Some Properties of Generalized Fractions

Dong-Soo Lee* and Sang-Cho Chung

Abstract

Let A be a commutative ring with identity and M an A-module. When U_{n} is a triangular subset of A^{n}, Sharp and Zakeri defined a module of generalized fractions $U_{n}^{-n} M$. In [SZ3], they described a relation of the Monomial Conjecture and a module of generalized fractions under the condition of a Noetherian local ring. In this paper, we investigate some properties of non-zero generalized fractions and give a generalization of results of Sharp and Zakeri for an arbitrary ring.

0. Introduction

Let A be a commutative ring with identity and M an A-module. Put $U_{d+1}=\left\{\left(b_{1}, \ldots, b_{d}, 1\right) \in A^{d+1}: b_{1}, \ldots, b_{d}\right.$ forms a system of parameters for $A\}$, where A is a Noetherian local ring of dimension d. Then $U_{d+1}^{-d-1} A$ becomes a module of generalized fractions (cf. [SZ1]). Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a fixed system of parameters for A. In [SZ3], Sharp and Zakeri described a relation of the Monomial Conjecture and a module of generalized fractions. They proved that $a_{1}^{t-1} \cdots a_{d}^{t-1} \notin$ $\left(a_{1}^{t}, \ldots, a_{d}^{t}\right) A$ for all $t \geq 1$ if and only if $\frac{1}{\left(a_{1}, \ldots, a_{d}, 1\right)} \neq 0$ in $U_{d+1}^{-d-1} A$.

So we take an interest in properties of non-zero generalized fractions. The purpose of this paper is to investigate some properties of non-zero generalized fractions and to give a generalization of results of Sharp and Zakeri (Theorem 3.2). That is, fix a sequence a_{1}, \ldots, a_{n} of
*The first author was partially supported by BSRI-94-1427, Ministry of Education.

Received by the editors on June 30, 1994.
1980 Mathematics subject classifications: Primary 13C05.
elements of an arbitrary ring A. Then we have that $m a_{1}^{t-1} \cdots a_{n}^{t-1} \notin$ $\left(a_{1}^{t}, \ldots, a_{n-1}^{t}\right) M$ for all $t \geq 1$ if and only if $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)} \neq 0$ in $U(a)_{n}^{-n} M$, where $U(a)_{n}=\left\{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right) \in A^{n}: \alpha_{1}, \ldots, \alpha_{n}\right.$ are positive integers $\}$.

1. Preliminaries

Throughout this paper, A is a commutative ring with identity. M denotes an A-module. We use ${ }^{T}$ to denote matrix transpose, n to denote a positive integer, and $D_{n}(A)$ to denote the set of $n \times$ n lower triangular matrices over A. For $\mathrm{H} \in D_{n}(A),|\mathrm{H}|$ denotes the determinant of H. N denotes the set of positive integers. Let $\left(a_{1}, \ldots, a_{i}\right) A$ be the ideal of A which is generated by $\left\{a_{1}, \ldots, a_{i}\right\}$ and let $\left(a_{1}, \ldots, a_{i}\right) M$ be the submodule of M which is generated by $\left\{a_{j} m: j=1, \ldots, i\right.$ and $\left.m \in M\right\}$.

Definition 1.1 [SZ1]. A triangular subset of A^{n} is a non-empty subset U_{n} of A^{n} such that
(i) if $\left(a_{1}, \ldots, a_{n}\right) \in U_{n}$, then $\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right) \in U_{n}$ for all choices of positive integers $\alpha_{1}, \ldots, \alpha_{n}$, and
(ii) if $\left(a_{1}, \ldots, a_{n}\right) \in U_{n}$ and $\left(b_{1}, \ldots, b_{n}\right) \in U_{n}$, then there exist $\left(c_{1}, \ldots, c_{n}\right) \in U_{n}$ and $\mathrm{H}, \mathrm{K} \in D_{n}(A)$ such that $\mathrm{H}\left[a_{1} \ldots a_{n}\right]^{T}$ $=\left[\begin{array}{lll}c_{1} & \ldots & c_{n}\end{array}\right]^{T}=\mathrm{K}\left[\begin{array}{lll}b_{1} & \ldots & b_{n}\end{array}\right]^{T}$.

