# On the Stability Theory in Dynamical Systems 

## Kı-Shiк Koo

Abstract. In this paper, we show that a continuous function $f$ : $X \rightarrow X$ has regular coordinate then $(X, f)$ has some properties which are similar to results following from a hypothesis of hyperbolicity.

## 1. Introduction

Let $(X, d)$ be a compact metric space and $f: X \rightarrow X$ be a continuous surjective mapping. Denote by $S_{f}(X), S_{\bar{f}}(X)$ the set of all $f$-orbits of $X$ and the set of all backward $f$-orbits of $X$, respectively. Let $\varepsilon>0$. We define the local stable set $W_{\varepsilon}^{s}(x)$ for $x \in X$ by

$$
W_{\varepsilon}^{s}(x)=\left\{z \in X: d\left(f^{n}(x), f^{n}(z)\right) \leq \varepsilon \quad \text { for } \quad n \geq 0\right\}
$$

and the local unstable set $W_{\varepsilon}^{u}\left(\left\{y_{-i}\right\}\right)$ for $\left\{y_{-i}\right\} \in S_{\bar{f}}(X)$ by

$$
\begin{aligned}
W_{\varepsilon}^{u}\left(\left\{y_{-i}\right\}\right)= & \left\{z \in X: \quad \text { there is } \quad\left\{z_{-i}\right\} \in S_{\bar{f}}(X) \quad \text { with } \quad z_{0}=z\right. \\
& \left.d\left(y_{-i}, z_{-i}\right) \leq \varepsilon \text { for } i \geq 0\right\}
\end{aligned}
$$

We say that $f$ has regular coordinate if there exists $\alpha>0$ with the property that for every $0<\varepsilon<\alpha$ there is a $\delta=\delta(\varepsilon)>0$ such that for every $x \in X$ and every $\left\{y_{-i}\right\} \in S_{\bar{f}}(X), d\left(x, y_{0}\right) \leq \delta$ implies that

$$
W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}\left(\left\{y_{-i}\right\}\right)=\text { singleton }
$$

In this paper, assume that $f$ has regular coordinate and we will show that $(X, f)$ has some properties which are similar to results following from a hypothesis of hyperbolicity.

Basic terminologies are followed from [1] and [4].

1980 Mathematics subject classifications: Primary 54H20.

## 2. Basic results

Lemma 2.1. Let $f: X \rightarrow X$ have regular coordinate and $\left\{x_{i}\right\},\left\{y_{i}\right\}$ $\in S_{f}(X)$. Then there exists $c>0$ such that if $d\left(x_{i}, y_{i}\right) \leq c$ for every $i \in Z$ then $x_{0}=y_{0}$.

Proof. Let $c<\min \{\alpha, \delta(\alpha)\}$ and $d\left(x_{i}, y_{i}\right) \leq c$ for all $i \in Z$. Then $d\left(x_{0}, y_{0}\right)<c \leq \delta$ and $x_{0}, y_{0} \in W_{\alpha}^{s}(x) \cap W_{\alpha}^{u}\left(\left\{y_{-i}\right\}\right)$. So we have $x_{0}=y_{0}$.

So we call $f$ has regular coordinate with expansive constant $c$. Hereafter, assume $f$ has regular coordinate with expansive constant $c$.

Lemma 2.2 [1]. For each $r \geq 0$, there exists an integer $N_{r}>0$ such that
(i) $f^{n}\left(W_{c}^{s}(x)\right) \subset W_{r}^{s}\left(f^{n}(x)\right)$ for all $x \in X$ and $n \geq N_{r}$
(ii) If $d\left(x_{-i}, y_{-i}\right) \leq c\left(\left\{x_{-i}\right\},\left\{y_{-i}\right\} \in S_{\bar{f}}(X)\right)$, for every $i \geq 0$, then $d\left(x_{-n}, y_{-n}\right) \leq r$ for all $n \geq N_{r}$.

For $x \in X$ and $\left\{x_{-i}\right\} \in S_{\bar{f}}(X)$ the stable and unstable sets are defined by

$$
W^{s}(X, d)=\left\{y \in X: \lim _{n \rightarrow \infty}\left(d\left(f^{n}(x), f^{n}(y)\right)=0\right\}\right.
$$

