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k.-Stability in Differential Systems

*SuNG Kyu CHol , ¥**YooN-HOE Gu AND *HYUN SOOK Ryu

ABSTRACT. We investigate some properties ke-stability which is an
h-stability of exponential type.

1. Exponential asymptotic stability (EAS) and uniform Lipschitz
stability (ULS) are the basic notions in stability theory for differential
systems. EAS and ULS were investigated in [2] and [5] for ordinary
differential equations. For functional differential equations EAS and
ULS were studied in [4].

Pinto [6, 7, 8] introduced h-stability (hS) which is an important
extension of the notions of EAS and ULS. He introduced the concept
of hS with the intention of obtaining results about stability for a
weakly stable systems (at least, weaker than those given by EAS and
- ULS).

In this paper we investigate some properties of k.-stability which

is an h-stability of exponential type.

2. We consider the nonlinear nonautonomous differential system

1) ' = f(t,z), z(to) = o,
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where f € CY(I, x D), I, = [a,00) and D is a region of R® containing
the origin. We assume that the Jacobian matrix f, = 0f/0z exists
and is continuous on I, x D and that f(¢,0) = 0. The symbol | - |
denotes arbitrary vector norm in R”™.

Let z(t) = z(t,t0,20) be denoted by the unique solution of (1)
through (to,z0) for all ¢t > to > a and for all o € D.

Also, we consider the associated variational system

(2) z' = fu(t,z(t,t0,20))z, z(to) = 2o.
Let ¢(?,to,$o) = E%x(t,to,a:o) be the fundamental matrix solution
of (2).

Pinto[4] introduced h-system by the following statements.

The system (1) (or the trivial solution z = 0 of (1)) is called h-stable
(hS) if there exist ¢ > 1,6 > 0 and a positive bounded continuous
function h on I, such that

(*) |2(t)| < clzolA(t)h(to) ™

for t > t9 > a and |zo| < 6,
Also, the system (2) is h-stable if there exist ¢ > 1,6 > 0 and a

positive bounded continuous function such that

(%) |6(t,0,20)] < ch(t)h(to)™

fort > tg > aand |zg] <6 .
If, in (%) and (*x*), h(t) is replaced by

he(t) = h(t)e®t, €>0,
then the system is called h.-stable , and h(t) is replaced by

ke(t) = h(t)eSJo X+ ds  y e 1 (1)
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then the system is called k.-stable.
We need the Alekseev formula for a comparison between the solu-

tions of (1) and the solutions of the perturbed nonlinear system

(3) y' = f(t,y) +9(t,y), y(to) = vo,

where g € C(I, x D,R™). Welet y(t) = y(t,t0,y0) denote the solution
of (3) passing through the point (to,yo) in I, x D.

LEMMA 1 [1]. Ifyo € D C R", then for all t such that z(t,to,y0) €
D c R™,

y(t,tO’ yO) = CU(t,to,y()) + tt¢(t73>y(s))g(3’ y(S)) ds.

LEMMA 2 [5]. Assume that z(t,to,z0) and z(t,to, yo) are solutions
of (1) through (to,z¢) and (to,yo), respectively, which exist for t > t,
and such that zo and yo belong to a convex subset D of R®. Then
fort > tg,

1 -
m(t’ tO, yO) - (L'(t, t0,$0) = / ¢(tat0a10 + s(yo - IL‘o))dS ) (yO - 1'0).
0

3. Note that if z = 0 of (2) is hS, then z = 0 of (1) is also hS

because

1
.’L'(t,t(),.’l,‘o) = (/ ¢(tat0a3$0) dS).’If(),
0

by Lemma 2 .

For the converse, we need a condition

(4) |fz(t,2) — fz(2,0)] < v(D)|z]

for z in a neighborhood of the origin, where f:}o v(s) ds < oo.
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LEMMA 3 [3]. Under the condition (4), if z = 0 of (1) is hS, then
z =0 of (2) is hS.

THEOREM 1. If z = 0 of (2) is hS and ¢(t,y) = ¢91(t,y) is satisfied
by
(8) lga(t, 9)I < ADlyl, A e C(L),
then the perturbed system (3) is also hS when X € Li(1,).

PROOF. See [6].

