JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 7, June 1994

On the Topological Stability in Dynamical Systems

КІ-ЅНІК КОО

ABSTRACT. In this paper, we show that a persistent dynamical system is structurally stable with respect to $E_{\alpha}(X)$ for every $\alpha > 0$ if it is expansive. Also, we prove that a homeomorphism $f: \Omega(f) \to \Omega(f)$ has the semi-shadowing property then so does $f: \overline{C(f)} \to \overline{C(f)}$.

1. Introduction

P. Walters [5] studied the relationship between the pseudo-orbit tracing property and the topological stability of expansive homeomorphisms. Also, Lewowicz [2] defined the persistence, an weak form of topological stability of homeomorphisms on compact Riemannian manifolds.

In this paper, we gives a necessary condition for a persistent dynamical system to be structurally stable Also, we show that a homeomorphism $f: \Omega(f) \to \Omega(f)$ has the semi-shadowing property, then so does $f: \overline{C(f)} \to \overline{C(f)}$.

We consider homeomorphisms acting on a compact metric space. We let X denote a compact Riemannian manifold with a metric d and $\dim X \leq 2$. Let H(X) denote the collection of all homeomorphisms of X to itself topologised by the C^0 -metric

 $d_0(f,g) = \sup\{d(f(x),g(x))|x \in X\}.$

This research was supported by the Korea Science and Engineering Foundation, 1992-1993.

Received by the editors on June 30, 1994.

¹⁹⁸⁰ Mathematics subject classifications: Primary 54H20.

KI-SHIK KOO

 $f \in H(X)$ is said to be structurally stable (with respect to $F \subset H(X)$) if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that if $d_0(f,g) < \delta$ $(g \in F)$, then there exists a $h \in H(X)$ satisfying hg = fh. $f \in H(X)$ is called *persistent* if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that if $d_0(f,g) < \delta$ and $x \in X$, then there is $y \in X$ satisfying $d(f^n(x), g^n(y)) < \varepsilon$ for all $n \in \mathbb{Z}$. Let $Y \subset X$. $f \in H(Y)$ has the semi-shadowing property if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that for each $x \in Y$ and $g \in H(Y)$ with $d_0(f,g) < \delta$, there exists $y \in Y$ such that $d(f^n(y), g^n(x)) < \varepsilon$ for every $n \in \mathbb{Z}$.

We say that $f \in H(X)$ is expansive if there exists e(f) > 0 such that if $d(f^n(x), g^n(y)) \leq e(f)$ for every $n \in \mathbb{Z}$, then x = y. Such numbers e(f) are called expansive constant for f. Let $E_{\alpha}(X)$ denote the set of expansive homeomorphisms of X to itself with expansive constant α .

For $f \in H(X)$, define the recurrent set and the nonwandering set of f by

 $C(f) = \{x \in X : x \in \omega_f(x) \cap \alpha_f(x), \text{ where } \omega_f(x) \text{ and } \alpha_f(x) \}$

denote the positive and negative limit set of x for f, respectively},

 $\Omega(f) = \{x \in X : \text{for every neighborhood } U \text{ of } x \text{ and } v\}$

integer $n_0 > 0$ there is $n \ge n_0$ such that $f^n(U) \cap U \neq \emptyset$.

A sequence of points $\{x_i\}_{i=a}^b, (-\infty \leq a < b \leq \infty)$ in X is called a δ -pseudo-orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for $a \leq i \leq b$. A finite δ -pseudo-orbit $\{x_0, x_1, \dots, x_n\}$ is called a δ -pseudo-orbit from x_0 to x_n . Given $x, y \in X, x$ is α -related to y in $A \subset X$ means there are α -pseudo-orbits from x to y and y to x in A. $O_f(x)$ denote the orbit of x for f and $B(x, \varepsilon)$ denote $\{y \in X : d(x, y) < \varepsilon\}$. For closed subsets A, B of $X, d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$.

Basic terminologies are followed from [1].

2. Basic results.

LEMMA 2.1 ([4]). Let X be a compact topological manifold of dim ≥ 2 with metric d, and let $\varepsilon > 0$ be arbitrary. Then there exist $\delta = \dot{\delta}(\varepsilon) > 0$ such that if $\{(x_1, y_1), \dots, (x_n, y_n)\}$ is a finite set of points in $X \times X$ satisfying :

- (i) for each $i = 1, \dots, n$, $d(x_i, y_i) < \delta$; and
- (ii) if $i \neq j$, then $x_i \neq x_j$, and $y_i \neq y_j$;

then there is $h \in H(X)$ with $d_0(h, 1_X) < \varepsilon$ and $h(x_i) = y_i$ for $i = 1, \dots, n$.

