k_{ε} -Stability in Differential Systems

*Sung Kyu Choi, **Yoon-Hoe Gu and *Hyun Sook Ryu

ABSTRACT. We investigate some properties k_{ε} -stability which is an h-stability of exponential type.

1. Exponential asymptotic stability (EAS) and uniform Lipschitz stability (ULS) are the basic notions in stability theory for differential systems. EAS and ULS were investigated in [2] and [5] for ordinary differential equations. For functional differential equations EAS and ULS were studied in [4].

Pinto [6, 7, 8] introduced h-stability (hS) which is an important extension of the notions of EAS and ULS. He introduced the concept of hS with the intention of obtaining results about stability for a weakly stable systems (at least, weaker than those given by EAS and ULS).

In this paper we investigate some properties of k_{ε} -stability which is an h-stability of exponential type.

2. We consider the nonlinear nonautonomous differential system

(1)
$$x' = f(t, x), x(t_0) = x_0,$$

The present studies were partially supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1992, Project No. BSRI-92-110.

Received by the editors on June 30, 1994. 1980 Mathematics subject classifications: Primary 34D10. where $f \in C^1(I_a \times D)$, $I_a = [a, \infty)$ and D is a region of \mathbb{R}^n containing the origin. We assume that the Jacobian matrix $f_x = \partial f/\partial x$ exists and is continuous on $I_a \times D$ and that f(t,0) = 0. The symbol $|\cdot|$ denotes arbitrary vector norm in \mathbb{R}^n .

Let $x(t) = x(t, t_0, x_0)$ be denoted by the unique solution of (1) through (t_0, x_0) for all $t \ge t_0 \ge a$ and for all $x_0 \in D$.

Also, we consider the associated variational system

(2)
$$z' = f_x(t, x(t, t_0, x_0))z, \quad z(t_0) = z_0.$$

Let $\phi(t, t_0, x_0) = \frac{\partial}{\partial x_0} x(t, t_0, x_0)$ be the fundamental matrix solution of (2).

Pinto[4] introduced h-system by the following statements.

The system (1) (or the trivial solution x = 0 of (1)) is called h-stable (hS) if there exist $c \geq 1, \delta > 0$ and a positive bounded continuous function h on I_a such that

$$|x(t)| \le c|x_0|h(t)h(t_0)^{-1}$$

for $t \geq t_0 \geq a$ and $|x_0| \leq \delta$,

Also, the system (2) is h-stable if there exist $c \geq 1, \delta > 0$ and a positive bounded continuous function such that

$$|\phi(t,t_0,x_0)| \leq ch(t)h(t_0)^{-1}$$

for $t \ge t_0 \ge a$ and $|x_0| \le \delta$.

If, in (*) and (**), h(t) is replaced by

$$h_{\varepsilon}(t) = h(t)e^{c\varepsilon t}, \quad \varepsilon > 0,$$

then the system is called h_{ε} -stable, and h(t) is replaced by

$$k_{\varepsilon}(t) = h(t)e^{c\int_{t_0}^t (\lambda(s)+\varepsilon) ds}, \quad \lambda \in L_1(I_a)$$

then the system is called k_{ε} -stable.

We need the Alekseev formula for a comparison between the solutions of (1) and the solutions of the perturbed nonlinear system

(3)
$$y' = f(t,y) + g(t,y), \quad y(t_0) = y_0,$$

where $g \in C(I_a \times D, \mathbb{R}^n)$. We let $y(t) = y(t, t_0, y_0)$ denote the solution of (3) passing through the point (t_0, y_0) in $I_a \times D$.

LEMMA 1 [1]. If $y_0 \in D \subset \mathbb{R}^n$, then for all t such that $x(t, t_0, y_0) \in D \subset \mathbb{R}^n$,

$$y(t,t_0,y_0) = x(t,t_0,y_0) + \int_{t_0}^t \phi(t,s,y(s))g(s,y(s)) ds.$$

LEMMA 2 [5]. Assume that $x(t, t_0, x_0)$ and $x(t, t_0, y_0)$ are solutions of (1) through (t_0, x_0) and (t_0, y_0) , respectively, which exist for $t \geq t_0$ and such that x_0 and y_0 belong to a convex subset \hat{D} of \mathbb{R}^n . Then for $t \geq t_0$,

$$x(t,t_0,y_0)-x(t,t_0,x_0)=\int_0^1\phi(t,t_0,x_0+s(y_0-x_0))ds\cdot(y_0-x_0).$$

3. Note that if z = 0 of (2) is hS, then x = 0 of (1) is also hS because

$$x(t,t_0,x_0) = (\int_0^1 \phi(t,t_0,sx_0) \ ds)x_0,$$

by Lemma 2.

