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On the Topological Stability in Dynamical Systems

Ki-Shik Koo

ABSTRACT. In this paper, we show that a persistent dynamical sys
tem is structurally stable with respect to Ea{X) for every a > 0 if it 
is expansive. Also, we prove that a homeomorphism f : Q(/) —> Q(/) ' • ____ ____
has the semi-shadowing property then so does f : C(f) •— C(f).

1. Introduction
P. Walters [5] studied the relationship between the pseudo-orbit 

tracing property and the topological stability of expansive homeo

morphisms. Also, Lewowicz [2] defined the persistence, an weak form 

of topological stability of homeomorphisms on compact Riemannian 

manifolds.

In this paper, we gives a necessary condition for a persistent dy

namical system to be structurally stable Also, we show that a home

omorphism f : Q(/) —> Q(/) has the semi-shadowing property, then 

so does f : C(f) — C(J).

We consider homeomorphisms acting on a compact metric space. 

We let X denote a compact Riemannian manifold with a metric d and 

dimX < 2. Let H(X) denote the collection of all homeomorphisms 

of X to itself topologised by the C°-metric

do(f,g) = sup{d(f(x),g(x))lx e X}.
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f 6 H(X} is said to be structurally stable (with respect to F C 

H(X)) if for any e > 0 there exists 6 = 6(e) > 0 such that if c/o(/, g) < 

6 (g E』?), then there exists a 九 G H(X) satisfying hg = fh. f E 

H(〉O) is called persistent if for any e > Q there exists 6 = 5(匕) > 0 

such that if d(Kj\g) < 6 and x E X, then there is y E X satisfying 

d(fn(x),gn(y)) < e for all n G Z. Let Y C X. f G H(Y) has the 

semi-shadowing property if for any e > 0 there exists 6 = 6(e) > 0 

such that for each x EY and g E H(Y) with dQ(j\g) < 6, there exists 

y EY such that 己(/n(y), 우n(：c)) < € for every n € Z.

We say that f G is expansive if there exists e(/) > 0 such 

that if d(fn(x),gn(y)) < e(f) for every n G Z, then x = y. Such 

numbers e(f) are called expansive constant for f. Let Ea(X) denote 

the set of expansive homeomorphisms of X to itself with expansive 

constant a.

For / G H(X丄 define the recurrent set and the nonwandering set 

of f by

(7(/) = {x E X : x E (心f(x) Pl ay(ar), where cuf(x) and c^f(x)

denote the positive and negative limit set of x for /, 

respectively},

9(/) = {x E X : for every neighborhood U of x and

integer n0 > 0 there is n > no such that jfn(Z7) Cl U 尹 0}.

A sequence of points {:cj}f=a,(—oo < a < b < oo) in X is called 

a 6-pseudo-orbit of f if c/(/(：i：i), 收十1) < 6 for a < i < b. A finite 

^-pseudo-orbit - • •，⑦n} is called a ^-pseudo-orbit from xq to

xn. Given x^y E X^x is a-related to 이 in A C X means there are 

a-pseudo-orbits from x to y and y to ⑦ in A. Of(x) denote the orbit 

of x for f and B(x,e) denote {y e X : d(x, y) < e}. For closed subsets 

A, B of X, J(』4, B) = inf{/Z(a, b) : a E A^b E B}.
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Basic terminologies are followed from [1].

2. Basic results.

LEMMA 2.1 ([4]). Let X be a compact topological manifold of 

dim > 2 with metric d, and let e > Q be arbitrary. Then there 

exist 6 = S(6)> 0 such that if {(a：i,2/i),- • sGcnU/n)} i日 孔 Hnite set of 

points in X x X satisfying :

(i) for each i = 1, • • •,n, d^Xi^yi) < 8; and

(ii) if i 斗 J, then Xi 羊 Xj, and yi 羊 yj；

then there is h E H(X) with dQ(ji, lx) < 匕 and h(xi) = yi for i = 

1, …, n.

PROPOSITION 2.2. If f G H(X} has semi-shadowing property, 

then so does fk for every k > 0

PROOF. Let e > 0 be given. Let 伏 = 51(匕) be a number with the 

property of the semi-shadowing property and 5 = 6(61) as in Lemma 

2.1. Let do(fk,g) < 8 and x E X. For each positve integer Z, consider 

{g『—z(:r)，오—사三乂⑦), … ,g)(:r)}. Let define a set {(w^, v^)} in X x X as 

follows.