PROPOSITION 2.2. If $f \in H(X)$ has semi-shadowing property, then so does f^k for every k > 0

PROOF. Let $\varepsilon > 0$ be given. Let $\delta_1 = \delta_1(\varepsilon)$ be a number with the property of the semi-shadowing property and $\delta = \delta(\delta_1)$ as in Lemma 2.1. Let $d_0(f^k, g) < \delta$ and $x \in X$. For each positive integer l, consider $\{g^{-l}(x), g^{-l+1}(x), \cdots, g^l(x)\}$. Let define a set $\{(w_i, v_i)\}$ in $X \times X$ as follows.

$$\{ (g^{-l}(x), g^{-l}(x)), (f(g^{-l}(x)), f(g^{-l}(x))), \cdots, (f^{k-1}(g^{-l}(x)), f^{k-1}(g^{-1}(x))), (f^{k}(g^{-l}(x)), g^{-l+1}(x)), (g^{-l+1}(x), g^{-l+1}(x)), \cdots, (x, x), \cdots, (f^{k-1}(x), f^{k-1}(x)), (f^{k}(x), g(x)), \cdots, (f^{k}(g^{l-1}(x)), g^{l}(x)) \} \}.$$

Then the set $\{(w_i, v_i)\}$ satisfy the hypothesis of Lemma 2.1. So there exists $h \in H(X)$ with

 $d_0(h, 1_X) < \delta$, and $h(w_i) = v_i$

Put $a = h \circ f$. Then we have

$$d(a(x), f(x)) = d(h \circ f(x), f(x)) < \delta_1$$

кі-знік коо

Hence, there exists y_l in X such that $d(f^n(y_l), a^n(x)) < \varepsilon$ for every integer n. Let $z_l = f^{kl}(y_l)$. Then $d(f^{nk}(z_0), g^n(x)) < \varepsilon$ for every $n, (-1 \le n \le 1)$. Let $z_0 \to z$ as $l \to \infty$. Then $d(f^{nk}(z), g^n(x)) \le \varepsilon$ for every $n \in Z$. So f^k has the semi-shadowing property and the proof is complete.

THEOREM 2.2. If $f \in H(X)$ has the semi-shadowing property, then f has the shadowing property.

PROOF. Let $\varepsilon > 0$ be arbitrary. select numbers $\delta = \delta_1(\varepsilon)$ satisfying the semi-shadowing property and $\delta = \delta(\delta_1)$ as in Lemma 2.1 Let $x_i, i \in Z$ be a δ - pseudo-orbit with $x_i \neq x_j, i \neq j$. consider the finite pseudo-orbit $A_k = \{x_{-k}, \dots, x, \dots, x_k\}$.

Then the set

 $\{(f(x_{-k}), x_{-k+1}), (f(x_{-k+1}), x_{-k+2}), \cdots, (f(x_{k-1}), x_k)\}$

satisfies the hypothesis of Lemma 2.1. Then there exists a $h \in H(X)$ such that $d_0(h, 1_X) < \delta$, and $h(f(x_i)) = x_{i+1}$, i = -k, dots, k-1. Let $g(x) = h \circ f(x)$, Then we have $d_0(f,g) < \delta_1$. So for the point x_{-k} , there is a y_k , such that $d(f^n(y_k), x_{-k+n}) < \varepsilon$ for $0 \le n \le k$. Let $f^k(y_k) = z_k$. Then we have $d(f^i(z_k), x_i) < \varepsilon$ for $-k \le i \le k$. Suppose $z_k \to z$ as $k \to \infty$. Then it is easy to show that $d(f^i(z), x_i) \le \varepsilon$ for all $i \in Z$. so f has the shadowing property

THEOREM 2.3. A persistent dynamical system is structurally stable with respect to $E_{\alpha}(x)$ for every $\alpha > 0$ if it is expansive.