$W^{u}\left(\left\{x_{-i}\right\}\right)=\left\{y\right.$ : there is $\left\{y_{-i}\right\} \in S_{\bar{f}}(X)$ with $y_{0}=y$ such that

$$
\left.\lim _{n \rightarrow \infty}\left(x_{-n}, y_{-n}\right)=0\right\} .
$$

Proposition 2.3. Let $\varepsilon>0$ be the number less than $c$, then

> (i) $W^{s}(x)=\bigcup_{n \geq 0}\left\{y_{-n}: y_{0} \in W_{\varepsilon}^{s}\left(f^{n}(x)\right) \quad\right.$ and $\quad y_{-n} \in\left\{y_{-i}\right\}$  $\left.\in S_{\bar{f}}\left(y_{0}\right)\right\}$ (ii) $W^{u}\left(\left\{x_{-i}\right\}\right)=\bigcup_{n \geq 0}\left\{y_{n}: y_{n}=f^{n}\left(y_{0}\right), \quad y_{0} \in W_{\varepsilon}^{u}\left(\left\{x_{-n-i}\right\}\right)\right.$.

Proof. (i) Let $y=y_{-k}$ for some $\left\{y_{-i}\right\} \in S_{\bar{f}}\left(y_{0}\right)$ with $f^{k}\left(y_{-k}\right)=$ $y_{0} \in W_{\varepsilon}^{s}\left(f^{k}(x)\right)$.

For $r>0$, there exists $N=N_{r}$ such that for all $n \geq N$

$$
d\left(f^{k+n}(x), f^{k}\left(y_{0}\right)\right) \leq r
$$

Hence we have $d\left(f^{n}(x), f^{n}\left(y_{-k}\right)\right) \leq r$ for all $n \geq N+k$. Thus $d\left(f^{n}(x)\right.$ , $\left.f^{n}\left(y_{-k}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ and so $y=y_{-k} \in W^{s}(x)$.

Conversely, let $z \in W^{s}(x)$. For $\varepsilon>0$, there exists an integer $N$ such that for all $n \geq N, d\left(f^{n}(x), f^{n}(z)\right) \leq \varepsilon$ and so $f^{N}(z) \in$ $W_{\varepsilon}^{s}\left(f^{N}(x)\right)$. Let $f^{N}(z)=y_{0}$. We can choose $\left\{y_{-i}\right\} \in S_{\bar{f}}\left(y_{0}\right)$ with $y_{-N}=z$. So $f^{N}(z)=y_{0} \in W_{\varepsilon}^{s}\left(f^{N}(x)\right)$ and therefore

$$
z=y_{-N} \in \bigcup_{n \geq 0}\left\{y_{-n}:\left\{y_{-i}\right\} \in S_{\bar{f}}(X) \quad \text { and } \quad y_{0} \in W_{\varepsilon}^{s}\left(f^{n}(x)\right)\right\} .
$$

(ii) Let $z \in \bigcup_{n \geq 0}\left\{y_{n}: y_{0} \in W_{\varepsilon}^{u}\left(\left\{x_{-n-i}\right\}\right)\right.$. Then $z=y_{k}$, and $\left\{y_{-i}\right\} \in S_{\bar{f}}(X), y_{0} \in W_{\varepsilon}^{u}\left(\left\{x_{-k-i}\right\}\right)$ for some $k \geq 0$. Since for every $i \geq 0, d\left(y_{-i}, x_{-k-i}\right) \leq \varepsilon<c$, there exists an integer $N>0$ such that for every $n \geq N, d\left(y_{-n}, x_{-n-k}\right) \leq r$. Hence, for every $i \geq N+k$, we have $d\left(y_{k-i}, x_{-i}\right) \leq r$ and this means $z=y_{k}=f^{k}\left(y_{0}\right) \in W^{s}(x)$.

Conversely, Let $z \in W^{u}\left(\left\{x_{-i}\right\}\right)$. Then there exists $\left\{z_{-i}\right\} \in S_{\bar{f}}(z)$ such that $d\left(x_{-i}, z_{-i}\right) \rightarrow 0$ as $i \rightarrow \infty$. So, for $\varepsilon>0$, there exists $N$ such that for every $n \geq N, d\left(x_{-n}, z_{-n}\right) \leq \varepsilon$. Let $z_{-N}=y_{0}$. Then $z_{-N-i}=y_{-i}$ and $z=y_{n}$. So we have $y_{0} \in W_{\varepsilon}^{u}\left(\left\{x_{-n}\right\}\right)$.

