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UNIQUENESS FOR THE CAUCHY

PROBLEM OF THE HEAT EQUATION

WITHOUT UNIFORM CONDITION ON TIME

SOON-YEONG CHUNG AND DOHAN KIM

1. Introduction

In the theory of heat conduction the temperature of an infinite rod
is not always uniquely determined by its initial temperature. The
following famous example

00

u(x, t) = 2: f<n>(t)x 2n j(2n)!
n=O

(1.1 )

where
t > 0

t:::;O

satisfies the heat equation

for t > 0, but u(x,O+) = 0 for -00 < x < 00.

Also, in [CK] we have constructed a continuous function u on Rn x
[O,T) satisfying lu(x,t)l:::; Cexp(f.jt) as an example of nonuniqueness
for the Cauchy problem of the heat equation.

On the other hand there is a typical uniqueness theorem for the
Cauchy problem of the heat equation as follows :
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THEOREM A([W]). Let u(x, t) be a continuous function on Rn X

[0, T] satisfying that

(Ot - ~)u(x, t) = ° on Rn X (0, T)

and for some C > °and a > °
lu(x, t)1 ~ Cealxl2 on Rn X [0, T]. (1.2)

Then u(x,O) = °on Rn implies that u(x,t) == °on Rn X [O,T].

THEOREM B([F]). Let u(x,t) be a continuous function on Rn X

[0, T] satisfying that

(Ot ...., ~)u(x, t) = ° on Rn X (0, T)

and

fT f lu(x, t)le-alxI2 dx dt (1.3)
Jo JRn

is finite for some a > 0. Then u(x, 0) = 0 on Rn implies that u(x, t) == 0
on Rn X [0, T].

The theorem B is a little stronger than Theorem A. Note that the
growth condition (1.2) or (1.3) is quite unrestricted with respect to the
x variable, but too restricted with respect to the t variable to apply
this theorem in many cases (see [KCK], for example).

In this paper we prove a more generalized uniqueness theorem of
Cauchy problem under the following weaker growth condition

lu(x, t)1 ~CexpkOxl2 + lit), t > 0

for some constants C > 0 and k > 0, instead of (1.2) and (1.3). More
over, the growth condition does not require the continuity of u(x, t) on
t = O.

2. Uniqueness Theorems

We first introduce the following function space to give a more gen
eralized uniqueness theorem for the Cauchy problem than Theorem
B.
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DEFINITION 2.1. We denote by £(k) the set of all infinitely differ
entiable functions cP in Rn such that for any h > 0

1

""1 18acP(x)\ exp klxl 2

'+' £(k),h = sup hla" I
xERn Cl!.

a

(2.1 )

is finite. The topology in £(k), defined by the above seminorms, makes
£( k) a F S-space. In fact, it is the projective limit topology over all
h > O. We denote by £/(k) the strong dual of the space £(k).

LEMMA 2.2. Let P(8) = L:1:1=0 a",8'" be a differential operator
of infinite order with constant coefficients satisfying that there exist
constants L > 0 and G > 0 such that

for all Cl!. Then the operators

P(8) ; £(k) -+ £(k)

and
P(8) ; £/(k) -+ £/(k)

are continuous.

Proof. Let cP belong to £( k) and h > O. Then it follows that

18.8P(8)cP(x)1 exp klxl 2

00

< L laaI18a+.8 cP(x)lexp klxI 2

lal=O

00 GLial
< L ~ IcPl£(k),hh 1a+.8I( Cl! + ~)!

lal=O
00

(2.2)

(2.3)

(2.4)

~ GlcPl£(k),h(2h)I.8IPl L (2hL)lal.
lal=O

Thus, for any H > 0 if we choose h > 0 so small that 2Lh < 1/2 and
2h < H then we obtain

IP(8)cP(x)/£(k),H ~ GlcPl£<k),h' cP E £(k), (2.5)
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which proves that (2.3) is continuous. Also the continuity of (2.4) is
easily obtained from this.

From now on we denote by E(x, t) the n-dimensional heat kernel:

( ) {
(41rt)-n j 2 exp[-lxI2 /4t) ,

E x,t =
o

t>O
t ~ O.