For the converse, we need a condition

(4)
$$|f_x(t,x) - f_x(t,0)| \le v(t)|x|$$

for x in a neighborhood of the origin, where $\int_{t_0}^{\infty} v(s) ds < \infty$.

LEMMA 3 [3]. Under the condition (4), if x = 0 of (1) is hS, then z = 0 of (2) is hS.

THEOREM 1. If z = 0 of (2) is hS and $g(t, y) = g_1(t, y)$ is satisfied by

(5)
$$|g_1(t,y)| \le \lambda(t)|y|, \quad \lambda \in C(I_a),$$

then the perturbed system (3) is also hS when $\lambda \in L_1(I_a)$.

PROOF. See [6].

Consider the perturbation $g(t,y) = g_2(t,y)$ with the conditions (6)

$$|g_2(t,y)| \le \nu(t), \Lambda(t) = \int_t^{t+1} \nu(s) \ ds \to 0 \quad \text{as} \quad t \to \infty, \quad \nu \in C(I_a).$$

LEMMA 4. Under the conditions (6), assume that the positive continuous function h defined on I_a satisfy the following conditions:

(7)
$$\lim_{t \to \infty} \sup h(t) \int_a^t h(s)^{-1} ds = M \quad \text{and} \quad$$

(8)
$$0 < \lim_{t \to \infty} \inf h(t) \int_{t}^{t+1} h(s)^{-1} ds \le \lim_{t \to \infty} \sup h(t) \int_{t}^{t+1} h(s)^{-1} ds < \infty.$$

Then $\lim_{t\to\infty} h(t) \int_T^t h(s)^{-1} \nu(s) ds = 0$ for all $T \ge a$.

PROOF. See Lemmas 1 and 2 of [6].

LEMMA 5[6]. If h satisfies the condition (7), then there is a positive constant N such that

$$h(t) \le Ne^{-\frac{t}{M}}$$

for $t \geq a$ and M as in (7).

THEOREM 2. Assume that the system (2) is hS and g(t, y) satisfy (6), where h satisfies (7) and (8). Then the zero solution of (3) tends to zero as $t \to \infty$.

PROOF. See [Theorem 6, 2].

Now, we obtain an h_{ε} -stability property resulting from the perturbation of an h-system.

THEOREM 3. Assume that the system (2) is hS and $g(t,y) = g_3(t,y)$ satisfy

$$(9) |g_3(t,y)| \le \varepsilon |y|, \varepsilon > 0,$$

for y in a neighborhood of the origin, uniformly in t. Then the perturbed system of (3) is h_{ε} -stable, where $h_{\varepsilon} = h(t)e^{c\varepsilon t}$, and all solutions of (3) tend to zero as $t \to \infty$ if h satisfy (7) and $c\varepsilon < \frac{1}{M}$.

PROOF. Using Alekseev's formula, we obtain

$$y(t) = y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^{t} \phi(t, s, y(s)) g_3(s, y(s)) ds.$$

Therefore we have

$$|y(t)| = |y(t, t_0, y_0)| \le |x(t, t_0, y_0)| + \int_{t_0}^t |\phi(t, s, y(s))| |g_3(s, y(s))| ds$$

$$\le c|y_0|h(t)h(t_0)^{-1} + c \int_{t_0}^t h(t)h(s)^{-1} \varepsilon |y(s)| ds.$$

By Gronwall's inequality, we obtain

$$|y(t)| \le c|y_0|h(t)h(t_0)^{-1} \exp(c \int_{t_0}^t \varepsilon \, ds)$$

$$= c|y_0|h(t)h(t_0)^{-1}e^{c\varepsilon(t-t_0)}$$

$$= c|y_0|h_{\varepsilon}(t)h_{\varepsilon}(t_0)^{-1},$$

where $h_{\varepsilon}(t) = h(t)e^{c\varepsilon t}$.

If h satisfies (7), there exists N > 0 such that $|h(t)| \leq Ne^{-\frac{t}{M}}$. Thus $|h_{\varepsilon}(t)| \leq Ne^{(c\varepsilon - \frac{1}{M})t}$. Therefore if $c\varepsilon < \frac{1}{M}$, then y = 0 of (3) is h_{ε} -stable and $h_{\varepsilon}(t) \to 0$ as $t \to \infty$. This completes the proof.