Let U_{n} be a triangular subset of A^{n}. The module of generalized fractions $U_{n}^{-n} M$ of M with respect to U_{n} is a module, whose elements, called generalized fractions, have the form

$$
\frac{m}{\left(a_{1}, \ldots, a_{n}\right)},
$$

where $m \in M$ and $\left(a_{1}, \ldots, a_{n}\right) \in U_{n}$, satisfying the following condition:

Let $m, m^{\prime} \in M$ and $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in U_{n}$. Then
$\frac{m}{\left(a_{1}, \ldots, a_{n}\right)}=\frac{m^{\prime}}{\left(b_{1}, \ldots, b_{n}\right)}$ if and only if there exist $\left(c_{1}, \ldots, c_{n}\right) \in U_{n}$ and $\mathrm{H}, \mathrm{K} \in D_{n}(A)$ such that

$$
\begin{aligned}
& \mathrm{H}\left[a_{1} \ldots a_{n}\right]^{T}=\left[\begin{array}{lll}
c_{1} & \ldots & c_{n}
\end{array}\right]^{T}=\mathrm{K}\left[\begin{array}{lll}
b_{1} & \ldots & b_{n}
\end{array}\right]^{T} \text { and } \\
& |\mathrm{H}| m-|\mathrm{K}| m^{\prime} \in\left(c_{1}, \ldots, c_{n-1}\right) M .
\end{aligned}
$$

The reader is referred to [SZ1, SZ2] for more details of the construction.

Let $\bar{U}_{n}=\left\{\left(a_{1}, \ldots, a_{i}, 1, \ldots, 1\right) \in A^{n}\right.$: for all $i(0 \leq i \leq n)$, there exist $a_{i+1}, \ldots, a_{n} \in A$ such that $\left.\left(a_{1}, \ldots, a_{i}, a_{i+1}, \ldots, a_{n}\right) \in U_{n}\right\}$. This is a triangular subset of A^{n} and is called the expansion of U_{n}. Then, by [SZ1, 3.2], we may assume without loss of the generality that U_{n} is expanded, i.e., $U_{n}=\bar{U}_{n}$, when we consider a module of generalized fractions for M with respect to U_{n}.

A given triangular subset U_{n} of A^{n}, let $U_{t}(1 \leq t<n)$ be a restriction of U_{n} to A^{t}, i.e., $U_{t}=\left\{\left(a_{1}, \ldots, a_{t}\right) \in A^{t}\right.$: there exist $a_{t+1}, \ldots, a_{n} \in A$ such that $\left.\left(a_{1}, \ldots, a_{t}, a_{t+1}, \ldots, a_{n}\right) \in U_{n}\right\}$. Then clearly U_{t} is a triangular subset of A^{t}.

We say that a sequence of elements a_{1}, \ldots, a_{n} of A is a poor M sequence if a_{i} is not a zerodivisor on $M /\left(a_{1}, \ldots, a_{i-1}\right) M$ for each $i=1, \ldots, n$; it is an M-sequence if, in addition, $M \neq\left(a_{1}, \ldots, a_{n}\right) M$.