{(유-血)，引-'(그)),CfGr'O：)),/(心(으))),…，(广-1(9-/(그)),/fc-1 

G7-1(찌)),(/地—仏才川—什乂쩨⑴“什凡人厂서%)),…, 

(、fk-1 (으), fk-1 (그)), Cf G),")), …, (/'(广九)), 오(그))}.

Then the set {(w^, 仙)} satisfy the hypothesis of Lemma 2.1. So there 

exists h G H(X) with

do(h, 1%) < 6, and h(u)i) = Vi

Put a = h o f. Then we have

d(a(>), /(x)) = d(h o /(x), f(x)) < 伏
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Hence, there exists yi in X such that(/n(y/),an(x)) < e for every 

integer n. Let 가 = f시(yi). Then 서(/"(之0)川°(⑦)) < 匕 for every 

n,(—1 < n < 1). Let 之o — 之 = ' — ex). Then 서(/"(之)，우n(X)) < e 

for every n € Z. So fk has the semi-shadowing property and the 

proof is complete.

THEOREM 2.2. If f G H(X) has the semi-shadowing property, 

then f has the shadowing property.

PROOF. Let £ > 0 be arbitrary, select numbers 8 = 5i(e) satisfying 

the semi-shadowing property and 6 = 6(6丄) as in Lemma 2.1 Let 

Xi , i G Z be a 5 - pseudo-orbit with Xi 牛 Xj,i 手 j. consider the finite 

pseudo-orbit Ak = {⑦一么, • • "，⑦, • •

Then the set

{(/O-Jb)形-k+i),(/(：z：—Jb+i),：?：—k+2),…，Cf(a_i),：rk)}

satisfies the hypothesis of Lemma 2.1. Then there exists a /i G H(X) 

such that do(h,lx) < 5, and h(f(xi)) = :亂十i, i = —k,dotsjc — 1. 

Let gr(x) = h o /(x), Then we have do(f,g) < 伏. So for the point 

:there is a 吐, such that d{fn{yk)^-k-^n) < £ for 0 < n < A:. Let 

fk(yk) = Zk> Then we have d(fl(zk)^i) < e for —k ‘으 i 으 k。Suppose 

2核 一수 之 as A: — oo. Then it is easy to show that 서(/1(之),꺼) < e for 

all i E Z. so f has the shadowing property

THEOREM 2.3. A persistent dynamical system is structurally sta

ble with respect to EQ(x) for every a > 0 if it is expansive.

PROOF. Let f € H{X) be persistent and let e(f) be an expan

sive constant for f. Choose sufficiently small 6 > 0 satisfying e < 

min{|e(/), |가}. Let 8 = 5(하 > 0 be a number with the property 

of the persistence for f. If g E Ba(X) with do(j\g) < 5, then for any 
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x E X there is y E X satisfying

서Cfn(⑦)刀n(?/)) < |匕 for every n e Z.

Define a map fc : X —> X by k(x) = j/, where y is an element in X 

chosen by the property of the persistence for f as above. Then the 

map k is well-defined. In fact, let 之 be another element in X such that 

c^(/n(a;),5n(^)) < for all n € Z. Then we have d{gn{z\gn{xy)< 

e < a for all n G Z. Hence we get y = z.

By the similar method used in [l],We can show that k in continues. 

Sine we have choosed e sufficiently small, We may regard that k : X — 

X is surjective. Further, k is injective. In fact, if = k(y), then

d(Jn(x}, /n(?/)) < d(fn(x\gn(A(O) + d(grn(A(:r)), gn(k(y))

+ 地"(地)),/"0/))<가<€(/)

and therefore x = y.

Let define h : X X by h(x) = fc—乂⑦). Then it is easy to show 

that f o h(x) = ho g(x) for all x E X. Using the similar method used 

in the proof of the continuity of k we can show that h is continuous 

and this completes the proof of the theorem.

Take and fix a > 0. Then we can split C*(/) into a union

C(J) = UC\ of equivalence classes C\ under the a-relation in C(f).

LEMMA 2.4. For a > 0, every x G C(/) is a-related to fk(x) in 

C(f) for all k > 0.

PROOF. Let x G C(f). Using the continuity of f we can take 0 > 0 

with /3 < a such that < /3 implies max{J(jP(:r),(之)) : 0 <

i < A： + l} < a. Since x G C(f) there is z e B(x, /3)QC(f) and integer 

€ 之 A: + 2 with /'(之) € Then the sequence {/저(龍),/서’거(之),
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• • • , 乂之), x} is an a-pseudo-orbit in C(f) from fk(x) to x. Ob

viously {館,/(⑦), • . •, fk(x)} is a-pseudo~orbit from x to fk(x\

This lemma shows that each equivalence class C\ is /-invariant.

