Integrating by parts, this gives -
Cltol §2 8 .v2
S —{=)ds } do -
/ (_/0 s—tgas(Z) s) ?
Cltol] 2 2.2 ;
_// °{ vls L _Ys .}dsda+-e———-1—— v? do
5 s—1g 2(3 - to)2 21 + C')ltoi 5¢]tel

ooy W

Bepegy 1911yl - to) ¥
1 u?

= —-— — ——— dO(Z t)
V2 M1 402, (20) 8(5 = t0) ’

Citol
- f t (1 / u? do(z) | ds
0 s—1tp \ s 8D(s—tg:z0)
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Now by Lemma 2.1

3/2
l/ u? do
8 JOD(s—10:20)

<C u’ do
8D(s—1tg:2¢0)

1/4 172
SC'{(/;D(‘g'20'~20)u4 d't) * (AD(s—to:zo) ’VU|2 dl‘) }
(/3D(s——t0:zo) U4 d:c) v

1/2
<CEy / u? dz
8D(s—tg:zg)

Hence

to . 1/3
/ Yol g0 > —c/ il / u4dx> dt
M(1+C):0(Zo) ¢ (1+C)tp ,t' 8D(s—1p:20)

with C' = C(E,). By Lemma 3.2 the latter can be controlled as follows.
Let k, K € N be determined such that

tr S(14+Chto < trg1 Stx <to <trga.

Note that by Lemma 3.3

¢ .
1+c72-fﬂ-zzh-“+”
p

whence

K~k <1+log,(1+C).

We have the estimate

1/3
to
I:/ l / utdr dt
(a+S) 1t \Ub(e)
K rtig 1/3
< Z/ 1 / utdz dt.
=k Yt ltl D(t)
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By Holder’s inequality,
|t ‘ | 2/3 1/3
I<cC —_ih / ut dz
,_Zk It1+ll ( K::..'*'l
and by Lemma 3.3
1/3
I<CZ( / u4dz) .
i=k t
Finally, use Lemma 3.2 to see that
I< (K —k+1)o(1) < (1 +log(1+ C))o(1)

-where o(1)— 0if (1 + C)tp > t; and I — oo. 111/

Combing Lemma 4.1 and Lemma 4.2 it follows that for any € > 0,
if we choose tx < C(€)ty < tx+1, we can estimate

o(1) > / Ado
Mtl (ZO‘)

: 2}-/ [u,|® do — €Eo -
2Imr) |
+ / Agdo—o(1)(1+1log(1 + C(e))), (4.7)
Mt, Z0

where o(1) — 0 as I — co. To estimate Ag on M, (z0) now introduce
the new angle ¢, Where |zo] = 1o, &0 = ———a;g,a:o y = cos &g. Aga.m let
‘ - -

y=z—z9and |yl=c=|t— tol With thlS notatlon

Ial= lx_(xg)gl — Iwo_(zo"g)g
r T

= T—OISiHJQI.
r
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Hence
o

_(1_92 _To 2
40 =1 — cos50) lu | (4.8)

+ (1 + % + ”'t_o coséo) (%IQuI2 + %|u]4) + %Q\/ilsinélu,,ua-

Estimating |Qu| > |u,| as before, we have

Ay > (2 - Yo —t—To) |u,,|2 _Io (\/5\/1 + cosdou, — /1 —cos60u,,,)2

2 To 4
+ 5 2 (1 + — ) lual® + " (1 + oos&o) lu]®. (4.9)

Note that all the latter terms are nonnegative for z € M(z9),20 € K.
Since ro < |to] in (4.9), for t < 2t; we have A¢ > |u,|2. Moreover,
given, 0 < € < 1,29 € K, let t,, < 2ty < 41 and set

T =T(e: z) = {2 € My, (20) : [bo] < €74}

A= Ale: z0) = My (20)\I.

Note that by (4.8) on I' we have an estimate
Ao 2 |'“p|2 - \/iellﬂ"‘pual
2 Jupl? — V2¢'/4d,,(u)
while, by (4.9), on A we have
Ag 2 4—(1 +2 coséo)lul4

(l/2

51— (1= S+ Nl
1/2 .
> o ulf - eduy(u).

Combining (4.7) and Lemma 4.1, we thus obtain
/ |upl® do < / Agdo + V24 Eq (4.10)
r Mtk(zo)

< (e+ V26/*)Eq + o(1) (1 + log(1 + C(e))),
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(1/2

— [ |ul*do < / Ao do + eEq
32 Ja M, (20)

< 2eEp + o(1) (1 +log(1 + C(e))) ,
(4.11)

/ fu,|? do < / Ao do +/ lu,|? do
M;™ (20) M:,:"(ZO)\ M;™ (z0)

< 3eEy + o(1)log(1 + C(e)), (4.12)

where o(1) — 0 as | — oo, we may assume that ¢; <t <t

Proof of Theorem 0.1. Given € > 0, we split the integral in (1.9)
and use Holder’s inequality as follows

2
/ [l .
M, |2 — 2l

!
|uaf? / Jul2 / Ju]?
< do+ } do + do.
—AIZ_ZO|2 4 A|2-20|2‘ o Mf‘"‘ lz_,z()lZ
By Lemma 2.1 and (4.10)
Jeef?
d
/r s = 2P
4 2 1 -1 2
<= [ lup|® do+ =[tm — to] [u]* do
3Jr 6 8D(tymizg)

S_-:-(G +V2eH*4) By + o(1) (1 + log(1 + C(€))) + C (/a

2/3
fuj® do)

D(tm:z0)

By Lemma 2.1 and Lemma 32
/ [uf® do
8D(tm:zg)

1/2 1/2 3/4
<c { ( / Juf* da:) ( / Vu? dz) + ( / fuf* dm) }
D(ty) D(tem) D(tm)
1/2 3/2 1/2
<C { (/ |Vu)? dz) + (f fue)® d:c) } (/ e} da:)
D(tm) D(im) D(im)

<C(Eo)o(1),
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where o(1) — 0 as m > [ tend to infinity. Similarly, by Lemma 2.1,
Lemma 3.2 and (4.12)

2
[
M |z — o]

4 1
_<_~/ [u,|® do + <|tm —tol”l/ lu|? do
3 M ™ (20) 6 8D(11:20)

<4eE, + o(1)log(1 + C(€)) + o(1)C(Ep).

Finally, by (4.11),

[ul?
e dO
/z.\.| — z0|?
4/3 1/4
([ ) ([ )
A lz— 20

3/4

=64¢1/2 _ Eo + o(1)e/2 (1 +log(1 + C

=0b4e WO 0+ o(1)e (1+1og(1+ C(e))) .
a

Hence, if we first choose € > 0 sufficiently small and then choose | € N
sufficiently large, then the integral

/ Jul
M do
M., (z0) |2 — 2o}

can be made as small as we please. /1171]

REMARK. While preparing this paper, we were informed that M.G.
Grillakis has obtained the similar result. Our proof is independent
from his proof and is based on a different view point.
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