Lemma 1.2 [HS, SZ1, SZ2, O]. Suppose that M is an A-module. Let U_{n} be expanded. Let $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ be elements of U_{n} such that $\mathrm{H}\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]^{T}=\left[\begin{array}{lll}b_{1} & \ldots & b_{n}\end{array}\right]^{T}$ for some $\mathrm{H} \in D_{n}(A)$. Then we have the following.

$$
\begin{aligned}
& \text { (1) } \frac{m}{\left(a_{1}, \ldots, a_{n}\right)}=\frac{|\mathrm{H}| m}{\left(b_{1}, \ldots, b_{n}\right)}=\frac{a_{1}^{\alpha_{1}-1} \ldots a_{n}^{\alpha_{n}-1} m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right)} \text { for any } \\
& \left(\alpha_{1}, \ldots, \alpha_{n}\right) \in N^{n} \text { and } \\
& \frac{a_{n} m}{\left(a_{1}, \ldots, a_{n}\right)}=\frac{m}{\left(a_{1}, \ldots, a_{n-1}, 1\right)} \text { in } U_{n}^{-n} M .
\end{aligned}
$$

(2) If $m \in\left(a_{1}, \ldots, a_{n-1}\right) M$, then $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)}=0$ in $U_{n}^{-n} M$. In particular, if each member of U_{n} is a poor M-sequence, then the converse is true.
(3) If $\frac{a_{n} m}{\left(a_{1}, \ldots, a_{n}\right)}=0$, then $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)}=0$ in $U_{n}^{-n} M$.
(4) $\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}, \ldots, a_{n}\right)}\right)=\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}, \ldots, a_{n-1}, 1\right)}\right)$.
(5) If $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)} \neq 0$ in $U_{n}^{-n} M$, then $\frac{m}{\left(a_{1}, \ldots, a_{i}\right)} \neq 0$ in $U_{i}^{-i} M$ for all i with $0<i<n$.

2. Some properties of non-zero generalized fractions

Lemma 2.1. Let M be an A-module. Let $\frac{m}{\left(a_{1}, \ldots, a_{n+1}\right)} \in U_{n+1}^{-n-1} M$ and let $\alpha_{i}, \beta_{i} \in N$ such that $\alpha_{i} \geq \beta_{i}$ for all $i(1 \leq i \leq n)$. Then, for all $\left(a_{1}, \ldots, a_{n}, b_{n+1}\right),\left(a_{1}, \ldots, a_{n}, c_{n+1}\right) \in U_{n+1}$ we have

$$
\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, b_{n+1}\right)}\right) \subset \operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}\right) .
$$

Proof. From Lemma 1.2(4), we have

$$
\begin{aligned}
r \in & \operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, b_{n+1}\right)}\right) \\
& =\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, 1\right)}\right) \\
& =\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, c_{n+1}\right)}\right) .
\end{aligned}
$$

Hence we get

$$
\frac{r m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, c_{n+1}\right)}=0 .
$$

Therefore we have

$$
\frac{r m a_{1}^{\alpha_{1}-\beta_{1}} \cdots a_{n}^{\alpha_{n}-\beta_{n}}}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, c_{n+1}\right)}=\frac{r m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}=0 .
$$

The next proposition easily follows from Lemma 2.1.

PROPOSITION 2.2. If $\frac{m}{\left(a_{1}, \ldots, a_{n+1}\right)} \neq 0$, then we have, for all $\gamma_{i} \in N(1 \leq i \leq n)$ and $\left(a_{1}, \ldots, a_{n}, b_{n+1}\right) \in U_{n+1}$,

$$
\frac{m}{\left(a_{1}^{\gamma_{1}}, \ldots, a_{n}^{\gamma_{n}}, b_{n+1}\right)} \neq 0
$$