PROPOSITION 2.3. Let g(x) be a continuous function satisfying that
for some constants C > 0 aild k > 0

(2.6)

and G(x, t) = g(x) *E(x, t} where * denotes the convolution with
respect to the x variable. Then G(x, t) is a well defined COO-function
in Rn X (0,1/4k) and satisfies that

(i) (at - ~)G(x, t) = 0, 0 < t < 1/4k

(ii) IG(x, t)1 ~ C exp(2klxI2
), 0 < t < 1/16k (2.7)

(iii) G(x,t) -+ g(x) locally uniformly on Rn as t -+0 +.

Proof Since t - 1/4k < 0, G(x, t) is well defined and satisfies the
heat equation. For convenience we only consider the I-dimensional
case. For 0 < t < 1/16k,
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which proves (ii). Let 6 > 0 and 0 < t < 1/4k. Then it follows
from the property of the heat kernel E(x, t) that for some A > 0 and
0< t < T < 1/4k

f E(y, t)ekV2 dy =_1_ f e(k-l/4t)y2 dy
J'yl?o V41rt Jtvl?o

1 1 2/< e-y 4t dy ~ 0
- V4A1rt Ivl?o/vA

On the other hand, for 0 < t < T

ast~O+.

(2.8)

IG(x, t) - g(x)1 ~ JE(z - x, t)lg(z) - g(x)/ dz

= 1 E(z - x, t)/g(x) - g(z)1 dz
Iz-xl<o

+1 E(z-x,t)lg(x)-g(z)ldz
Iz-xl?o

= 11 + 12 •

Let K be a compact subset of R. Since g(x) is uniformly continuous
on a 6-neighborhood Ko of K it follows that for any c > 0 there exists
a constant 6 > 0 such that Iz - xl < 6 implies Ig(x) - g(z)1 < c for
x, z E Ko. Then we obtain from these facts that 111 1 ~ € for all x E K.
Also it follows from (2.8) that for every x E K

1121 = f E(y,t)lg(y-x)-g(x)ldy
J1vl?0

~ f E(y, t)e2k(x2+y2)ekx2 dy
J'vl?o

~ C(K) f E(y, t)e2kV2 dy ~ 0 as t ~ 0+
J'vl?o

where C(K) is a constant depending on K. This completes the proof.

The following lemma is very useful later. For the details of the proof
we refer to Komatsu [K] :



250 500n-Yeong Chung and Dohan Kiin

LEMMA 2.4. For any L > 0 and £ > 0 there exist a function ,(t) E

Go(R) and a differential operator P(d/dt) of infinite order such that

supp, C [0, e], 1,(t)1 ~ G exp(-L/t), 0 < t < 00;

00

P(d/dt) = Lak(d/dt)k, lakl ~ G1LUk!2, 0 < L 1 < Lj
k=O

P(d/dt),(t) = 8 + w(t) (2.9)

where wE Go(R) with suppw c [e/2,£] and 8 is a Dirac measure.

We are now in. a position to state and prove the main theorem in
this paper.

THEOREM 2.5. Let u(x, t) be a function on Rn X (0, T) satisfying
that

(i) (at - ~)u(x,t) = 0, 0 < t < T,

(ii) For some k > 0, there exists G > 0 such that

lu(x, t)1 ~ G exp k(lxl2+ 1ft), 0 < t < T,

(iii) lim ju(x,t)if>(X)dx = ofor evezy if> E £(2k).
t-+O+

Then u(x, t)is identically zero on R~ x [0, T]. Here Tmay be 00.

Proof. In view of Theorem A or Theorem B in the introduction we
have only to show that u(x, t) is identically zero on Rn X [0, To] for
sufficiently small To > O.

Now choose a function v, w and a differential operator P(dIdt) of
infinite order as in Leinma 2.4. Let

u(x,t) = iTu(x,t+s),(s)ds,

for 0 < t < To. Then taking £ = To, 2To < min(T,1/16k), and L > k
in Lemma 2.4 and using the condition (ii) we have

lu(x,t)1 ~ GTexpklxl2, 0 ~ t ~ To.

Therefore, u(x, t) is a continuous function on 0 :::; t :::; To.
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Moreover, u satisfies

(at - 6.)u(x, t) = ° 0< t :c:; To·

Then it follows that for °< t < To

P( -6.)u(x, t) = u(x, t) + LT u(x, t + s)w(s) ds (2.10)

Now let

v(x,t) = -LT u(x,t+s)w(s)ds

for 0< t < To. Then vex, t) also satisfies the heat equation and satisfies
that

u(x, t) = P( -6.)U(x, t) + vex, t).

