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Stability of Dynamical Polysystems

YooN Hok Gu

ABSTRACT. We introduce the concept of the prolongation operator
and examine some properties of this operator. In e-first countable
space X, we prove that each compact subset M of X is stable if and

only if DR(M) = M for each polydynamical system.

1. Introduction

N. Kalouptsidis, A. Bacciotti and J. Tsinias have extended the
properties of stability reffered to [2] for polydynamical systems when
the space; is locally compact metric space.

In this paper we introduce the concept of stability for compact set
and the general definition of the prolongation operator to character-
ize stability. In a c-first countable space introduced in [4] which is
a general concept than that of a metric space, we prove that each
compact subset M of X is stable if and only if DR(M) = M for each
polydynamical system.

2. Preliminaries

DEFINITION 2.1. A space X 1is said to be c-first countable if for
each compact subset /X of X, there exists a family &/ consisting of
countably many neighborhoods of i’ such that every neighborhood of

K contains some members of .

REMARK 2.2. In (4], it was known that every metric space is c-
first countable, but the converse does not hold. As for the example, it
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was known that there is a c-first countable and locally compact space

which is not a metric space.

In this paper, let X be a locally compact Hausdorff c-first countable

space unless otherwise stated, R the set of nonnegative real numbers

and 2% the set of all subsets of X.

DEFINITION 2.3. A dynamical system on X is a continuous map
7: X X R — X with the following properties:

(a) n(z,0)=zforallz e X
(b) w(w(z,s),t) =n{z,s+¢t)forallz € X and s,t € R.

DEFINITION 2.4. A dynamical polysystem on X is a family of

dynamical systems {7;|¢ € I}, where I is an arbitrary set of indices.

DEFINITION 2.5. Let {m;|i € I} be a dynamical polysystem on X,
Let x € X and t > 0. The reachable set from z at time ¢ is a subset
R(z,t) = {y € X{ there exists an integer n,t;,- - -,t, € RT and ¢;,

-yt € I such that f:t,- =tand y =, (mi,_, (- - mi, (7w, (2, 81), t2),

oot of X

Note that R(z,0) = {z} forallz € X. For A C X and t € RT, we
let R(A,t) = U R(z,t).

For § C R'*‘ and z € X, welet R(z,5) = 11[GJSR(:zs,t)

DEFINITION 2.6. The reachable map of the polysystem {m;|i € I}
is the multivalued map R : X x Rt — 2% defined by R(z,t) as the

reachable set from z at time .

DEFINITION 2.7. For z € X, the positive orbit from = for polysys-
tems is a subset R(z,R*) of X. Set R(z,R*) by R(z). For A C X, we

let R(A) = |J R(z). Given a dynamical monosystem 7, aset M C X
T€EA
is called positively invariant if each ¢ € M,y*(z) C M. Now it is

natural to define the positively invariance for polysystems {m;|i € I}.
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DEFINITION 2.8. A subset A of X is positively invariant if R(A) C
A.

3. Stability

DEFINITION 3.1. Let {#;|¢ € I} be a dynamical polysystem and
let M be a compact subset of X. M is stable if for any neighborhood
U of M, there exists a neighborhood V' of M such that R(V) C U.

DEFINITION 3.2. Let I' be a multivalued map from X to 2%,
The prolongation operator D transforms I’ into DT : X — 2% de-
fined by DI(z) = {y € X]| there exist sequences =, — T,y —
y suchthat y, € I'(zn)}.

It is clear that I'(z) C DT(z) for each z € X.
DEFINITION 3.3. For 2 € X, the set DR(z) is called the prolon-

gation of z.

DEFINITION 3.4. The map I' : X — 2X is a c-c map if for any
compact K C X and z € K with ['(z) ¢ K,T(z) N 0K # ¢.

All multivalued maps I'" considered in this paper satisfy the reflex-
ivity ¢ € ['(z) for all z € X.

LEMMA 3.5. If the map T : X — 2% is a c-c map, then the map
DI': X — 2X is a c-c map.

PROOF. Let K be a compact subset of X,z € K with DI'(z) ¢ K.
Since I' is a c-c map and z € I'(z), only two cases are possible: either
I(z) N8K # ¢ or ['(z) C IntK. First, choose y € ['(z) N 9K. We
have y € ['(z) C DI'(z). Thus DI'(z) N 0K # $. Second, z € IntK.
Since DI'(2) ¢ K, there is a y € DI'(z) — K. Therefore, there are
sequences T, — Z,yn — Y such that y, € I'(z,). We may assume
that z, € IntK,y, € X — K. Since I'(z,) ¢ K and I is a c-c map,
(z,) NOK # ¢. Thus there is a sequence z, € ['(z,) N 8K. Since

8K is compact, we choose the sequence z, — z € JK. We have
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z € DT'(z). It follows that DI'(z) N OK # ¢. Hence the lemma is

proved.
The following lemma indicates alternate description of the set DR(z).

LEMMA 3.6. DR(z} = ()| R(U), where N(z) denotes the set
UeAN(zx)
of all neighborhoods of z.