Next, we investigate k_{ε} -stability for the perturbed system

(10)
$$y' = f(t,y) + g_1(t,y) + g_3(t,y), \qquad y(t_0) = y_0.$$

THEOREM 4. Under the conditions (5), (7) and (9), suppose that the system (2) is hS. Then

- (i) for all $t_0 \ge a$ and y_0 small enough, all solutions $y(t, t_0, y_0)$ of (10) are defined for all $t \ge t_0$,
- (ii) the system (10) is a k_{ε} -stable and all solutions $y(t, t_0, y_0)$ of (10) tend to zero as $t \to \infty$ if $\lambda \in L_1(I_a)$ and $c\varepsilon < \frac{1}{M}$, where $k_{\varepsilon}(t) = h(t) \exp\{c \int_{t_0}^t (\lambda(s) + \varepsilon) ds\}.$

PROOF. By Alekseev's formula, we have

$$y(t) = x(t, t_0, y_0) + \int_{t_0}^t \phi(t, s, y(s)) \{g_1(s, y(s)) + g_3(s, y(s))\} ds.$$

Thus

$$|y(t)| \le c|y_0|h(t)h(t_0)^{-1} + ch(t)\int_{t_0}^t h(s)^{-1}(\lambda(s) + \varepsilon)|y(s)| ds$$

or

$$h(t)^{-1}|y(t)| \le c|y_0|h(t_0)^{-1} + c\int_{t_0}^t h(s)^{-1}(\lambda(s) + \varepsilon)|y(s)| \ ds.$$

Then by Gronwall's inequality,

$$|y(t) \le c|y_0|h(t)h(t_0)^{-1} \exp\{c \int_{t_0}^t (\lambda(s) + \varepsilon) \ ds\}.$$

Therefore the solutions $y(t, t_0, y_0)$ of (10) are defined for all $t \geq t_0$. Put $k_{\varepsilon}(t) = h(t) \exp\{c \int_a^t (\lambda(s) + \varepsilon) ds\}$. Then $|y(t)| \leq c|y_0|k_{\varepsilon}(t)k_{\varepsilon}(t_0)^{-1}$. By Lemma 5, $h(t) \leq Ne^{-\frac{t}{M}}$, N > 0 a constant. Then

$$k_{\varepsilon}(t) = h(t) \exp\{c \int_{a}^{t} (\lambda(s) + \varepsilon) ds\}$$

$$\leq Ne^{-\frac{t}{M}} \cdot Le^{c\varepsilon(t-a)}$$

$$= c_{1}e^{(c\varepsilon - \frac{1}{M})t}, \quad \text{where} \quad c_{1} = NLe^{-ca\varepsilon}.$$

If $c\varepsilon < \frac{1}{M}$, then $k_{\varepsilon}(t)$ is bounded and the system (10) is k_{ε} -stable. Also, $k_{\varepsilon}(t) \to 0$ as $t \to \infty$. Therefore y(t) tend to zero as $t \to \infty$. This completes the proof.

REMARK 1. In Theorem 4, we can prove the system (10) as a perturbed system of (3-1) $y' = f(t,y) + g_1(t,y)$ under the following condition:

(H)
$$|G_x(t,x) - G_x(t,0)| \le K(t)|x|, \quad K \in L_1(I_a),$$

where $G(t,x) = f(t,x) + g_1(t,x)$. For, by Theorem 1, the system (3-1) is hS. So the fundamental matrix solution of (3-1) is hS by (H) and Lemma 3. Therefore for the solution of (10) we have the same conclusion of Theorem 3.

LEMMA 6. Under the hypotheses (6), (7) and (8),

$$k_{\varepsilon}(t) \int_{t_0}^t k_{\varepsilon}(s)^{-1} \nu(s) ds$$

tend to zero as $t \to \infty$, where $k_{\varepsilon}(t) = h(t) \exp\{c \int_a^t (\lambda(s) + \varepsilon) ds\}$, $\lambda \in L_1(I_a)$ and $c\varepsilon < \frac{1}{M}$.

PROOF. Since $\Lambda(t) \to 0$ as $t \to \infty$, for every $\delta > 0$ there exists T such that $\Lambda(t) < \delta$ for $t \ge T$. Therefore we can compute

$$k_{\varepsilon}(t) \int_{t_0}^t k_{\varepsilon}(s)^{-1} \nu(s) \ ds$$

$$= k_{\varepsilon}(t) \int_{t_0}^T k_{\varepsilon}(s)^{-1} \nu(s) \ ds + k_{\varepsilon}(t) \int_T^t k_{\varepsilon}(s)^{-1} \nu(s) \ ds.$$