Consider the perturbation g(t,y) = g2(t,y) with the conditions
(6) |
t+1
lg2(t,v)| < v(t),A(t) = / v(s)ds—0 as t— oo, veC,).
t
¢

LEMMA 4. Under the conditions (6), assume that the positive con-

tinuous function h defined on I, satisfy the following conditions:
t
(7 tlim sup h(t)/ h(s) ' ds=M and
s :

(8)
t+1 t+1
0< tlim inf h(t)/ h(s)~! ds < tlim sup h(t)/ h(s)™! ds < .

Then tlim h(t) f;, h(s)"'v(s) ds =0 for all T > a.
PROOF. See Lemmas 1 and 2 of [6].

LEMMA 5[6]. If h satisfies the condition (7) , then there is a positive

constant N such that
h(t) < Ne™

fort > a and M as in (7).
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THEOREM 2. Assume that the system (2) is hS and ¢(t,y) satisfy
(6), where h satisfies (7) and (8). Then the zero solution of (3) tends

to zero as t — oo.
PROOF. See [Theorem 6, 2].

Now, we obtain an h.-stability property resulting from the pertur-

bation of an h-system.

THEOREM 3. Assume that the system (2) is hS and ¢(t,y) =
g3(t,y) satisfy

(9) |g3(t’ y)l < elyl, €> Os

for y in avneighborhood of the origin, uniformly in t. Then the per-
turbed system of (3) is h.-stable, where h. = h(t)e®**, and all solutions
of (3) tend to zero ast — oo if h satisfy (7) and ce < 7.

PRrROOF. Using Alekseev’s formula, we obtain

y(t) = y(t,to,y0) = z(t,%0,%0) +/t b(t,3,y(s))g3(s,y(s)) ds.

Therefore we have
t
ly(t)| = ly(t,to,y0)| < |z(t,t0,0)l +/ |6(t, 5,y(s))llgs(s,y(s))| ds
to
t
< clyo|h(t)h(te) ™ + ¢ / h(£)h(s) " ely(s)| ds.
to
By Gronwall’s inequality, we obtain
t
¥ < ol (t)h(ta) " explec [ e ds)
to
= clyo|h(t)h(t0)"lece(t_t°)
= c|yo|he(t)he(to) ™",
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where h.(t) = h(t)e°t.

If h satisfies (7), there exists N > 0 such that |h(t)] < Ne~ .
Thus |he(t)| < Neles=a)t, Therefore if ce < 27, theny =0 of (3) is
he-stable and h.(t) — 0 as t — oo. This completes the proof. -

Next, we investigate k.-stability for the perturbed system

(10) y' = f(t,y) + 91(t,y) + 93(t,y),  y(to) = vo.

THEOREM 4. Under the conditions (5), (7) and (9), suppose that
the system (2) is hS. Then

(i) for all ty > a and yo small enough, all solutions y(t,t9,yo) of
(10) are defined for all t > t,,

(ii) the system (10) is a k.-stable and all solutions y(t,t9,yo) of
(10) tend to zero ast — oo if A € Ly(I,) and ce < 37, where
ke(t) = h(t)exp{c ftf)(/\(s) + ¢) ds}.

PROOF. By Alekseev’s formula, we have
t
y(t) = oltsto,0) + [ 6(t,,u(5)gn(5,5(5) + 9a(s, )} s
to
Thus

ly(t)] < clyolh(t)h(to) ™" + ch(t)/t h(s)TH(A(s) + €)ly(s)] ds

or

h(t) M y(®)] < clyolh(to)™ +c / h(s)™ (A(s) + €)lu(s)] ds.
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Then by Gronwall’s inequality,

9(6) < clwolh()A(t0) ™ exple [ (A(s)+¢) ds)

Therefore the solutions y(t,tg,yo) of (10) are defined for all ¢ > ¢,.
Put k.(t) = h(t)exp{c fat(/\(s)—i—e) ds}. Then |y(t)| < c|yo|ke(t)ke(to) L.
By Lemma 5, h(t) < Ne~%, N > 0 a constant. Then

ke(t) = h(t) exp{c/ (A(s) +¢€) ds}
< Ne_WtT . Lece(t——a)

-1 —
= cyelce ﬁ)t, where ¢y = NLe™°%®,

If ce < 47, then k.(t) is bounded and the system (10) is k.-stable.
Also, k.(t) — 0 as t — oo. Therefore y(t) tend to zero as t — oo.