LEMMA 2.5. Each equivalence class C\ is open and closed in C(f).

PROOF. First, we show that each C\ is closed in (7(/). To see this, 

we choose a sequence {a：i} in C\ which converges to xf. Take /3 > 0
1 1

with 0 < 0 < —a such that C B(f(x')우 -a). Let 昌 > 0 be

an integer with ⑦') < 月. Also, let y G B(a：', 0)A(7(/) and f£(y) 6

j3(x',0) for some € > 0. Then the sequence {艾',』(?/),/2(y), … ,

xs} is an a-pseudo-orbit from xf to xs in C(J). On the oth- 

erhand, take 7 > 0 such that B(g,7)C B(x', -a) and C

月(/(◎)」•)• Let w e B(g,7)n (7(/) and jfn(w) e B0s,7)f°r 

some n > 0. Then the sequence {g,/(w),/2(w)，…，/n“1(w),rr'} 

is an a-pseudo-orbit from xs to x1 in (7(/). This implies that x3 is 

a-related to xf in (7(/) and so x1 G C\. Hence C\ is closed in C(f).

Next, we show that C\ is open in (7(/). Let x G C\. for every 

y G C\ there is an a-pseudo-orbit {a；o = ⑦, :z：i, • • • ^xp = y} from x to y 
-- 1

in C(f). Choose f with 0 < ^ < -a such that f(B(xQ, f)) C , a).
<5

Then for every a G B(xo,^) A(7(/) the sequence {a,a：i,X2,• • • ,xp} 

is an a-pseudo-orbit from a to y. On the otherhand, let {yo = 

y,yi, …,yq

= :r} be an a-pseudo-orbit from t/ to a; in (7(/). Since x G ), a),

we can choose a point 2: in B(/(yg_i), a) D B(x, f) A C(/)。Since z G 

B(:r, f)nC(/) there is an integer m > 0 with /m(2：) € There

fore, for each a in B(x,^)nC(/) the sequence , yq—i, 之, /(之),

• • •m”乂之), 자 仏 히1 ct-pseudo-orbit from y to a. This means that

D(7(/) C C\. Hence C\ is open in C(f), and so completes 

the proof.
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LEMMA 2.6. If f E H(X) has the semi-shadowing property, then 

for every e > 0 there exists 6 > 0 such that for every g € with 

Jo(/, g} < 6 and for every periodic point x of g, there exists y in C(f) 

satisfying 서(P(?/), 이1(으)) < s for every i G Z.

PROOF. Let s > 0 be given and let 6 = 5(|e) > 0 be the number 

with the property of the weak topological stability for f. For g G 

H(X) with d()(J\g) < 8 and x E X with gm(x) = x for some m > 0, 

consider {⑦까거나} = {^(a:)} for i € Z and 0 < J < m. Since f has the 

semi-shadowing property there exists z in X such that

(1) 서 cr* ⑵, r+‘(z))<}

for z G Z and 0 < j < m. In particular, we have G B(x, -e) 
_________ 2

for all i € Z. Hence we have c B(x, By the invariance

of Ofm(z) for fm, there is a minimal set A of Ofm(z) for fm. By the

minimality of A, for all 이 G A, we have

= 사7WO = A C 0/시>) c B(x, |s).

Thus

y e W-G/) n afm(y) C w(y) n Q/(y)

and so we conclude that y G C(/). It is sufficient to show that 

우j(⑦))e for every i G Z and 0 < j < m. To show this 

assume <Z(/m2o+『°Q/), g'° (x)) > dor some zo € Z and 0 玄 Jo < m. Let 

mio + Jo > 0. Since y € ⑵/m(y) we can shoose a sequence {/m'£(j/)} 

converges to y as 匕 一> 4-oo. Hence, by the continuity of f there is 

sufficiently large L in {으} such that (y), g^° (a:)) > e >

But this contradicts (1) and this completes the proof.
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THEOREM 2.7. Let f G H(X). If f : Q(/) — 12(/) has the semi

shadowing property, then so does f : C(/) —>(7(/).