PROOF. Let $f \in H(X)$ be persistent and let e(f) be an expansive constant for f. Choose sufficiently small $\varepsilon > 0$ satisfying $\varepsilon < \min\{\frac{1}{4}e(f), \frac{1}{4}\alpha\}$. Let $\delta = \delta(\frac{1}{2}\varepsilon) > 0$ be a number with the property of the persistence for f. If $g \in E_{\alpha}(X)$ with $d_0(f,g) < \delta$, then for any

$x \in X$ there is $y \in X$ satisfying

$$d(f^n(x), g^n(y)) < \frac{1}{2}\varepsilon$$
 for every $n \in \mathbb{Z}$.

Define a map $k: X \to X$ by k(x) = y, where y is an element in X chosen by the property of the persistence for f as above. Then the map k is well-defined. In fact, let z be another element in X such that $d(f^n(x), g^n(z)) < \frac{1}{2}\varepsilon$ for all $n \in \mathbb{Z}$. Then we have $d(g^n(z), g^n(x)) < \varepsilon < \alpha$ for all $n \in \mathbb{Z}$. Hence we get y = z.

By the similar method used in [1], We can show that k in continuos. Sine we have choosed ε sufficiently small, We may regard that $k: X \to X$ is surjective. Further, k is injective. In fact, if k(x) = k(y), then

$$d(f^{n}(x), f^{n}(y)) \leq d(f^{n}(x), g^{n}(k(x)) + d(g^{n}(k(x)), g^{n}(k(y)) + d(g^{n}(k(y)), f^{n}(y)) < 2\varepsilon < e(f)$$

and therefore x = y.

Let define $h: X \to X$ by $h(x) = k^{-1}(x)$. Then it is easy to show that $f \circ h(x) = h \circ g(x)$ for all $x \in X$. Using the similar method used in the proof of the continuity of k we can show that h is continuous and this completes the proof of the theorem.

Take and fix $\alpha > 0$. Then we can split $\overline{C(f)}$ into a union

 $\overline{C(f)} = \bigcup C_{\lambda}$ of equivalence classes C_{λ} under the α -relation in $\overline{C(f)}$.

LEMMA 2.4. For $\alpha > 0$, every $x \in \overline{C(f)}$ is α -related to $f^k(x)$ in $\overline{C(f)}$ for all k > 0.

PROOF. Let $x \in \overline{C(f)}$. Using the continuity of f we can take $\beta > 0$ with $\beta < \alpha$ such that $d(z,x) < \beta$ implies $\max\{d(f^i(x), f^i(z)) : 0 \le i \le k+1\} < \alpha$. Since $x \in \overline{C(f)}$ there is $z \in B(x,\beta) \cap C(f)$ and integer $\ell \ge k+2$ with $f^{\ell}(z) \in B(x,\beta)$. Then the sequence $\{f^k(x), f^{k+1}(z), d^{k+1}(z), d^{k+1}(z)$

KI-SHIK KOO

 $\cdots, f^{\ell-1}(z), x$ is an α -pseudo-orbit in $\overline{C(f)}$ from $f^k(x)$ to x. Obviously $\{x, f(x), \cdots, f^k(x)\}$ is α -pseudo-orbit from x to $f^k(x)$.

This lemma shows that each equivalence class C_{λ} is f-invariant.

LEMMA 2.5. Each equivalence class C_{λ} is open and closed in $\overline{C(f)}$.

PROOF. First, we show that each C_{λ} is closed in $\overline{C(f)}$. To see this, we choose a sequence $\{x_i\}$ in C_{λ} which converges to x'. Take $\beta > 0$ with $0 < \beta < \frac{1}{2}\alpha$ such that $f(B(x',\beta)) \subset B(f(x'), \frac{1}{2}\alpha)$. Let s > 0 be an integer with $d(x_s, x') < \beta$. Also, let $y \in B(x',\beta) \cap C(f)$ and $f^{\ell}(y) \in$ $B(x',\beta)$ for some $\ell > 0$. Then the sequence $\{x', f(y), f^2(y), \cdots, f^{\ell-1}(y), x_s\}$ is an α -pseudo-orbit from x' to x_s in $\overline{C(f)}$. On the otherhand, take $\gamma > 0$ such that $B(x_s, \gamma) \subset B(x', \frac{1}{2}\alpha)$ and $f(B(x_s, \gamma)) \subset$ $B(f(x_s), \frac{1}{2}\alpha)$. Let $w \in B(x_s, \gamma) \cap C(f)$ and $f^n(w) \in B(x_s, \gamma)$ for some n > 0. Then the sequence $\{x_s, f(w), f^2(w), \cdots, f^{n-1}(w), x'\}$ is an α -pseudo-orbit from x_s to x' in $\overline{C(f)}$. This implies that x_s is α -related to x' in $\overline{C(f)}$ and so $x' \in C_{\lambda}$. Hence C_{λ} is closed in $\overline{C(f)}$.