This completes the proof.

REMARK 1. In Theorem 4, we can prove the system (10) as a
perturbed system of (3-1) y' = f(¢,y) + ¢1(¢,y) under the following

condition:

(H) |Gz(t,2) — G=(t,0)| < K(t)|z|, K € Li(la),

where G(t,z) = f(t,z) + ¢1(¢,z). For, by Theorem 1, the system
(3-1) is hS . So the fundamental matrix solution of (3-1) is hS by (H)
and Lemma 3. Therefore for the solution of (10) we have the same

conclusion of Theorem 3.

LEMMA 6. Under the hypotheses (6), (7) and (8),

ke(t)/t ke(s)"tu(s) ds
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tend to zero as t — oo, where k.(t) = h(t)exp{cfat()\(s) + €) ds},
A € Ly(1,) and ce < 35.

PROOF. Since A(t) — 0 as t — oo, for every § > 0 there exists T
such that A(t) < é for t > T. Therefore we can compute

ke(t) t ke(s)"tu(s) ds

T t
==k‘5(t)/t ke(s) 1v(s) ds + kc(t)/; ke(s)"1v(s) ds.

The first term of the right side tends to zero by the proof of Theorem

4 and the second term also tends to zero because
ke(t)/r ke(s)tu(s) ds = h(t)exp{c/ (AM(T) +¢) dr}
: / h(s)~! exp{c /u(A(T) +¢)dr} v(s) ds
T s
= h(t)/T h(s)'lu(s)exp{c/ (M) +¢€)dr} ds
< Lh(t)/T h(s)™tv(s) ds,

where L = sup exp{c f:(/\(r)-}-e) dr}. By Lemma 4 , h(t) ftto h(s)~1v(s) ds
T<s<t

tends to zero as t — co. This completes the proof.

THEOREM 5. Under the conditions (5), (6), (7), (8), and (9), as-
sume that the system (2) is hS and

(11) |Fe(t, 2) — Fx(2,0)| < K(t)lz], K € Li(la),

where F(t,z) = f(t,z) + g1(t,z) + g3(t,z). Then for any ty > a and
yo small enough, the solutions y(t,to,yo) of the perturbed system

(12) y' = f(t,y) + 91(t,y) + g2(t,y) + g3(t,y)
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are defined fort > t¢ and for all ty big enough, the solutions y(t,to,yo)
tend to zero ast — oo if A € Ly(I,) and ce < 4.

PrOOF. Let

y' =f(t,y) + 91(t,y) + 92(t,y) + g3(t,y)
=F(ta y) + gZ(t’ y)'

From Theorem 4, the system z' = F(t,z) is k.-stable. The variational
system 2' = Fy(t,2(¢,t0,%0))z is ke-stable, that is,

|®(t, to, z0)| < cke(t)ke(to) ™"

where ®(t,tg,z0) = ai“:c(t, to, Zo) is the fundamental matrix solution
of the variational system z' = Fy(t,z(t,t0,20))z of (10), by (11) and

Lemma 3. Therefore we have

y(t) = y(t,t0,y0) = z(t,t0,%0) +/ ®(t,5,y(s))g2(s,y(s)) ds.

to

Thus
()] < clyolke(t)ke(to) " + che(?) /t k()" 1(s) ds.

Hence y(t) is defined on the whole interval [tg, 00). For to big enough,
the first term of the above tends to zero as t — oo by Theorem 4 and

the second term of the above tends to zero as t — oo by Lemma 6.

REMARK 2. In Theorems 1 ~ 5, if we assume that (4) and ¢ = 0
of (1) is hS instead of the system (2) is hS, then we have the same
conclusion by Lemma 3. In Theorem 5, if ¢ = 0, i.e., g3 =0and A €
Ly(1,), then the solutions of the system y' = f(t,y)+g1(¢,y)+92(t,y)
tend to zero as t — oo. Similarly, if A =0, i.e., g; = 0, then the zero

solution of y' = f(t,y) + g2(¢,y) + g3(¢,y) tends to zero as t — oo.
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