On the Stability Theory in Dynamical Systems

КІ-ЅНІК КОО

ABSTRACT. In this paper, we show that a continuous function $f : X \to X$ has regular coordinate then (X, f) has some properties which are similar to results following from a hypothesis of hyperbolicity.

1. Introduction

Let (X, d) be a compact metric space and $f : X \to X$ be a continuous surjective mapping. Denote by $S_f(X), S_{\overline{f}}(X)$ the set of all f-orbits of X and the set of all backward f-orbits of X, respectively. Let $\varepsilon > 0$. We define the local stable set $W^s_{\varepsilon}(x)$ for $x \in X$ by

$$W^s_{\varepsilon}(x) = \{ z \in X : d(f^n(x), f^n(z)) \le \varepsilon \quad \text{for} \quad n \ge 0 \}$$

and the local unstable set $W^u_{\varepsilon}(\{y_{-i}\})$ for $\{y_{-i}\} \in S_{\overline{f}}(X)$ by

$$W^{u}_{\varepsilon}(\{y_{-i}\}) = \{z \in X : \text{ there is } \{z_{-i}\} \in S_{\overline{f}}(X) \text{ with } z_{0} = z, \\ d(y_{-i}, z_{-i}) \leq \varepsilon \text{ for } i \geq 0\}$$

We say that f has regular coordinate if there exists $\alpha > 0$ with the property that for every $0 < \varepsilon < \alpha$ there is a $\delta = \delta(\varepsilon) > 0$ such that for every $x \in X$ and every $\{y_{-i}\} \in S_{\overline{f}}(X), \ d(x, y_0) \leq \delta$ implies that

$$W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(\{y_{-i}\}) = \text{singleton}$$

In this paper, assume that f has regular coordinate and we will show that (X, f) has some properties which are similar to results following from a hypothesis of hyperbolicity.

Basic terminologies are followed from [1] and [4].

This research was supported by the Ministry of Education,1993. Received by the editors on June 30, 1994.

¹⁹⁸⁰ Mathematics subject classifications: Primary 54H20.

2. Basic results

LEMMA 2.1. Let $f : X \to X$ have regular coordinate and $\{x_i\}, \{y_i\} \in S_f(X)$. Then there exists c > 0 such that if $d(x_i, y_i) \leq c$ for every $i \in Z$ then $x_0 = y_0$.

PROOF. Let $c < \min\{\alpha, \delta(\alpha)\}$ and $d(x_i, y_i) \leq c$ for all $i \in \mathbb{Z}$. Then $d(x_0, y_0) < c \leq \delta$ and $x_0, y_0 \in W^s_{\alpha}(x) \cap W^u_{\alpha}(\{y_{-i}\})$. So we have $x_0 = y_0$.

So we call f has regular coordinate with expansive constant c. Hereafter, assume f has regular coordinate with expansive constant c.

LEMMA 2.2 [1]. For each $r \ge 0$, there exists an integer $N_r > 0$ such that

- (i) $f^n(W^s_c(x)) \subset W^s_r(f^n(x))$ for all $x \in X$ and $n \ge N_r$
- (ii) If $d(x_{-i}, y_{-i}) \leq c (\{x_{-i}\}, \{y_{-i}\} \in S_{\overline{f}}(X))$, for every $i \geq 0$, then $d(x_{-n}, y_{-n}) \leq r$ for all $n \geq N_r$.

For $x \in X$ and $\{x_{-i}\} \in S_{\overline{f}}(X)$ the stable and unstable sets are defined by

$$W^{s}(X,d) = \{ y \in X : \lim_{n \to \infty} (d(f^{n}(x), f^{n}(y)) = 0 \}$$

$$W^{u}(\{x_{-i}\}) = \{ y : \text{there is } \{y_{-i}\} \in S_{\overline{f}}(X) \text{ with } y_{0} = y \text{ such that}$$
$$\lim_{n \to \infty} (x_{-n}, y_{-n}) = 0 \}.$$

PROPOSITION 2.3. Let $\varepsilon > 0$ be the number less than c, then

- (i) $W^s(x) = \bigcup_{n \ge 0} \{y_{-n} : y_0 \in W^s_{\varepsilon}(f^n(x)) \text{ and } y_{-n} \in \{y_{-i}\} \in S_{\overline{f}}(y_0)\}$
- (ii) $W^{u}(\{x_{-i}\}) = \bigcup_{n \ge 0} \{y_n : y_n = f^n(y_0), y_0 \in W^{u}_{\varepsilon}(\{x_{-n-i}\}).$

PROOF. (i) Let $y = y_{-k}$ for some $\{y_{-i}\} \in S_{\overline{f}}(y_0)$ with $f^k(y_{-k}) = y_0 \in W^s_{\varepsilon}(f^k(x))$.

For r > 0, there exists $N = N_r$ such that for all $n \ge N$

$$d(f^{k+n}(x), f^k(y_0)) \le r.$$

Hence we have $d(f^n(x), f^n(y_{-k})) \leq r$ for all $n \geq N+k$. Thus $d(f^n(x), f^n(y_{-k})) \to 0$ as $n \to \infty$ and so $y = y_{-k} \in W^s(x)$.