COROLLARY 2.3. Assume that $\frac{m}{\left(a_{1}, \ldots, a_{n+1}\right)} \neq 0$ in $U_{n+1}^{-n-1} M$ and $\left(a_{1}, \ldots, a_{n}, b_{n+1}\right),\left(a_{1}, \ldots, a_{n}, c_{n+1}\right) \in U_{n+1}$. Let $\alpha_{i}, \beta_{i} \in N, i=$ $1, \ldots, n$. Then
(1) $\operatorname{Ann}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, b_{n+1}\right)}\right)=\operatorname{Ann}\left(\frac{m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}\right)$ if and only if $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, n$.
(2) If $\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, b_{n+1}\right)}=\frac{m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}$, then $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, n$.
In particular, if $b_{n+1}=c_{n+1}$, then the converse holds.
Proof. (1) (\Leftarrow) This follows from Lemma 1.2(4).
(\Rightarrow) Assume that there exists $i(1 \leq i \leq n)$ such that $\alpha_{i}<\beta_{i}$, say $\alpha_{1}<\beta_{1}$. Then we get

$$
a_{1}^{\alpha_{1}} \in \operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, b_{n+1}\right)}\right)=\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}\right)
$$

Hence we have

$$
\frac{a_{1}^{\alpha_{1}} m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}=\frac{m}{\left(a_{1}^{\beta_{1}-\alpha_{1}}, a_{2}^{\beta_{2}}, \ldots, a_{n}^{\beta_{n}}, c_{n+1}\right)}=0
$$

This contradicts to the above Proposition 2.2.
(2) This easily follows from (1).

Example 2.4. In Corollary 2.3(2), we need the condition $b_{n+1}=$ c_{n+1}. Let $A=M=Z$ and $U_{2}=\left\{\left(2^{\alpha}, 3^{\beta}\right) \in Z^{2}: \alpha, \beta \in N \cup\{0\}\right\}$. Then we have $\frac{1}{\left(2^{2}, 1\right)} \neq \frac{1}{\left(2^{2}, 3\right)}$. In fact, assume that $\frac{1}{\left(2^{2}, 1\right)}=\frac{1}{\left(2^{2}, 3\right)}$ or $\frac{3-1}{\left(2^{2}, 3\right)}=0$. Hence we get $\frac{1}{(2,3)}=0$ but it is not zero in $U_{2}^{-2} Z$.

COROLLARY 2.5. Suppose that $\frac{m}{\left(a_{1}, \ldots, a_{n+1}\right)} \neq 0$ in $U_{n+1}^{-n-1} M$. Fix an integer $t \in N$ with $0 \leq t \leq n-1$. Let U_{t+1} be a restriction of U_{n+1} to A^{t+1}. Then we have
$\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{t}^{\alpha_{t}}, b_{t+1}\right)}=\frac{m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{t}^{\beta_{t}}, b_{t+1}\right)}$ in $U_{t+1}^{-t-1} M$ if and only if $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, t$.

Proof. This follows from Lemma 1.2(5) and Corollary 2.3(2).
Proposition 2.6. Let M be an A-module. Suppose $a_{n} \in \operatorname{Rad}(A)$ and $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)} \neq 0$ in $U_{n}^{-n} M$. Then we have
$\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right)}=\frac{m}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}\right)}$ in $U_{n}^{-n} M$ if and only if $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, n$.

Proof. We prove only the sufficiency. By Corollary 2.3(2), we may assume that $\alpha_{1}=\cdots=\alpha_{n-1}=\beta_{1}=\cdots=\beta_{n-1}=1$. Assume that $\alpha_{n}>\beta_{n}$.
Suppose that $\frac{m}{\left(a_{1}, \ldots, a_{n-1}, a_{n}^{\alpha_{n}}\right)}=\frac{m}{\left(a_{1}, \ldots, a_{n-1}, a_{n}^{\beta_{n}}\right)}$. Then, by the property of the module of generalized fractions, there exist $\left(b_{1}, \ldots, b_{n}\right)$ $\in U_{n}$ and $\mathrm{H}, \mathrm{K} \in D_{n}(A)$ such that $\mathrm{H}\left[\begin{array}{llll}a_{1} & \ldots & a_{n-1} & a_{n}^{\alpha_{n}}\end{array}\right]^{T}=\left[\begin{array}{lll}b_{1} & \ldots & b_{n}\end{array}\right]^{T}$ $=\mathrm{K}\left[\begin{array}{lll}a_{1} & \ldots & a_{n-1} \\ a_{n} & \beta_{n}\end{array}\right]^{T}$ and $|\mathrm{H}| m-|\mathrm{K}| m \in\left(b_{1}, \ldots, b_{n-1}\right) M$. Let D be the diagonal matrix $\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$. Hence we have

$$
|\mathrm{D}||\mathrm{H}| m-|\mathrm{D}||\mathrm{K}| m \in\left(b_{1}^{2}, \ldots, b_{n-1}^{2}\right) \mathrm{M} .
$$