The first term of the right side tends to zero by the proof of Theorem 4 and the second term also tends to zero because

$$k_{\varepsilon}(t) \int_{T}^{t} k_{\varepsilon}(s)^{-1} \nu(s) \ ds = h(t) \exp\{c \int_{a}^{t} (\lambda(\tau) + \varepsilon) \ d\tau\}$$

$$\cdot \int_{T}^{t} h(s)^{-1} \exp\{c \int_{s}^{a} (\lambda(\tau) + \varepsilon) \ d\tau\} \ \nu(s) \ ds$$

$$= h(t) \int_{T}^{t} h(s)^{-1} \nu(s) \exp\{c \int_{s}^{t} (\lambda(\tau) + \varepsilon) \ d\tau\} \ ds$$

$$\leq Lh(t) \int_{T}^{t} h(s)^{-1} \nu(s) \ ds,$$

where $L = \sup_{T \leq s \leq t} \exp\{c \int_s^t (\lambda(\tau) + \varepsilon) d\tau\}$. By Lemma 4, $h(t) \int_{t_0}^t h(s)^{-1} \nu(s) ds$ tends to zero as $t \to \infty$. This completes the proof.

THEOREM 5. Under the conditions (5), (6), (7), (8), and (9), assume that the system (2) is hS and

(11)
$$|F_x(t,x) - F_x(t,0)| \le K(t)|x|, \quad K \in L_1(I_a),$$

where $F(t,x) = f(t,x) + g_1(t,x) + g_3(t,x)$. Then for any $t_0 \ge a$ and y_0 small enough, the solutions $y(t,t_0,y_0)$ of the perturbed system

(12)
$$y' = f(t,y) + g_1(t,y) + g_2(t,y) + g_3(t,y)$$

are defined for $t \geq t_0$ and for all t_0 big enough, the solutions $y(t, t_0, y_0)$ tend to zero as $t \to \infty$ if $\lambda \in L_1(I_a)$ and $c\varepsilon < \frac{1}{M}$.

PROOF. Let

$$y' = f(t,y) + g_1(t,y) + g_2(t,y) + g_3(t,y)$$

= $F(t,y) + g_2(t,y)$.

From Theorem 4, the system x' = F(t, x) is k_{ε} -stable. The variational system $z' = F_x(t, x(t, t_0, x_0))z$ is k_{ε} -stable, that is,

$$|\Phi(t,t_0,x_0)| \le ck_{\varepsilon}(t)k_{\varepsilon}(t_0)^{-1}$$

where $\Phi(t, t_0, x_0) = \frac{\partial}{\partial x_0} x(t, t_0, x_0)$ is the fundamental matrix solution of the variational system $z' = F_x(t, x(t, t_0, x_0))z$ of (10), by (11) and Lemma 3. Therefore we have

$$y(t) = y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^{t} \Phi(t, s, y(s)) g_2(s, y(s)) ds.$$

Thus

$$|y(t)| \le c|y_0|k_{\varepsilon}(t)k_{\varepsilon}(t_0)^{-1} + ck_{\varepsilon}(t)\int_{t_0}^t k_{\varepsilon}(s)^{-1}\nu(s) \ ds.$$

Hence y(t) is defined on the whole interval $[t_0, \infty)$. For t_0 big enough, the first term of the above tends to zero as $t \to \infty$ by Theorem 4 and the second term of the above tends to zero as $t \to \infty$ by Lemma 6.

REMARK 2. In Theorems 1 ~ 5, if we assume that (4) and x = 0 of (1) is hS instead of the system (2) is hS, then we have the same conclusion by Lemma 3. In Theorem 5, if $\varepsilon = 0$, i.e., $g_3 = 0$ and $\lambda \in L_1(I_a)$, then the solutions of the system $y' = f(t,y) + g_1(t,y) + g_2(t,y)$ tend to zero as $t \to \infty$. Similarly, if $\lambda = 0$, i.e., $g_1 = 0$, then the zero solution of $y' = f(t,y) + g_2(t,y) + g_3(t,y)$ tends to zero as $t \to \infty$.

REFERENCES

- F. Brauer, Perturbations of nonlinear systems of differential equations, II,
 J. Math. Anal. Appl. 17 (1967), 418-434.
- S.K. Choi, K.S. Koo and K.H. Lee, Lipschitz stability and exponential asymptotic stability in perturbed systems, J. Korean Math. Soc. 29 (1992), 175-190.
- 3. S.K. Choi and H.S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
- 4. S.K. Choi, Stabilities in differential systems, Comm. Korean Math. Soc. 9 (1994), 579-591.
- 5. F.M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential equations, J. Math. Anal. Appl. 113 (1986), 562-577.
- 6. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
- 7. M. Pinto, Asymptotic integration of a system resulting from the perturbation of an h-system, J. Math. Anal. Appl. 131 (1988), 194-216.
- 8. M. Pinto, Stability of nonlinear differential systems, preprint.

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON, 305-764, KOREA.

DEPARTMENT OF MATHEMATICS HANSEO UNIVERSITY SEOSAN, 382-820, KOREA.