Conversely, let $z \in W^s(x)$. For $\varepsilon > 0$, there exists an integer N such that for all $n \geq N, d(f^n(x), f^n(z)) \leq \varepsilon$ and so $f^N(z) \in W^s_{\varepsilon}(f^N(x))$. Let $f^N(z) = y_0$. We can choose $\{y_{-i}\} \in S_{\overline{f}}(y_0)$ with $y_{-N} = z$. So $f^N(z) = y_0 \in W^s_{\varepsilon}(f^N(x))$ and therefore

$$z = y_{-N} \in \bigcup_{n \ge 0} \{ y_{-n} : \{ y_{-i} \} \in S_{\overline{f}}(X) \text{ and } y_0 \in W^s_{\varepsilon}(f^n(x)) \}.$$

(ii) Let $z \in \bigcup_{n\geq 0} \{y_n : y_0 \in W^u_{\varepsilon}(\{x_{-n-i}\})$. Then $z = y_k$, and $\{y_{-i}\} \in S_{\overline{f}}(X), y_0 \in W^u_{\varepsilon}(\{x_{-k-i}\})$ for some $k \geq 0$. Since for every $i \geq 0, d(y_{-i}, x_{-k-i}) \leq \varepsilon < c$, there exists an integer N > 0 such that for every $n \geq N, d(y_{-n}, x_{-n-k}) \leq r$. Hence, for every $i \geq N + k$, we have $d(y_{k-i}, x_{-i}) \leq r$ and this means $z = y_k = f^k(y_0) \in W^s(x)$.

Conversely, Let $z \in W^u(\{x_{-i}\})$. Then there exists $\{z_{-i}\} \in S_{\overline{f}}(z)$ such that $d(x_{-i}, z_{-i}) \to 0$ as $i \to \infty$. So, for $\varepsilon > 0$, there exists Nsuch that for every $n \ge N, d(x_{-n}, z_{-n}) \le \varepsilon$. Let $z_{-N} = y_0$. Then $z_{-N-i} = y_{-i}$ and $z = y_n$. So we have $y_0 \in W^u_{\varepsilon}(\{x_{-n}\})$.

LEMMA 2.4. If given $\varepsilon > 0$, there exists an integer $N \ge 1$ such that

$$d(f^{n}(x), f^{n}(y)) \leq c, \quad 0 \leq n \leq N \quad \text{and} \\ d(x_{-i}, y_{-i}) \leq c, \quad -N \leq n \leq 0 \quad \text{for some } \{x_{-i}\}, \{y_{-i}\} \text{ with} \\ x_{0} = x, y_{0} = y,$$

then $d(x,y) < \varepsilon$.

PROOF. Assume the contrary. Let there exists an $\varepsilon_0 > 0$, such that for all $k \ge 1$, there exist $x^k, y^k \in X$ such that

$$\begin{split} &d(f^n(x^k), f^n(y^k)) \leq c, \ 0 \leq n \leq k \\ &d(x^k_{-n}, y^k_{-n}) \leq c, \ -k \leq n \leq 0 \quad \text{for some} \quad \{x^k_{-n}\}, \{y^k_{-n}\} \in S_{\overline{f}}(X) \\ &d(x^k, y^k) \geq \varepsilon_0. \end{split}$$

Assume that $x^k \to x$, $y^k \to y$, $x_{-i}^k \to x_{-i}$, and $y_{-i}^k \to y_{-i}$ without loss of generality. Then $f(x_{-n-1}^k) = x_{-n}^k \to f(x_{-n-1}) = x_{-n}$ and $f(y_{-n-1}^k) = y_{-n}^k \to f(y_{-n-1}) = y_{-n}$. Thus we have $d(f^n(x), f^n(y)) \leq c$ and $d(x_{-n}, y_{-n}) \leq c$ for every $n \geq 0$. By Lemma 1, we have $x_0 = y_0$, but this is a contradiction.

Here, we give a topology on $S_{\overline{f}}(X)$ induced by the metric ρ on $S_{\overline{f}}(X)$ by

$$\rho(\{x_{-i}\}, \{y_{-i}\}) = \sup_{i \ge 0} \{d(x_{-i}, y_{-i})\}$$

Then clearly, $\rho(\{x_{-i}\}, \{y_{-i}\}) \ge d(x_{-n}, y_{-n})$ for every $n \ge 0$.

Let $\varepsilon > 0$ be given. Then, for some $\delta > 0$ we can define a function $a: K_{\delta}(X \times S_{\overline{f}}(X)) = \{(x, \{y_{-i}\}) \in X \times S_{\overline{f}}(X) : d(x, y_0) \le \delta\} \to X$

given by

$$a(x, \{y_{-i}\}) = W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(\{y_{-i}\})$$

THEOREM 2.5. a is continuous.