Next, we show that C_{λ} is open in $\overline{C(f)}$. Let $x \in C_{\lambda}$. for every $y \in C_{\lambda}$ there is an α -pseudo-orbit $\{x_0 = x, x_1, \cdots, x_p = y\}$ from x to y in $\overline{C(f)}$. Choose ξ with $0 < \xi < \frac{1}{3}\alpha$ such that $f(B(x_0,\xi)) \subset B(x_1,\alpha)$. Then for every $a \in B(x_0,\xi) \cap \overline{C(f)}$ the sequence $\{a, x_1, x_2, \cdots, x_p\}$ is an α -pseudo-orbit from a to y. On the other hand, let $\{y_0 = y, y_1, \cdots, y_q\}$

= x} be an α -pseudo-orbit from y to x in $\overline{C(f)}$. Since $x \in B(f(y_{q-1}), \alpha)$, we can choose a point z in $B(f(y_{q-1}), \alpha) \cap B(x, \xi) \cap C(f)$. Since $z \in B(x, \xi) \cap C(f)$ there is an integer m > 0 with $f^m(z) \in B(x, \xi)$. Therefore, for each a in $B(x, \xi) \cap \overline{C(f)}$ the sequence $\{y_0, y_1, \cdots, y_{q-1}, z, f(z), \cdots, f^{m-1}(z), a\}$ is an α -pseudo-orbit from y to a. This means that $B(x, \xi) \cap \overline{C(f)} \subset C_{\lambda}$. Hence C_{λ} is open in $\overline{C(f)}$, and so completes the proof.

LEMMA 2.6. If $f \in H(X)$ has the semi-shadowing property, then for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $g \in H(X)$ with $d_0(f,g) < \delta$ and for every periodic point x of g, there exists y in C(f)satisfying $d(f^i(y), g^i(x)) < \varepsilon$ for every $i \in \mathbb{Z}$.

PROOF. Let $\varepsilon > 0$ be given and let $\delta = \delta(\frac{1}{2}\varepsilon) > 0$ be the number with the property of the weak topological stability for f. For $g \in$ H(X) with $d_0(f,g) < \delta$ and $x \in X$ with $g^m(x) = x$ for some $m \ge 0$, consider $\{x_{mi+j}\} = \{g^j(x)\}$ for $i \in \mathbb{Z}$ and $0 \le j < m$. Since f has the semi-shadowing property there exists z in X such that

(1)
$$d(f^{mi+j}(z), g^{mi+j}(x)) < \frac{1}{2}\varepsilon$$

for $i \in \mathbb{Z}$ and $0 \leq j < m$. In particular, we have $f^{mi}(z) \in B(x, \frac{1}{2}\varepsilon)$ for all $i \in \mathbb{Z}$. Hence we have $\overline{O_{f^m}(z)} \subset \overline{B(x, \frac{1}{2}\varepsilon)}$. By the invariance of $\overline{O_{f^m}(z)}$ for f^m , there is a minimal set A of $\overline{O_{f^m}(z)}$ for f^m . By the minimality of A, for all $y \in A$, we have

$$\omega_{f^m}(y) = \alpha_{f^m}(y) = A \subset \overline{O_{f^m}(z)} \subset B(x, \frac{1}{2}\varepsilon).$$

Thus

 $y\in \omega_{f^m}(y)\cap \alpha_{f^m}(y)\subset \omega_f(y)\cap \alpha_f(y)$

and so we conclude that $y \in C(f)$. It is sufficient to show that $d(f^{mi+j}(y), g^j(x)) < \varepsilon$ for every $i \in \mathbb{Z}$ and $0 \leq j < m$. To show this assume $d(f^{mi_0+j_0}(y), g^{j_0}(x)) \geq \varepsilon$ for some $i_0 \in \mathbb{Z}$ and $0 \leq j_0 < m$. Let $mi_0 + j_0 > 0$. Since $y \in \omega_{f^m}(y)$ we can shoose a sequence $\{f^{m\ell_i}(y)\}$ converges to y as $\ell_i \to +\infty$. Hence, by the continuity of f there is sufficiently large L in $\{\ell_i\}$ such that $d(f^{mL+j_0}(y), g^{j_0}(x)) \geq \varepsilon > \frac{1}{2}\varepsilon$. But this contradicts (1) and this completes the proof.