Also, for some C' > °and C" > °we obtain

iT 1
Iv(x,t)l:c:; C expk(lxl 2 + -)lw(s)lds

o t+s

i
TO 1

:c:; C' exp k(lxl 2 + --) ds
To/2 t + s

~ C" exp klxl 2
,

(2.11)

which means that v( x, t) is also a continuous function on Rn x [0, To]
with the same growth type as u(x,t). Let g(x) = u(x,O) and hex) =
v(x,O). Then it follows that g(x) and hex) are continuous functions on
Rn satisfying that for some C > 0,

From these facts, we see that 9 and h belong to £'(2k ). For the dif
ferential operator P(d/dt), Lemma 2.2 and (2.9) imply that P( -6.) :
£'(2k) -t £'(2k) is continuous. We define P( -6.)g + hE £'(2k) by

[P(-6.)g+h](<jl) = Jg(x)P(6.)<jl(x)dx+ Jh(x)<jl(x)dx (2.13)
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for every 4> E £(2k). Since P(~) : £(2k) ~ £(2k) is continuous this
is well defined. Then combining the Lebesgue dominated convergence
theorem and the initial condition (ii) we obtain that for every 4> E £(2k)

[PE-~)g + h](4))

= lim [j u(x, t)P(~)4>(x)dx + j vex, t)4>(x) dx]
t->O+

= lim j[P(-~)u(x,t)+v(x,t)]4>(X)dX
t->O+

= lim ju(x,t)4>(X)dX
t->o+

= 0 (2.14)

Now let a(x; t) = g(x) *E(x, t) andb(x, t) = hex) * E(x, t} for 0 <
t < To, where * denotes the convolution with respect to the x variable.
Then by Proposition 2.3 a(x,t) and b(x,t) satisfy (i)'" (iii) of (2.7).
Putting A(x, t) = u(x, t) - a(x, t) and B(x, t) = vex, t) - b(x, t) we
obtain that A(x, t) and B(x, t) satisfy the hypothesis of Theorem A in
Introduction. Therefore,

u(x, t) =g(x) *E(x, t)

and
vex, t) = hex) *E(x, t).

It follows from (2.11) !Wd (2.13) that for 0 < t < To

u(x, t) = P(-~)u(x,t) +v(x, t)

= P(-Ll)(g *E) + h * E

= [PC-~)g +h] *E

= [PE-~)g + h](E(x - y, t))

= 0,

since E(· - y, t) belongs to £(2k) for each y and for each 0 < t < To.
This completes the proof.
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REMARK. (i) In the condition of the above theorem, the continuity
of u(x, t) on Rn X [0, T] is not required. Thus this uniqueness theorem
is a little bit stronger than already known theorems.

(ii) It is easily seen that this theorem generalizes Theorem A.
(iii) The initial condition (iii) of this theorem is, more or less, un

satisfactory. But in view of the example as seen in [eK], it can be
regarded as an optimal one. The space £(2k) can be replaced by £(k')
for some k' > k. Also, it can be weakened as follows:

lim Ju(x, t)e-klxI2 dx = O.
t--+O+

Finally, we give here the uniqueness theorem of temperature func
tion on the semi-infinite rod.

THEOREM 2.6. Let u(x, t) be a function on [0,00) x (0, T) satisfying
that

(i) (at - L\)u(x,t) = 0,0 < x, 0 < t < T,
(ii) For some k > 0, there exists C > 0 such that

lu(x, t)1 ~ C exp k(x 2 + lit), 0 < x, 0 < t < T,

(iii) limt-+o+ Io
oo

u( x, t )4>(x) dx = 0 for every 4> E £(2k).
(iv) u(O,t) = 0,0 < t < T.

Then u(x, t) is identically zero on R x [0, T]. Here T may be 00.

Proof. Define v(x, t) on R

( ) {
u(x,t),

v x t -
, - -u(-x, t),

x 2;:0

x<O

Then the reflection principle of the heat solution (see [W], p.1l5) im
plies that v(x, t) is also a solution of the heat equation and satisfies the
hypothesis (i)f'V(iii) of Theorem 2.5. Therefore vex, t) must be identi
cally zero, which completes the proof.
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