PROOF. Let $0 < \varepsilon < \frac{1}{3}c$, $(x, \{y_{-i}\}) \in K_{\delta}(X \times S_{\overline{f}}(X))$ and δ be as above. Let r > 0 be given and consider a neighborhood $B_r(a(x, \{y_{-i}\}), \{y_{-i}\})$.

214

r > 0 of $a(x, \{y_{-i}\})$. Let $(u, \{v_{-i}\}) \in B_{\delta}(x, \{y_{-i}\}) = \{(z, \{w_{-i}\}) : d(x, z) < \delta$ and $\rho(\{y_{-i}\}, \{w_{-i}\}) < \delta\} \cap K_{\delta}$. For given $\epsilon > 0$ there exists $N = N(\epsilon)$ as in Lemma 2.4 and $l = l(N), (0 < l < \delta)$ such that

(1)
$$d(x_1, x_2) < l$$
 implies $d(f^n(x_1), f^n(x_2) < \epsilon$ for $0 \le n \le N$

We have for $(u, \{v_{-i}\}) \in B_l(x, \{y_{-i}\}),$

$$\begin{aligned} &d(f^{n}(a(x, \{y_{-i}\}), f^{n}(a(u, \{v_{-i}\})) \\ &\leq d(f^{n}(a(x, \{y_{-i}\}), f^{n}(x)) + d(f^{n}(x), f^{n}(u)) + d(f^{n}(u), f^{n}a(u, \{v_{-i}\}))) \\ &\leq 2\varepsilon + d(f^{n}(x), f^{n}(u)), \\ &d(a(x, y_{-i})_{-n}, a(u, \{v_{-i}\})_{-n}) \\ &\leq d(a(x, \{y_{-i}\})_{-n}, y_{-n}) + d(y_{-n}, v_{-n}) + d(v_{-n}, a(u, \{v_{-n}\})_{-n})) \\ &\leq 2\varepsilon + \rho(\{y_{-i}\}, \{v_{-i}\}) \\ &\leq 2\varepsilon + \delta < 3\varepsilon \end{aligned}$$

for every $n \ge 0$. In particular, by (1), we get

$$d(f^{n}(a(x, \{y_{-i}\}), f^{n}(a(u, \{v_{-i}\})) \le 3\epsilon)$$
$$d(a(x, \{y_{-i}\})_{-n}, a(u, \{v_{-i}\})_{-n}) \le 3\epsilon)$$

for $0 \le n \le N$, which means $a(u, \{v_{-i}\}) \in B_r(a(x, \{y_{-i}\}))$. So the mapping a is continuous.

PROPOSITION 2.6.

(i)
$$W_{\varepsilon}^{s}(x) \cap B(x, \delta) = \{y : y = a(x, \{y_{-i}\})\}, \text{ for some} \{y_{-i}\} \in \{S_{\overline{f}}(X), \ d(x, y) < \delta\}$$

(ii) $W_{\varepsilon}^{u}(\{x_{-i}\}) \cap B(x, \delta) = \{y : y = a(y, \{x_{-i}\}), \ d(x, y) < \delta\}$

PROOF. The proof is straightforward and thus omitted.

KI-SHIK KOO

PROPOSITION 2.7. For the function *a* the followings are valid.

$$\begin{split} a(x,\{x_{-i}\}) &= x, \qquad \quad a(a(x,\{y_{-i}\}),\{z_{-i}\}) = \ a(x,\{z_{-i}\}) \\ a(x,a(y,\{z_{-i}\})) &= a(x,\{z_{-i}\}), \quad f(a(x,\{y_{-i}\}) = \ a(f(x),f(\{y_{-i}\})) \end{split}$$

when the two sides of these relations are defined.

PROOF. It is clear that $a(x, \{x_{-i}\}) = x$. Let $3\epsilon < c$ and $v = a(a(x, \{y_{-i}\}), \{z_{-i}\})$ and $a(x, \{y_{-i}\}) = w$. Since $w \in W^s_{\epsilon}(x) \cap W^u_{\epsilon}(\{y_{-i}\})$ we have $v \in W^s_{2\epsilon}(x) \cap W^u_{\epsilon}(\{z_{-i}\})$ and by Lemma 2.1 we get $v = a(x, \{z_{-i}\})$. It is easily checked that $f(a(x, \{y_{-i}\}) = a(f(x), f(\{y_{-i}\}))$ using the uniform continuity of f.

REFERENCES

- 1. N. Aoki, Topics in general topology, Elsevier Sci. Pub., 1989.
- J. Ombach, Consequences of the pseudo orbits tracing property and expansiveness, J. Australian Math. Soc 43 (1987), 301-313.
- 3. J. Ombach, Equivalent conditions for hyperbolic coordinates, Topology and its Appl. 23 (1986), 97-90.
- K. Sakai, Anosov maps on closed topological manofolds, J. Math. Soc. Japan 39 (1987), 505-519.
- 5. M. Shub, Global stability of dynamical systems, Springer- verlag, 1987.

Department of Mathematics Taejon University Taejon, 300-716, Korea