PROOF. Let e > 0 be arbitrary. Then we can select 伍 = @l(|s) > 

0 satisfying the property of the semi-shadowing property for f 三

and the result of Lemma 2.4. Also, let

@2 = 62(61) > 0 with 82 < 5i as in Lemma 2.1. By Lemma 2.3, C(/) 

can be split into a finite union,(7(/) = Lg^Ci, of equivalence class Ci 

under -relation. Let a = min{(入, (刀) : 1 < < A:} and take /3

with 0 < 0 < niin{a,5i,@2} and let for g G H(C(f)), d(f(z), g(z)) < 

/3 for all 2： G C(/). For x G C(/), consider a finite set

An = {우 — "(⑦)，우-"+1(⑦)，• - •，우"(으)}•

Since d(/(gF(:r)), 우서"乂⑦)) < for 1 < i < n. The set An is 0- 

pseudo-orbit for f. Since each equivalence class Ci is /-invariant and 

/3 < a the ^-pseudo-orbit {An} is contained in some Cj,l < J < A:. 

Therefore there exists a 61-pseudo-orbit {2자, 거1, • …, z^k} from 

to gn(x). Let define a set {(wj,vj)} in X x X as follows

( Gf(오-乂⑦)),하(⑦)), l<i<n

(W, Vi) = I (/(기L—t), 기Ln), n + 1 引 玄 n + ru

t Cf(오-2—"1'…(⑦),호—2"-(⑦)), n+a + l 으i 으2n+7%

Then the set {(W, ⑵)}으써‘’히1 satisfies the hypothesis of Lemma 2.1. 

Thus there exists a G H(X) such that

d()(a, lx) < 5i and a(wj) = ⑵,

put k = af. Then we have < 6, and km(x) = x^m =

2n + rik> Hence there is yn G C(f) with (:r), pQ/n)) < -e for
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I
every i G Z. In particular, 시(PQ/n)리:z：)) < -e for —n < i < n. Let 

yn converges to y as n —> oo. Then it is easy to show that

1 
d(f(y),ffl(x)) < ^ < 匕

for every i E Z. Hence the proof is complete.

Let f E H(X) and let and be the local stable and 

local unstable set of x for f. It was shown that if Per(/), the closure 

of the set of periodic points of /, is hyperbolic set for /, then for 

匕 > 0 sufficiently small there is 6 > 0 such that x,y e Per(/) and 

시(⑦, y) < 6 implies

A W7(y) = {one point} C Per(/).

PROPOSITION 2.7. Let f E H(X) be expansive and have the semi

shadowing property. Then, for sufficiently small e > 0 there is 6 > 0 

such that if E C(f) with < 6 then

W^(x) n W자(y) = {one point} C C(J).

PROOF. Let e(/) be an expansive constant for f and 0 < 6 < 

：e(f). Let 6i = 6i(|e) with 0 < be a number satisfying

the property of the semi-shadowing property for f and a = a(5i) < 

1 1
-6i be the number as in Lemma 2.1. Choose 5 > 0 with 6 < -a. 
2 2
Let x,y E C(J) with y) < 6. Then we can choose sequences 

{ni}, {mi} of positive integers satisfying :

rii < nj, mi < my, if i < j; and 

d(x, fni (:r)) < 아, d(y, f~mi (?/)) < a.
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(PijQi) = <

Take and fix an integer k > Q. Consider a set

A, = {,,/(,),•• •,/’아-1位),广"아(?/),/-"아+1包), . - •,/—(!/),까.

Here, define the set {(pi, ?i)}끄:0아 in X x X by putting 

C『(心 /乃)), 0 < z < - 1

(/"유),/-… (?/)), i = M

Cf-"이너引?/),i = nk+j, l<j <mk-l 

(y,x), i = rik + mk.

Then the set {(Pi,5i)} satisfying the hypothesis of Lemma 2.1. Thus 

there exists hk € H(X) such that

do(hk, lx) < 어 and hk(pi) = qi

for i = 0,1, • • •, rik + mjt. Put 孤 = /必 o f. Then we have

成)(亡孤) < @l and 샤(해) = 以 九 = rik + mk — L

Hence there is Zk in C(J) satisfying d{g\(x\ P(가:)) < for all i G Z. 

Let {zk} converges to 之 as A: —> oo. Then 之 G C(/) D Wf{x) D

Using the expansivity of /, it is easy to show that 「1 is 

singleton and this completes the proof.

In the above result, we denote that

w»nBG/) = […]

Then we can show that this bracket map [ , ] : A^C(/) —나 X is 

continuous, where A5(7(/) is the neighborhood of the diagonal in 

W) x(】(f) defined by ^C(f) = {(x,y)\x,y e C(J),d(x,y) < 6}. 

A closed invariant set is said to have the local product structure in A 

if for small e and 6, [⑦, y] belongs to A whenever d(x, y) < 5, x, y E A. 

Then by the above result , we obtain the following.

COROLLARY 2.8. If f E H(X) is expansive and has the semi

shadowing property, then C(f) has a local product structure.
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