Lemma 2.4. If given $\varepsilon>0$, there exists an integer $N \geq 1$ such that

$$
\begin{aligned}
& d\left(f^{n}(x), f^{n}(y)\right) \leq c, \quad 0 \leq n \leq N \quad \text { and } \\
& d\left(x_{-i}, y_{-i}\right) \leq c, \quad-N \leq n \leq 0 \quad \text { for some }\left\{x_{-i}\right\},\left\{y_{-i}\right\} \text { with } \\
& x_{0}=x, y_{0}=y,
\end{aligned}
$$

then $d(x, y)<\varepsilon$.
Proof. Assume the contrary. Let there exists an $\varepsilon_{0}>0$, such that for all $k \geq 1$, there exist $x^{k}, y^{k} \in X$ such that

$$
\begin{aligned}
& d\left(f^{n}\left(x^{k}\right), f^{n}\left(y^{k}\right)\right) \leq c, 0 \leq n \leq k \\
& d\left(x_{-n}^{k}, y_{-n}^{k}\right) \leq c,-k \leq n \leq 0 \quad \text { for some } \quad\left\{x_{-n}^{k}\right\},\left\{y_{-n}^{k}\right\} \in S_{\bar{f}}(X) \\
& d\left(x^{k}, y^{k}\right) \geq \varepsilon_{0} .
\end{aligned}
$$

Asuume that $x^{k} \rightarrow x, y^{k} \rightarrow y, x_{-i}^{k} \rightarrow x_{-i}$, and $y_{-i}^{k} \rightarrow y_{-i}$ without loss of generality. Then $f\left(x_{-n-1}^{k}\right)=x_{-n}^{k} \rightarrow f\left(x_{-n-1}\right)=x_{-n}$ and $f\left(y_{-n-1}^{k}\right)=y_{-n}^{k} \rightarrow f\left(y_{-n-1}\right)=y_{-n}$. Thus we have $d\left(f^{n}(x), f^{n}(y)\right) \leq$ $c$ and $d\left(x_{-n}, y_{-n}\right) \leq c$ for every $n \geq 0$. By Lemma 1 , we have $x_{0}=y_{0}$, but this is a contradiction.

Here, we give a topology on $S_{\bar{f}}(X)$ induced by the metric $\rho$ on $S_{\bar{f}}(X)$ by

$$
\rho\left(\left\{x_{-i}\right\},\left\{y_{-i}\right\}\right)=\sup _{i \geq 0}\left\{d\left(x_{-i}, y_{-i}\right)\right\}
$$

Then clearly, $\rho\left(\left\{x_{-i}\right\},\left\{y_{-i}\right\}\right) \geq d\left(x_{-n}, y_{-n}\right)$ for every $n \geq 0$.
Let $\varepsilon>0$ be given. Then, for some $\delta>0$ we can define a function

$$
a: K_{\delta}\left(X \times S_{\bar{f}}(X)\right)=\left\{\left(x,\left\{y_{-i}\right\}\right) \in X \times S_{\bar{f}}(X): d\left(x, y_{0}\right) \leq \delta\right\} \rightarrow X
$$

given by

$$
a\left(x,\left\{y_{-i}\right\}\right)=W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}\left(\left\{y_{-i}\right\}\right)
$$

Theorem 2.5. $a$ is continuous.
Proof. Let $0<\varepsilon<\frac{1}{3} c,\left(x,\left\{y_{-i}\right\}\right) \in K_{\delta}\left(X \times S_{\bar{f}}(X)\right)$ and $\delta$ be as above. Let $r>0$ be given and consider a neighborhood $B_{r}\left(a\left(x,\left\{y_{-i}\right\}\right)\right.$,
$r>0$ of $a\left(x,\left\{y_{-i}\right\}\right)$. Let $\left(u,\left\{v_{-i}\right\}\right) \in B_{\delta}\left(x,\left\{y_{-i}\right\}\right)=\left\{\left(z,\left\{w_{-i}\right\}\right):\right.$ $d(x, z)<\delta$ and $\left.\rho\left(\left\{y_{-i}\right\},\left\{w_{-i}\right\}\right)<\delta\right\} \cap K_{\delta}$. For given $\epsilon>0$ there exists $N=N(\epsilon)$ as in Lemma 2.4 and $l=l(N),(0<l<\delta)$ such that
(1) $d\left(x_{1}, x_{2}\right)<l$ implies $d\left(f^{n}\left(x_{1}\right), f^{n}\left(x_{2}\right)<\epsilon\right.$ for $0 \leq n \leq N$