KI-SHIK KOO

THEOREM 2.7. Let $f \in H(X)$. If $f : \Omega(f) \to \Omega(f)$ has the semishadowing property, then so does $f : \overline{C(f)} \to \overline{C(f)}$.

PROOF. Let $\varepsilon > 0$ be arbitrary. Then we can select $\delta_1 = \delta_1(\frac{1}{2}\varepsilon) > 0$ satisfying the property of the semi-shadowing property for $f \in H(\Omega(f))$ and the result of Lemma 2.4. Also, let

 $\delta_2 = \delta_2(\delta_1) > 0$ with $\delta_2 < \delta_1$ as in Lemma 2.1. By Lemma 2.3, $\overline{C(f)}$ can be split into a finite union, $\overline{C(f)} = \bigcup_{i=1}^k C_i$, of equivalence class C_i under δ_1 -relation. Let $\alpha = \min\{d(C_i, C_j) : 1 \leq i, j \leq k\}$ and take β with $0 < \beta < \min\{\alpha, \delta_1, \delta_2\}$ and let for $g \in H(\overline{C(f)}), d(f(z), g(z)) < \beta$ for all $z \in \overline{C(f)}$. For $x \in \overline{C(f)}$, consider a finite set

$$A_n = \{g^{-n}(x), g^{-n+1}(x), \cdots, g^n(x)\}.$$

Since $d(f(g^i(x)), g^{i+1}(x)) < \beta$ for $1 \le i \le n$. The set A_n is β pseudo-orbit for f. Since each equivalence class C_i is f-invariant and $\beta < \alpha$ the β -pseudo-orbit $\{A_n\}$ is contained in some $C_j, 1 \le j \le k$. Therefore there exists a δ_1 -pseudo-orbit $\{z_0^n, z_1^n, \dots, z_{n_k}^n\}$ from $g^{-n}(x)$ to $g^n(x)$. Let define a set $\{(w_i, v_i)\}$ in $X \times X$ as follows

$$(w_i, v_i) = \begin{cases} (f(g^{i-1}(x)), g^i(x)), & 1 \le i \le n \\ (f(z_{i-n-1}^n), z_{i-n}^n), & n+1 \le i \le n+n_k \\ (f(g^{i-2n-n_k-1}(x), g^{i-2n-n_k}(x)), & n+n_k+1 \le i \le 2n+n_k. \end{cases}$$

Then the set $\{(w_i, v_i)\}_{i=1}^{2n+n_k}$ satisfies the hypothesis of Lemma 2.1. Thus there exists $a \in H(X)$ such that

$$d_0(a, 1_X) < \delta_1$$
 and $a(w_i) = v_i$,

put k = af. Then we have $d_0(f(x), k(x)) < \delta$, and $k^m(x) = x, m = 2n + n_k$. Hence there is $y_n \in C(f)$ with $d(k^i(x), f^i(y_n)) < \frac{1}{2}\varepsilon$ for

every $i \in \mathbb{Z}$. In particular, $d(f^i(y_n), g^i(x)) < \frac{1}{2}\varepsilon$ for $-n \le i \le n$. Let y_n converges to y as $n \to \infty$. Then it is easy to show that

$$d(f^{i}(y), g^{i}(x)) \leq \frac{1}{2}\varepsilon < \varepsilon$$

for every $i \in \mathbb{Z}$. Hence the proof is complete.

Let $f \in H(X)$ and let $W^s_{\varepsilon}(x)$ and $W^u_{\varepsilon}(x)$ be the local stable and local unstable set of x for f. It was shown that if $\overline{\operatorname{Per}(f)}$, the closure of the set of periodic points of f, is hyperbolic set for f, then for $\varepsilon > 0$ sufficiently small there is $\delta > 0$ such that $x, y \in \overline{\operatorname{Per}(f)}$ and $d(x, y) < \delta$ implies

$$W^{s}_{\varepsilon}(x) \cap W^{u}_{\varepsilon}(y) = \{ \text{one point} \} \subset \operatorname{Per}(f).$$

PROPOSITION 2.7. Let $f \in H(X)$ be expansive and have the semishadowing property. Then, for sufficiently small $\varepsilon > 0$ there is $\delta > 0$ such that if $x, y \in C(f)$ with $d(x, y) < \delta$ then

$$W^{s}_{\varepsilon}(x) \cap W^{u}_{\varepsilon}(y) = \{ \text{one point} \} \subset \overline{C(f)}.$$