On the other hand, we can rewrite as follows;

$$
\mathrm{H}\left(\begin{array}{cccc}
1 & & & 0 \\
& \ddots & & 0 \\
& & 1 & \\
0 & & & a_{n}^{\alpha_{n}-\beta_{n}}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n-1} \\
a_{n}^{\beta_{n}}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right)=\mathrm{K}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n-1} \\
a_{n}^{\beta_{n}}
\end{array}\right) .
$$

Thus by [SZ1, 2.3] we have

$$
|\mathrm{D} \| \mathrm{H}| a_{n}^{\alpha_{n}-\beta_{n}} m-|\mathrm{D}||\mathrm{K}| m \in\left(b_{1}^{2}, \ldots, b_{n-1}^{2}\right) M .
$$

Therefore we get

$$
|\mathrm{D} \| \mathrm{H}| m\left(1-a_{n}^{\alpha_{n}-\beta_{n}}\right) \in\left(b_{1}^{2}, \ldots, b_{n-1}^{2}\right) M .
$$

Since $a_{n} \in \operatorname{Rad}(A)$, we obtain

$$
|\mathrm{D} \| \mathrm{H}| m \in\left(b_{1}^{2}, \ldots, b_{n-1}^{2}\right) M .
$$

Hence we have the following contradiction;

$$
\begin{aligned}
\frac{m}{\left(a_{1}, \ldots, a_{n-1}, a_{n}^{\alpha_{n}}\right)} & =\frac{|\mathrm{H}| m}{\left(b_{1}, \ldots, b_{n}\right)}=\frac{b_{1} \cdots b_{n}|\mathrm{H}| m}{\left(b_{1}^{2}, \ldots, b_{n}^{2}\right)} \\
& =\frac{|\mathrm{D}||\mathrm{H}| m}{\left(b_{1}^{2}, \ldots, b_{n}^{2}\right)}=0
\end{aligned}
$$

by Lemma $1.2(1)(2)$.
Example 2.7. In Proposition 2.6, we cannot omit the condition $a_{n} \in \operatorname{Rad}(A)$. Under the same assumption as in Example 2.4, we have $\frac{1}{(2,1)}=\frac{1}{(2,3)}$ in $U_{2}^{-2} Z$, since $\frac{1}{(2,1)}-\frac{1}{(2,3)}=\frac{3-1}{(2,3)}=0$ by Lemma 1.2(2).

Proposition 2.8. Let M be an A-module. Let $\frac{m}{\left(a_{1}, \ldots, a_{n+1}\right)} \in$ $U_{n+1}^{-n-1} M$. Then we have

$$
\operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}, \ldots, a_{n}\right)}\right) \subset \operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}, \ldots, a_{n+1}\right)}\right) .
$$

In particular, if $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)} \neq 0$ in $U_{n}^{-n} M$ then the above inclusion is not equal.

Proof. By Lemma 1.2(5) and (3) the proposition is clear.
Remark 2.9. If $U_{i}^{-i} M=0$ for some $i \in N$, then we have $U_{i+1}^{-i-1} M=0$ by Proposition 2.8 , whenever U_{i} is a restriction of U_{i+1} to A^{i}.