We have for $\left(u,\left\{v_{-i}\right\}\right) \in B_{l}\left(x,\left\{y_{-i}\right\}\right)$,

$$
\begin{aligned}
& d\left(f ^ { n } \left(a\left(x,\left\{y_{-i}\right\}\right), f^{n}\left(a\left(u,\left\{v_{-i}\right\}\right)\right.\right.\right. \\
\leq & d\left(f^{n}\left(a\left(x,\left\{y_{-i}\right\}\right), f^{n}(x)\right)+d\left(f^{n}(x), f^{n}(u)\right)+d\left(f^{n}(u), f^{n} a\left(u,\left\{v_{-i}\right\}\right)\right)\right. \\
\leq & 2 \varepsilon+d\left(f^{n}(x), f^{n}(u)\right), \\
& d\left(a\left(x, y_{-i}\right)_{-n}, a\left(u,\left\{v_{-i}\right\}\right)_{-n}\right) \\
\leq & d\left(a\left(x,\left\{y_{-i}\right\}\right)_{-n}, y_{-n}\right)+d\left(y_{-n}, v_{-n}\right)+d\left(v_{-n}, a\left(u,\left\{v_{-n}\right\}\right)_{-n}\right) \\
\leq & 2 \epsilon+\rho\left(\left\{y_{-i}\right\},\left\{v_{-i}\right\}\right) \\
\leq & 2 \epsilon+\delta<3 \epsilon
\end{aligned}
$$

for every $n \geq 0$. In particular, by (1), we get

$$
\begin{aligned}
& d\left(f ^ { n } \left(a\left(x,\left\{y_{-i}\right\}\right), f^{n}\left(a\left(u,\left\{v_{-i}\right\}\right)\right) \leq 3 \epsilon\right.\right. \\
& d\left(a\left(x,\left\{y_{-i}\right\}\right)_{-n}, a\left(u,\left\{v_{-i}\right\}\right)_{-n}\right) \leq 3 \epsilon
\end{aligned}
$$

for $0 \leq n \leq N$, which means $a\left(u,\left\{v_{-i}\right\}\right) \in B_{r}\left(a\left(x,\left\{y_{-i}\right\}\right)\right)$. So the mapping $a$ is continuous.

## Proposition 2.6.

(i) $W_{\varepsilon}^{s}(x) \cap B(x, \delta)=\left\{y: y=a\left(x,\left\{y_{-i}\right\}\right)\right\}$, for some

$$
\left\{y_{-i}\right\} \in\left\{S_{\bar{f}}(X), d(x, y)<\delta\right\}
$$

(ii) $W_{\varepsilon}^{u}\left(\left\{x_{-i}\right\}\right) \cap B(x, \delta)=\left\{y: y=a\left(y,\left\{x_{-i}\right\}\right), d(x, y)<\delta\right\}$

Proof. The proof is straightforward and thus omitted.

Proposition 2.7. For the function $a$ the followings are valid.

$$
\begin{aligned}
a\left(x,\left\{x_{-i}\right\}\right) & =x, & & a\left(a\left(x,\left\{y_{-i}\right\}\right),\left\{z_{-i}\right\}\right)=a\left(x,\left\{z_{-i}\right\}\right) \\
a\left(x, a\left(y,\left\{z_{-i}\right\}\right)\right) & =a\left(x,\left\{z_{-i}\right\}\right), & & f\left(a\left(x,\left\{y_{-i}\right\}\right)=a\left(f(x), f\left(\left\{y_{-i}\right\}\right)\right.\right.
\end{aligned}
$$

when the two sides of these relations are defined.
Proof. It is clear that $a\left(x,\left\{x_{-i}\right\}\right)=x$. Let $3 \epsilon<c$ and $v=$ $a\left(a\left(x,\left\{y_{-i}\right\}\right),\left\{z_{-i}\right\}\right)$ and $a\left(x,\left\{y_{-i}\right\}\right)=w$. Since $w \in W_{\epsilon}^{s}(x) \cap W_{\epsilon}^{u}\left(\left\{y_{-i}\right\}\right)$ we have $v \in W_{2 \epsilon}^{s}(x) \cap W_{\epsilon}^{u}\left(\left\{z_{-i}\right\}\right)$ and by Lemma 2.1 we get $v=$ $a\left(x,\left\{z_{-i}\right\}\right)$. It is easily checked that $f\left(a\left(x,\left\{y_{-i}\right\}\right)=a\left(f(x), f\left(\left\{y_{-i}\right\}\right)\right.\right.$ using the uniform continuity of $f$.

## References

1. N. Aoki, Topics in general topology, Elsevier Sci. Pub., 1989.
2. J. Ombach, Consequences of the pseudo orbits tracing property and expansiveness, J. Australian Math. Soc 43 (1987), 301-313.
3. J. Ombach, Equivalent conditions for hyperbolic coordinates, Topology and its Appl. 23 (1986), 97-90.
4. K. Sakai, Anosov maps on closed topological manofolds, J. Math. Soc. Japan 39 (1987), 505-519.
5. M. Shub, Global stability of dynamical systems, Springer- verlag, 1987.

## Department of Mathematics

Taejon University
Taejon, 300-716, Korea