PROOF. Let e(f) be an expansive constant for f and $0 < \varepsilon < \frac{1}{3}e(f)$. Let $\delta_1 = \delta_1(\frac{1}{2}\varepsilon)$ with $0 < \delta_1 < \frac{1}{2}\varepsilon$ be a number satisfying the property of the semi-shadowing property for f and $\alpha = \alpha(\delta_1) < \frac{1}{2}\delta_1$ be the number as in Lemma 2.1. Choose $\delta > 0$ with $\delta < \frac{1}{2}\alpha$. Let $x, y \in C(f)$ with $d(x, y) < \delta$. Then we can choose sequences $\{n_i\}, \{m_i\}$ of positive integers satisfying :

$$n_i < n_j, m_i < m_j, \quad \text{if} \quad i < j; \quad \text{and}$$

 $d(x, f^{n_i}(x)) < \alpha, \quad d(y, f^{-m_i}(y)) < \alpha.$

Take and fix an integer k > 0. Consider a set

$$A_{k} = \{x, f(x), \cdots, f^{n_{k}-1}(x), f^{-m_{k}}(y), f^{-m_{k}+1}(y), \cdots, f^{-1}(y), x\}.$$

Here, define the set $\{(p_i, q_i)\}_{i=0}^{n_k+m_k}$ in $X \times X$ by putting

$$(p_i, q_i) = \begin{cases} (f^i(x), f^i(x)), & 0 \le i \le n_k - 1\\ (f^{n_k}(x), f^{-m_k}(y)), & i = n_k\\ (f^{-m_k+j}(y), f^{-m_k+j}(y)), & i = n_k + j, \ 1 \le j \le m_k - 1\\ (y, x), & i = n_k + m_k. \end{cases}$$

Then the set $\{(p_i, q_i)\}$ satisfying the hypothesis of Lemma 2.1. Thus there exists $h_k \in H(X)$ such that

$$d_0(h_k, 1_X) < \delta_1$$
 and $h_k(p_i) = q_i$

for $i = 0, 1, \dots, n_k + m_k$. Put $g_k = h_k \circ f$. Then we have

$$d_0(f, g_k) < \delta_1$$
 and $g_k^{\ell_k}(x) = x, \ \ell_k = n_k + m_k - 1.$

Hence there is z_k in C(f) satisfying $d(g_k^i(x), f^i(z_k)) < \frac{1}{2}\varepsilon$ for all $i \in \mathbb{Z}$. Let $\{z_k\}$ converges to z as $k \to \infty$. Then $z \in \overline{C(f)} \cap W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$. Using the expansivity of f, it is easy to show that $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ is singleton and this completes the proof.

In the above result, we denote that

$$W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) = [x, y]$$

Then we can show that this bracket map $[,] : \Delta_{\delta}\overline{C(f)} \to X$ is continuous, where $\Delta_{\delta}\overline{C(f)}$ is the neighborhood of the diagonal in $\overline{C(f)} \times \overline{C(f)}$ defined by $\Delta_{\delta}\overline{C(f)} = \{(x,y)|x,y \in \overline{C(f)}, d(x,y) < \delta\}$. A closed invariant set is said to have the local product structure in Λ if for small ε and δ , [x, y] belongs to Λ whenever $d(x, y) < \delta$, $x, y \in \Lambda$. Then by the above result, we obtain the following.

COROLLARY 2.8. If $f \in H(X)$ is expansive and has the semishadowing property, then $\overline{C(f)}$ has a local product structure.

References

- 1. N. Aoki, Topics in general topology, Elsevier Sci. Pub., 1989.
- 2. J. Lewowicz, Persistence in expansive in expansive systems, Ergod Th. & Dynam. Sys. 3 (1983), 567-578.
- 3. K.S. Koo, Recurrence and the shadowing property, J. Chungcheong Math. Soc. 5 (1992), 35-47.
- 4. Z. Nitecki and M. Shub, Filtrations, decompositions and explosions, Amer.
 J. Math. 97 (1976), 1029-1047.
- 5. P. Walters, On the pseudo orbits tracing property and its relationship to stability, Lecture Notes in Math. 668, 1978, 231-244.

DEPARTMENT OF MATHEMATICS TAEJON UNIVERSITY TAEJON, 300-716, KOREA