Proposition 2.10. Let M be an A-module. Assume that each member of U_{n+1} is a poor M-sequence. Let $0 \neq x=\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)}$ $\in U_{n+1}^{-n-1} M$ and $\operatorname{Ann}_{A}(x) \supset\left(a_{1}, \ldots, a_{n}\right) A$. Then there exists $m^{\prime} \in M$ such that $m=m^{\prime} a_{1}^{\alpha_{1}-1} \cdots a_{n}^{\alpha_{n}-1}$ with $m^{\prime} \notin\left(a_{1}, \ldots, a_{n}\right) M$. That is, we have
$\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)}=\frac{m^{\prime}}{\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)}$ where $m^{\prime} \notin\left(a_{1}, \ldots, a_{n}\right) M$.

Proof. Note that $\operatorname{Ann}_{A}(x) \supset\left(a_{1}, \ldots, a_{n}\right) A$.
Suppose that $m=m^{\prime} a_{1}^{\gamma_{1}} \cdots a_{n}^{\gamma_{n}}$ for some $\left(\gamma_{i}\right) \in(N \cup\{0\})^{n}$ and $m^{\prime} \in\left(a_{1}, \ldots, a_{n}\right) M$. Then since $m \notin\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right) M$ by Lemma 1.2(2), we have $\gamma_{i}<\alpha_{i}$ for all i and we can find $b_{i} \in M$ such that $m=\sum_{i=1}^{l} b_{i} a_{1}^{t_{i 1}} \cdots a_{n}^{t_{i n}}$ with $b_{i} \notin\left(a_{1}, \ldots, a_{n}\right) M$. Here we may assume that $t_{i j}<\alpha_{j}$ for all $i, j(1 \leq i \leq l, 1 \leq j \leq n)$ by Lemma 1.2(2). Hence we have

$$
\begin{aligned}
& \frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)} \\
= & \frac{b_{1} a_{1}^{t_{11}} \cdots a_{n}^{t_{1 n}}}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)}+\cdots+\frac{b_{l} a_{1}^{t_{1}} \cdots a_{n}^{t_{l n}}}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)} \\
= & \frac{b_{1}}{\left(a_{1}^{\alpha_{1}-t_{11}}, \ldots, a_{n}^{\alpha_{n}-t_{1 n}}, a_{n+1}\right)}+\cdots+\frac{b_{l}}{\left(a_{1}^{\alpha_{1}-t_{l 1}}, \ldots, a_{n}^{\alpha_{n}-t_{l n}}, a_{n+1}\right)} .
\end{aligned}
$$

Put $\beta_{1}=\max \left\{\alpha_{1}-t_{11}, \ldots, \alpha_{1}-t_{11}\right\}$. Now by multiplication with $a_{1}^{\beta_{1}-1}$ and Lemma 1.2(2), we have

$$
\begin{aligned}
\frac{a_{1}^{\beta_{1}-1} m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)}= & \frac{b_{1}}{\left(a_{1}, a_{2}^{\alpha_{2}-t_{12}}, \ldots, a_{n}^{\alpha_{n}-t_{1 n}}, a_{n+1}\right)}+\cdots \\
& +\frac{b_{s}}{\left(a_{1}, a_{2}^{\alpha_{2}-t_{s 2}}, \ldots, a_{n}^{\alpha_{n}-t_{s n}}, a_{n+1}\right)}
\end{aligned}
$$

by renumbering of non-zero components ($s \leq l$). Continue the same way, until we obtain $a_{1}^{\beta_{1}-1}, \ldots, a_{n}^{\beta_{n}-1} \in A$ and $b_{1} \notin\left(a_{1}, \ldots, a_{n}\right) M$ such that

$$
\frac{a_{1}^{\beta_{1}-1} \ldots a_{n}^{\beta_{n}-1} m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)}=\frac{b_{1}}{\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)} \neq 0
$$

by Lemma 1.2(2). If $\beta_{j} \neq 1$ for some j, then we have the following contradiction

$$
a_{1}^{\beta_{1}-1} \cdots a_{n}^{\beta_{n}-1} \notin \operatorname{Ann}_{A}\left(\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, a_{n+1}\right)}\right) .
$$