PROOF. Weshow first that DR(z) C () R(U). Lety € DR(z).
UeN(z)

Then there are sequences z, — x,y, — y such that y, € R(z,). For

all neighborhoods U,V of = and y, respectively, there is an integer m

such that z,, € U and y,, € V. We have y,n, € R(z,n) C R(U)

and so VN R(U) # ¢. Therefore y € R(U) . It follows that

DR(z) C [} R(U). Next,lety € [} R(U). Choose a basis
UEN(2) UEN(z)
at z and y, respectively, (Uyn) and (V,,) with Uy D Uny1, Ve D Vat1.

For any integer n,V, N R(U,) # ¢. Thus there are sequences z, in

U, and y, in V, such that y, € R(z,). Clearly, z, — z and y,, — y.
Hence we have y € DR(z). The lemma is proved.

PROPOSITION 3.7. For every dynamical polysystem :
(1) R(z) C DR(z)
(2) The graph of DR,G(DR) = |J {#} x DR(z), is closed in
X x X e
(3) DR is a c-c map
(4) For any compact set M C X, DR(M) = ({U|U is positively

invariant neighborhoods of M}.

PRroor. (1) is clear. To prove (2), let (z,y) € G(DR). Then there
is a sequence (¥n,yn) € G(DR) such that (z,,yn) — (2,¥). Since
yn € DR(z,), there are sequences {z2,} and {y%} in X such that
I — Ta,Ym — yn and yh € R(z}). Let (U,) and (V,,) be a basis
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at r and y with U, D Un41, Ve D Vig1, respectively. Then there is
an integer ny such that z,, € U; and y,, € V}. We can choose an
integer m; so that zjl € U; and y;! € Vi. Similarly, there is an
integer n, such that z,, € Uz and y,, € V2. Also, we can choose an
integer m2 so that z72 € Uz and y;2 € V3. Continuing this process,
for any neighborhood U of z, there is an integer k such that Uy C U.
if 2 > k, then a7, € U; C Up C U. Similarly, for any neighborhood V'
of y, there is an integer & such that Vy C V. If i > %, then we have
Ym, € Vi C Vi C V. Therefore, z3}{, — z and yji — y. We have
yni € R(zpi) and so y € DR(z). This shows that (z,y) € G(DR).
Hence D(DR) is closed in X x X.

To prove (3) it suffices to show that R is a c-c map. Let A be a
compact subset of X and z € K with R(z) ¢ K. First, let z € 9K,
since ¢ € R(z),R(z) NOK # ¢. Next, let z € Int K. Choose
y € R(z) — K. Then there is a t € R* such that y € R(z,t). Thus
we have R(z,[0,t]) N Int K # ¢ and R(z,[0,¢]) N (X — K) # ¢. Since
R(z,[0,t]) is path connected, R(z,[0,t]) is connected. It follows that
R(z,[0,t])) N 9K # ¢. We clearly have R(z) N 8K # ¢. Hence Ris a
c-¢ map. By the lemma 3.5, DR is a ¢c-¢ map.

Finally, we will prove (4). Let y € DR(M). Then thereisaz € M
such that y € DR(2). Thus there are sequences z, — 2z and y, — y
such that y, € R(z,). Let U be any positively invariant neighborhood
of M. Since U is a neighborhood of z, we may assume that z, € U. As
a consequence of positive invariance, y, € R(z,) C U. Thusy € U.
Since U is any positively invariant neighborhood of M,y € N U. This
shows that DR(M) C (YU. Next, we show that (VT ¢ DR(M). Let
y € NU. Suppose that y ¢ DR(M). For all z € M,y ¢ DR(z). By
the lemma 3.6, there is a neighborhood U, of @ such that y ¢ R(U,).
The family {U,|z € M} is an open cover of M. Since M is compact,
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there is a finite set {z1,22, - ",an} of M such that M C UU,,

The set | JR(Ug,) is a positively invariant neighborhood of M Set

= |JR(U.,). We have U = |JR(U;,) and so y ¢ U. This is
a contradiction. Hence we have y € DR(M). The proof of (4) is
completed.

THEOREM 3.8. For each dynamical polysystem and each compact
subset M of X, M is stable if and only if DR(M) =

PROOF. Let M be stable. Clearly, we have M C R(M) C DR(M).
Suppose M # DR(M). Then there is a point y € DR(M) — M. We
can choose x € M so that y € DR(z). Thus there are sequences
Tn — T,Yn — y such that y, € R(z,). Since M is a compact subset
of X and y ¢ M, there exist disjoint neighborhoods U and V of M
and y, respectively. By the stability of M, there exists a neighborhood
W of M such that R(W) C U. We choose an integer m so that
m € W,ym € V. Thus we have y,, € R(z,,) C R(W) C U and so
UNV # ¢. This is a contradiction. Hence DR(M) = M.

Conversely, let DR(M) = M. Suppose M is not stable. Then
there exists a neighborhood U of M such that for any neighborhood
Vof M,R(V) ¢ U. We can choose a relatively compact neighborhood
W of M so that W C U. Let (U,) be a countable basis of M with
W DUy DUy D ---. For any n, we have R(U,) ¢ W. Thus there
is a sequence z, in u, such that R(x,) ¢ W. Since R is a ¢-c map,
R(z,)NOW # ¢. Choose y, € R(z,) N OW. Since 8W is compact,
there is a sequence y, — y with y € 9W. Since M is compact, there
is a sequence z, — z € M. We have y € DR(z) C DR(M) =
This 1s a contradiction. Hence M 1s stable. The theorem is proved.
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