Hence we must have $\beta_{j}=1$ for all $j=1, \ldots, n$. That is

$$
t_{i j}=\alpha_{j}-1 \text { for all } i, j(1 \leq i \leq l, 1 \leq j \leq n) .
$$

Then by the hypothesis we have

$$
b_{1}+\cdots+b_{l} \notin\left(a_{1}, \ldots, a_{n}\right) M
$$

3. A generalization of results of Sharp and Zakeri

From now on, let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a fixed sequence of elements of A. Then obviously

$$
U(a)_{n}=\left\{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right) \in A^{n}: \alpha_{i} \in N, i=1, \ldots, n\right\}
$$

and

$$
U(a)_{n}[1]=\left\{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}, 1\right) \in A^{n+1}: \alpha_{i} \in N, i=1, \ldots, n\right\}
$$

are triangular subsets of A^{n} and A^{n+1}.
Let $(\alpha),(\beta) \in N^{n}$ with $(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Then $(\alpha) \geq($ or $>)(\beta)$ is defined as $\alpha_{i} \geq($ or $>) \beta_{i}$ for all $i(1 \leq i \leq n)$.

Lemma 3.1 [$\mathrm{O}, 1.7$ and $\mathrm{SH}, 2.8]$. Let A be a ring. Let M be an A-module. Then, in $U(a)_{n}^{-n} M$

$$
\frac{m}{\left(a_{1}^{\alpha_{1}}, \ldots, a_{n}^{\alpha_{n}}\right)}=\frac{m^{\prime}}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n}^{\beta_{n}}\right)}
$$

I
there exists $\gamma \geq \alpha_{i}, \beta_{i}(1 \leq i \leq n)$ such that

$$
a_{1}^{\gamma-\alpha_{1}} \cdots a_{n}^{\gamma-\alpha_{n}} m-a_{1}^{\gamma-\beta_{1}} \cdots a_{n}^{\gamma-\beta_{n}} m^{\prime} \in\left(a_{1}^{\gamma}, \ldots, a_{n-1}^{\gamma}\right) M .
$$

Theorem 3.2. Let A be a ring and M an A-module.
Let $(\alpha),(\beta) \in(N \cup\{0\})^{n-1}$ and $\alpha_{n} \in N \cup\{0\}$. Then the following conditions are equivalent.
(1) $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)} \neq 0$ in $U(a)_{n}^{-n} M$.
(2) For all $a_{n}^{\alpha_{n}},(\alpha)$ and (β) such that $(\beta)>(\alpha)$,

$$
m a_{1}^{\alpha_{1}} \cdots a_{n}^{\alpha_{n}} \notin\left(a_{1}^{\beta_{1}}, \ldots, a_{n-1}^{\beta_{n-1}}\right) M
$$

(3) For all $t \geq 1, m a_{1}^{t-1} \cdots a_{n}^{t-1} \notin\left(a_{1}^{t}, \ldots, a_{n-1}^{t}\right) M$.

Proof. (1) \Rightarrow (2) Suppose that, for some (β) $>(\alpha), m a_{1}^{\alpha_{1}} \cdots a_{n}^{\alpha_{n}} \in$ $\left(a_{1}^{\beta_{1}}, \ldots, a_{n-1}^{\beta_{n-1}}\right) M$. Then we have

$$
\begin{aligned}
\frac{m}{\left(a_{1}, \ldots, a_{n}\right)} & =\frac{m a_{1}^{\beta_{1}-1} \cdots a_{n-1}^{\beta_{n-1}-1} a_{n}^{\alpha_{n}}}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n-1}^{\beta_{n}-1}, a_{n}^{\alpha_{n}+1}\right)} \\
& =\frac{m a_{1}^{\alpha_{1}} \cdots a_{n}^{\alpha_{n}} a_{1}^{\beta_{1}-\alpha_{1}-1} \cdots a_{n-1}^{\beta_{n-1}-\alpha_{n-1}-1}}{\left(a_{1}^{\beta_{1}}, \ldots, a_{n-1}^{\beta_{n-1}}, a_{n}^{\alpha_{n}+1}\right)}=0
\end{aligned}
$$

by Lemma 1.2(2).
(3) \Rightarrow (1) Let $\frac{m}{\left(a_{1}, \ldots, a_{n}\right)}=0$ in $U(a)_{n}^{-n} M$. Then, from Lemma 3.1, there exists $\gamma \in N$ such that $m a_{1}^{\gamma-1} \cdots a_{n}^{\gamma-1} \in\left(a_{1}^{\gamma}, \ldots, a_{n-1}^{\gamma}\right) M$. This contradicts to the hypothesis.

Corollary 3.3 [Ho, Remark 5 and SZ3, 4.1]. Let A be a Noetherian local ring of dimension d. Put $U_{d+1}=\left\{\left(b_{1}, \ldots, b_{d}, 1\right) \in A^{d+1}\right.$: b_{1}, \ldots, b_{d} forms a system of parameters for $\left.A\right\}$. Let $\left\{a_{1}, \ldots, a_{d}\right\}$ be a fixed system of parameters for A. Then the following conditions are equivalent.
(1) $a_{1}^{t-1} \cdots a_{d}^{t-1} \notin\left(a_{1}^{t}, \ldots, a_{d}^{t}\right) A$ for all $t \geq 1$, i.e., the Monomial Conjecture holds.
(2) Let $(\alpha),\left(\beta_{1}\right), \ldots,\left(\beta_{n}\right) \in N^{d}$. Then we have

$$
a^{(\alpha)} \in\left(a^{\left(\beta_{1}\right)}, \ldots, a^{\left(\beta_{n}\right)}\right) A \text { if and only if there exists } i(1 \leq
$$ $i \leq n)$ such that $(\alpha) \geq\left(\beta_{i}\right)$, where $a^{(\alpha)}=a_{1}^{\alpha_{1}} \cdots a_{d}^{\alpha_{d}}$ with

$$
\begin{aligned}
& \quad(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \\
& \text { (3) } \frac{1}{\left(a_{1}, \ldots, a_{d}, 1\right)} \neq 0 \text { in } U_{d+1}^{-d-1} A .
\end{aligned}
$$

Proof. In the Theorem 3.2, let $n-1=d$ and $a_{n}=1$. Put $M=A$ and $m=1$. Then Corollary 3.3 is a special case of Theorem 3.2, since $U(a)_{d+1}^{-d-1} A \cong U(a)_{d}[1]^{-d-1} A \cong U_{d+1}^{-d-1} A$ by [SZ3, 3.6].

References

[HS] M. A. Hamieh and R. Y. Sharp, Krull dimension and generalized fractions, Proc. Edinburgh Math. Soc., 28 (1985), 349-353.
[Ho] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J., 51 (1973), 25-43.
[O] L. O'carroll, On the generalized fractions of Sharp and Zakeri, J. London Math. Soc., (2) 28 (1983), 417-427.
[SH] R. Y. Sharp and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra, 38 (1985), 323-336.
[SZ1] R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika, 29 (1982), 32-41.
[SZ2] R. Y. Sharp and H. Zakeri, Modules of generalized fractions and balanced big Cohen-Macaulay modules, Commutative Algebra: Durham 1981, London Math. Soc. Lecture Note Ser., 72 (Cambridge University Press, 1982), 61-82.
[SZ3] R. Y. Sharp and H. Zakeri, Local cohomology and modules of generalized fractions, Mathematika, 29 (1982), 296-306.

Department of Mathematics, Chungnam National University, Taejon 305-764, Korea

